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Abstract
Diffusion models have recently shown great po-
tential on many generative tasks. In this work,
we explore diffusion models for machine trans-
lation (MT). We adapt two prominent diffusion-
based text generation models, Diffusion-LM
and DiffuSeq, to perform machine transla-
tion. As the diffusion models generate non-
autoregressively (NAR), we draw parallels to
NAR machine translation models. With a
comparison to conventional Transformer-based
translation models, as well as to the Leven-
shtein Transformer, an established NAR MT
model, we show that the multimodality prob-
lem that limits NAR machine translation per-
formance is also a challenge to diffusion mod-
els. We demonstrate that knowledge distillation
from an autoregressive model improves the per-
formance of diffusion-based MT. A thorough
analysis on the translation quality of inputs of
different lengths shows that the diffusion mod-
els struggle more on long-range dependencies
than other models.

1 Introduction

Diffusion models have shown promising results in
a wide range of generative tasks, such as image
generation (Ho et al., 2020; Nichol et al., 2022),
text-to-speech synthesis (Jeong et al., 2021), and
robotic control (Chi et al., 2023), but their appli-
cation to natural language processing (NLP) is
still a less explored direction. The last two years
have seen various approaches to this (Zou et al.,
2023), including discrete (token level) diffusions
(Reid et al., 2022) and continuous (embedded) dif-
fusions. Continuous diffusion models typically
generate whole sequences in an iterative and non-
autoregressive (NAR) manner, and have shown
strong results for controllable generative modelling
(Li et al., 2022; Chen et al., 2023). They have also
been applied to sequence-to-sequence tasks such
as open-domain dialog and question generation
(Gong et al., 2023; Yuan et al., 2022). In this work,

we focus on machine translation (MT), another
sequence-to-sequence task that requires fluent out-
puts over a vocabulary different from the input and
the preservation of semantic meanings of the input
sequences. Despite potential speed advantages1,
NAR translation models tend to lag behind their
AR counterparts in translation quality2 (Libovický
and Helcl, 2018; Gu et al., 2019; Gu and Kong,
2021; Kasai et al., 2021) as a result of the condi-
tional independence assumption, where output to-
kens are generated independent of each other. This
prompts us to compare diffusion-based MT models
to conventional NAR MT models. We explore how
techniques commonly applied to NAR MT models
could benefit diffusion-based models. Specifically,
we seek to answer the following questions: 1) How
can we adapt existing diffusion-based text gener-
ation models to machine translation? 2) How do
these diffusion-based MT models compare to stan-
dard AR and NAR machine translation models? 3)
What are reasons for the performance gap and how
can we bridge the gap?

2 Background and Related Work

2.1 Diffusion Models

While there exist many other families of diffusion
models3, we limit our discussion on the denoising
diffusion probabilistic model (DDPM) (Ho et al.,
2020), which can be viewed as a variational diffu-
sion model (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Kingma et al., 2021). In general terms, a
diffusion model is a type of generative model that
learns to model the probability distribution of given
datasets. Its essential components are: 1) the for-
ward process in which noise is iteratively added

1which has been called into question under realistic condi-
tions (Helcl et al., 2022)

2Some recent exceptions include Qin et al. (2022) based
on hybrid NAR and AR generation.

3We refer interested readers to Luo (2022) for a more
general coverage.
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to the data, i.e., the data is diffused for a given
number of time steps; 2) a predefined noise sched-
ule which determines the amount noise added at
every time step; 3) the parametric backward pro-
cess that is optimized to match the time-reverse
forward process, thereby recreating the data sam-
ple. Specifically, the stochastic model consists of
T +1 random variables with T indicating the num-
ber of time steps. These random variables include
the observation variable X0 and T latent variables
X1, . . . ,XT ∈ Rd. Between them, we assume a
conditional probability distribution with some regu-
larity constraints4, commonly a normal distribution
with the mean and variance being dependent on the
previous state. The process is illustrated with the
light gray nodes in Figure 1.

Forward Process In the forward process, the ob-
served information is diffused by the conditional
probability adding a small amount of noise in
each step according to the noise schedule (αi)

T
i=1

where αi defines the noise applied in the ith time
step5. Therefore, the forward process is a time-
discrete stochastic process, which can be described
by q(xt|xt−1) = N (xt|

√
αixt−1, (1 − αi)Id) for

t = 2, . . . , T (Li et al., 2022; Luo, 2022; Ho et al.,
2020). Utilizing the formula for conditional multi-
variate normal distributions, we can derive

q(xt−1|xt,x0)=N
(
xt−1|µ(xt,x0),

(1−ᾱt−1)(1−αt)

1−ᾱt
Id

)
.

(1a)
where

µ(xt,x0):=
√
αt(1−ᾱt−1)xt+

√
ᾱt−1(1−αt)x0

1−ᾱt
. (1b)

Backward Process The Markovian back-
ward process is defined as p(xt−1|xt) =
q(xt−1|xt, x̂0(xt)) using a neural network x̂0(xt)
to estimate the initial data x0 in every step (Li et al.,
2022). Sampling from the model corresponds to
first sampling XT ∼ N (0, 1) and then sampling
a backward trajectory in an iterative manner. An
example trajectory is illustrated in Appendix A.
Accordingly the Evidence Lower Bound (ELBO)
of log pθ(x0) for training data x0 is used as a loss
function (Luo, 2022).

2.2 Diffusion Models for Language Modeling
Language modeling is the task of assigning proba-
bilities to sequences of words y1,...,n and is a central

4Specifically a Markov kernel in the mathematical sense.
5For which ᾱT ≃ 0, where ∀i ∈ {1, . . . , T}: ᾱi :=∏i

t=1 αt and αi ∈ (0, 1) needs to hold.
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Figure 1: An illustration of the forward and backward
diffusion processes for text generation.

task in NLP. Here we describe two prominent ap-
proaches of using diffusion models for language
modeling: Diffusion-LM (Li et al., 2022) and Dif-
fuSeq (Gong et al., 2023). Although similar in
principle, DiffuSeq uses classifier-free guidance
(Ho and Salimans, 2022) to model a conditional
diffusion process for sequence-to-sequence tasks.

2.2.1 Diffusion-LM
The model underlying Diffusion-LM (Li et al.,
2022) is similar to the DDPM (Ho et al., 2020)
proposed for image generation. A main difference
is the extra requirement of handling text outputs,
which are discrete in nature unlike images. This
calls for two modifications illustrated on the left-
hand-side of Figure 1: when embedding the text as
training targets, and when recovering the discrete
tokens from continuous diffusion states.

Embedding Function To embed discrete text
tokens, a word embedding lookup table is used
as in many other NLP models. This means the
embedding function Eθ is simply a context-free
token-wise embedding. It is only used to obtain the
training targets during training and when filling in
masked data. The embedding vectors are optimized
end-to-end together with the backward process, as
Li et al. (2022) found pretrained word embeddings
degraded performance.

Recovery Function When generating the text
outputs, i.e., mapping from continuous diffusion
states to discrete tokens, the recovery function Rθ

is a linear layer followed by a softmax activation,
like the output layer in most NLP models. It can
be viewed as a nearest neighbour lookup in the
embedding space. Like the word embeddings, the
weights of the recovery function are also trained
jointly with the diffusion model. Moreover, as
recovering from the diffusion states to single word
embeddings (i.e., committing) is often difficult, Li
et al. (2022) proposed a clamping trick to force
the model to commit to certain word embeddings
at intermediate diffusion steps. Specifically, this
is achieved by mapping the predicted initial data
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x̂0(xt) to the closest word embedding sequence at
each time step.

Classifier Guidance Although Diffusion-LM
can be used as a language model in general, its
main focus is controllable text generation (Li et al.,
2022), where the backward process is modified for
the end result to satisfy one or multiple control
targets, such as sentiment or syntactic structure.
In most experiments6 by Li et al. (2022), control
is achieved by classifier guidance, i.e., training
a classifier to model P(·|Xt) on the diffusion la-
tent variables Xt, and running gradient updates
∇Xt logP(desired class|Xt) at each step during
the backward process. The text generation process
is thereby guided towards desired classes.

Infilling Procedure For the task of filling in miss-
ing data, e.g., sentence completion based on sound-
ing sentences, Diffusion-LM uses the infilling al-
gorithm. This approximates conditional distribu-
tions where the variable we want to condition on
is already modelled by the diffusion model, and is
comparable to the image inpainting capability (Lug-
mayr et al., 2022) of diffusion models for image
generation. To achieve this, the conditioning infor-
mation is kept fixed at its desired value throughout
the backward process.

2.2.2 DiffuSeq
Difference to Diffusion-LM Unlike Diffusion-
LM which focuses on controllable generation, Dif-
fuSeq (Gong et al., 2023) focuses on sequence-to-
sequence tasks, and the authors argue that classifier
guidance is insufficient for this type of task, since
the fine-grained input-output relation cannot be
achieved by a finite number of classifiers. The au-
thors therefore propose a classifier-free approach.

Classifier-Free Diffusion Bypassing classifier
guidance, DiffuSeq (Gong et al., 2023) directly
models the transformation between (source ⊕ ran-
dom) and (source ⊕ target) where ⊕ indicates the
concatenation operation. Specifically, DiffuSeq
models the distribution of the target sequence con-
ditioned by the source sequence. To achieve that,
DiffuSeq used conditional noising, which only ap-
plies noise to the target sequence while leaving
the source sequence fixed. This is done both in
training and sampling/decoding. The sampling pro-
cedure is analogous to the infilling procedure of

6One exception out of their 6 setups is the infilling experi-
ment, which does not need a classifier.

Diffusion-LM as a result.

2.3 Non-Autoregressive Models and the
Multimodality Problem

Non-autoregressive Transformer models (NAT)
(Gu et al., 2018) are based on the conditional inde-
pendence assumption, where the generation of to-
kens in the target sequence does not depend on each
other. While allowing for a rapid decoding process,
this introduces the multimodality problem (Gu et al.,
2018) due to nondeterminism in the dataset. Non-
determinism in the dataset can be explained by the
example of German sentences “Danke schön” and
“Vielen Dank” both being possible translations of
“Thank you”, but a model following the conditional
independence assumption cannot allow both vari-
ants (Gu et al., 2018). Diffusion models do not
follow the conditional independence assumption,
so it is unclear whether the nondeterminism in the
dataset impacts model performance.

3 Adapting Diffusion Models to Machine
Translation

Machine translation is an instance of the condi-
tional language modeling problem. Specifically, it
aims to automatically translate text from one source
language to another target language, and may be de-
scribed as modeling the distribution over the target
space conditioned by a sequence from the source
space. Currently, the primary model choice for
machine translation is the encoder-decoder archi-
tecture, especially the Transformer (Vaswani et al.,
2017), where an encoder module first encodes the
source sequence, passing the encoding on to the de-
coder, which autoregressively generates an output
sequence conditioned by the source encoding.

To this end, formally we describe the probability
of a sequence y given the conditioning information
x under the transformer model pθ:

pθ(y;x)=
∏|y|

i=1 pθ(yi|y1,...,yi−1;x)︸ ︷︷ ︸
modelled explicitly

. (2)

Considering that the diffusion models described
in §2.2 generate sequences en bloc, we constrain
our problem to only consider pairs of sequences
of a combined maximum length S. Accordingly,
sequences are padded or truncated to the length S.

3.1 Diffusion-LM for Machine Translation

Reasons for a Classifier-Free Approach As in-
troduced in §2.2.2, the source-target transforma-
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tion required for machine translation is more com-
plex than controllable generation guided by dis-
crete classes. Specifically, it requires the model to
safeguard against alterations in semantic meaning
and demonstrate the ability to pay close attention
to different words in the source sequence depend-
ing on the token in the target sequence. So for
a classifier guidance approach, one could poten-
tially train a Transformer model to back-translate
from target to source, and use gradients from this
model to guide the generation. However, as the
generation output is highly dependent on the guid-
ing model, it remains questionable whether this ap-
proach provides any benefits over an autoregressive
Transformer model. This motivated us to approach
diffusion-based machine translation by classifier-
free guidance.

Approach We use a shared dictionary V =
Vs, Vt, and seek to model the joint distribution
J : P(V S) → [0, 1] of pairs of source and tar-
get sequences by training Diffusion-LM on this
task. Given a set of training source and target
pairs (s(1), t(1)), . . . , (s(n), t(n)), we use the con-
catenated source-target sequences, where j(i) =
s(i) ⊕ (ŝ) ⊕ t(i) for i ∈ [1, n]. The source and
target sequences are separated by a reserved sepa-
rator token ŝ ∈ V . A Diffusion-LM model is then
trained to maximize the likelihood of the training
sequences j(1), . . . , j(n). By using the infilling al-
gorithm to approximate the conditional distribution
of the target sequence given the source sequence,
translation is then performed without relying on
classifier guidance.

3.2 DiffuSeq for Machine Translation

As DiffuSeq is proposed for sequence-to-sequence
tasks, we can directly apply it on machine trans-
lation. Like the Diffusion-LM-based model, the
DiffuSeq-based models use shared vocabularies
Vs, Vt = V . The sampling algorithm is the same
as the infilling algorithm for Diffusion-LM (Gong
et al., 2023).

3.3 Sequence-Level Knowledge Distillation

Motivated by theories and findings in the machine
translation and linguistics literature, we proceed to
improve diffusion-based translation models.

To tackle the multimodality problem (§2.3) of
non-autoregressive translation models, Gu et al.
(2018) showed positive results with sequence-level
knowledge distillation (Kim and Rush, 2016). In

general terms, this can be achieved by sampling
a translation of the source sequences in the train
set. When an autoregressive teacher model is avail-
able, one can achieve this by decoding the source
sequence with the teacher model using the beam
search algorithm as usual. The resulting transla-
tions constitute a new, distilled dataset. This kind of
knowledge distillation makes the resulting training
targets less noisy and more deterministic, ensuring
that for instance “Thank you” will be consistently
translated into the same German translation (§2.3).

Prior works from different disciplines provided
theoretical support for the impact of distillation
in translation. From a machine learning perspec-
tive, Zhou et al. (2020) showed distillation reduces
the conditional entropy of the translations given the
source sequences. They further showed distilled tar-
gets contained more words monotonically aligned
with their direct translations in the source sequence.
We argue this phenomenon can be viewed as syntac-
tic conditional entropy, measuring the amount of
uncertainty in the sentence structures. From a lin-
guistic perspective, Bangalore et al. (2015) showed
translations with low syntactic entropy are easier
to produce.

As stated in §2.3, diffusion-based machine trans-
lation models do not follow the conditional inde-
pendence assumption of NAT models, as they gen-
erate a trajectory of sequences (x(t))1≤t≤T where
for 1 ≤ t < T, 1 ≤ s ≤ S the column x

(t)
i (which

corresponds to a token embedding vector) is in-
fluenced by the whole sequence x(t+1). Li et al.
(2022) found that empirically learned word embed-
dings formed clusters of words with the same part-
of-speech tags. Generally a diffusion models noise
schedule should be rather smooth with no major
jumps, so that the individual columns of the trajec-
tory first drift towards a cluster of word embeddings
early and commit to a single embedding later in
the process. This leads to the assumption that a se-
quence’s syntactic structure is first decided, before
the model finally commits to individual words.

The syntactic conditional entropy of a training
dataset could lead to a multimodality problem of
diffusion models, where different syntactic struc-
tures represent the different modes in the early
diffusion process. As distilled datasets exhibit
lower syntactic conditional entropy, sequence-level
knowledge distillation could improve the results of
diffusion-based machine translation models. Moti-
vated by this, we investigate how knowledge distil-
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lation impacts the translation performance of diffu-
sion models.

3.4 Autoregressive Sampling

Besides empirical successes of autoregressive mod-
els, the sequential nature of text suggests that gener-
ating one token at a time is a promising approach to
text generation. Consequently, we wonder whether
diffusion-based machine translation systems are
limited in performance by fixing all tokens of the
generated sequence at once. Indeed, a very recent
work (Yuan et al., 2022) showed improvements by
considering the sequential nature of the outputs,
more specifically by learning to apply different
noise levels to each token at every time step.

In the context of our approach, Diffusion-LM
approaches the inclusion of prior data by the in-
filling algorithm. Building upon that, we propose
an iterative sampling method, where in the each
iteration i the first i− 1 tokens of the last iterations
output are served to the model as prior information.
This conditional probability is approximated by the
infilling algorithm.

So by sampling

(x
(i)
1 ,...,x

(i)
S )∼p(x1,...,xS |x1=x

(i−1)
1 ,...,xi−1=x

(i−1)
i−1 )

(3a)
and discarding (x

(i)
i+1, . . . ,x

(i)
S ) we approximate

p(x
(i)
i |x1=x

(1)
1 ,...,xi−1=x

(i−1)
i−1 ) (3b)

yielding the usual autoregressive formula:

p̂(x
(1)
1 ,...,x

(S)
S )=p(x

(1)
1 )

∏S
i=2 p(x

(i)
i |x1=x

(1)
1 ,...,xi−1=x

(i−1)
i−1 )

(3c)
Algorithm 1 describes the sampling algorithm in

detail. For the naive implementation given there,
this increases the time needed for decoding by
a factor of O(S). However, when detecting the
end of the generation process, this factor is in
O(average generated sequence length).

4 Experimental Setup

Dataset and Preprocessing We use the German-
English text-to-text partition of the CoVoST (Wang
et al., 2020) dataset and train the models for
German-to-English translation. This dataset was
chosen due to its comparable size to the experimen-
tal setup of Li et al. (2022), which used 50K to
98K samples in training. Due to the slow decoding
process of the autoregressive sampling method, the

Algorithm 1 Autoregressive sampling
1: Input

s ∈ V l, 1 ≤ l ≤ S
2

The source sequence
▷ Initialize the translation as the empty word

2: t← ϵ
3: for k = l + 2, . . . , S do
4: j ← s⊕ (ŝ)⊕ t
5: Pad j up to length S

▷ Embed concatenated sequence
6: x̃← Eθ(j)

▷ Calculate the mask
7: mi = 1 for 1 ≤ i ≤ |j|
8: mi = 0 for |j|+ 1 ≤ i ≤ S
9: Draw xT ∼ N (0, Id×S)

10: for t = T − 1, . . . , 0 do
▷ With Σt+1 as described in equation (1a).

11: Draw xt ∼ N (µθ(xt+1, t+ 1),Σt+1)
▷ Overwrite where the data is given by x̃

12: xt;i ← x̃i where mi = 1
13: end for

▷ Recover the most likely token for position k
14: t← t⊕ argmax

j∈V

Rθ(x0)k,j

15: end for
▷ Return the sequence of generated tokens t

16: return t

Split # samples Avg. source len. Avg. target len.
train 127,638 12.6 12.41
valid 13,510 13.16 13.02

test (reduced) 2,010 13.6 13.47

Table 1: Key metrics of the dataset CoVoST, with the
tokenizer used here and the reduced test split.

test set was reduced to a subset of 2010 samples.7

The dataset statistics are in Table 1. Details on
preprocessing are in Appendix B.

Evaluated Diffusion Models We evaluate 4
types of diffusion models described in §3:
1. Diffusion-LM-MT: Diffusion-LM adapted

with classifier-free diffusion (§3.1)
2. DiffuSeq: the standard DiffuSeq model (§3.2)
3. DiffuSeq, Distilled: DiffuSeq with sequence-

level knowledge distillation (§3.3)
4. DiffuSeq, AR-Sampling: DiffuSeq with autore-

gressive sampling (§3.4)
We use a max length of 64 tokens following
Diffusion-LM (Li et al., 2022). For the knowledge
distillation dataset, we use the pretrained model by
Ng et al. (2019) as the teacher model. More de-
tails on the model architectures are in Appendix C.
For all models, the encoder in the diffusion ker-
nel is parameterized by a network following the
BERT-based architecture. All weights are initial-
ized randomly following Li et al. (2022).

7The reduced test set is available un-
der https://drive.google.com/file/d/
1nj2S7dOLGBel7ZR4AWbVCxEFVcgWg_V3/view?usp=
drive_link
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Model BLEU↑ COMET↑
Diffusion-LM-MT 2.2 39.2

DiffuSeq 10.0 48.0
DiffuSeq, AR-Sampling 10.7 48.1

DiffuSeq-distilled 12.5 49.7
Transformer 28.7 72.2

Levensthein-Transformer 18.5 61.4

Table 2: Direct comparison of models by BLEU score
and COMET score under the wmt22-comet-da score.

Sampling All models used a step size of 1 during
the sampling process. This results in a very long
decoding time, as the diffusion kernel needs to be
evaluated in every iteration. Using a lower number
of diffusion steps during sampling accelerates the
sampling process, but generally leads to decreased
performance (Li et al., 2022; Gong et al., 2023).

Baselines We use a Transformer model (Vaswani
et al., 2017) as the main baseline. Given the non-
autoregressive nature of diffusion models, we also
compare to Levenshtein Transformer (Gu et al.,
2019), an established NAT model. More details on
the baselines are in Appendix D.

Evaluation The detokenized results of all imple-
mentations and baselines were evaluated by BLEU-
scores by SacreBLEU (Post, 2018) and by the
wmt22-comet-da model (Rei et al., 2022), which
is the default COMET model at the time of writing.
Both scores are reported as ×100 for readability.

5 Results and Discussions

5.1 Translation Quality

The results of the proposed models and the base-
lines are presented in Table 2. All diffusion-
based models heavily underperformed compared to
both the Transformer model and the Levensthein-
Transformer with a large gap of over 15 BLEU.

Compared to the standard DiffuSeq, the model
employing sequence-level knowledge distillation
(DiffuSeq-distilled) showed a unclear improve-
ment of +2.5 BLEU and +1.7 COMET. This
provides some support to our hypothesis in §3.3
on knowledge distillation’s positive role in face
of the multimodality problem. The model with
autoregressive sampling method (DiffuSeq, AR-
Sampling) brings a gain of +0.7 BLEU but does
not improve the COMET score. Therefore, whether
this approach has any impact on translation qual-
ity remains unclear. This suggests that the inclu-
sion of prior knowledge by the infilling algorithm

has little impact on the model’s generation pro-
cess. The Diffusion-LM-MT model, modeling
the joint distribution performed poorly when faced
with the task of translating the test data. When
sampling from the Diffusion-LM model without
the infilling algorithm, the model successfully gen-
erated pairs of German and English sentences. The
data generated by this unguided approach, when
evaluated by the reference-free COMET model
wmt20-comet-qe-da (Rei et al., 2020) achieved
a score8 of 8.72. However, when faced with the
challenge of translating the test set, the score fell
to 0.94. This suggests that the infilling algorithm
in its current form is ill fit to properly approximate
conditional distributions as complex as machine
translation tasks.9

5.2 Impact of Source Lengths

Next we investigate the impact of the input length
on the translation quality of all models in the ex-
periments. When the translated samples are split
into buckets of roughly equal size by the length
of the source sequence, we notice the diffusion
language models fall off notably faster in BLEU
score compared to the baseline transformer model,
suggesting that long-range dependencies might be
more problematic for these models to capture.

We formally test this by evaluating
the relative difference in BLEU scores
dr(BLEUa,BLEUb) := BLEUa−BLEUb

max{∥BLEUa∥,∥BLEUb∥}
between pairs of translation systems a and b. The
relative difference followed linear trends, so we
performed a t-test of slopes, testing against the null
hypothesis “The relative difference in BLEU is
uncorrelated to the length of the source sequence
in tokens.”. The resulting test statistics and the
statistically significant results are in Table 3.

While the results from the autoregressive sam-
pling method for DiffuSeq are slightly better than
those of the standard sampling procedure for long
source sequences, our experiments did not pro-
vide statistically significant data indicating that
this method provides a particular benefit on long
sequences. Furthermore, the DiffuSeq-distilled
model utilizing knowledge distillation achieves

8Scores are not comparable to those in Table 2 due to a
different COMET model with reference-free evaluation.

9This might indicate that during the generation process
interdependencies within the German and English sentence are
generally more influential than the cross dependency between
the sequences, which also provides an explanation for the
improved performance of the DiffuSeq model. This hypothesis
would need further testing however.
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Models DiffuSeq DiffuSeq, AR Transformer Diffusion-LM-MT Lev-Transformer DiffuSeq-distilled
DiffuSeq − 0.40 11.29 -2.89 4.95 -0.20
DiffuSeq, AR -0.40 − 9.88 -2.55 4.06 -0.56
Transformer -11.29 -9.88 − -10.42 -7.36 -10.97
Diffusion-LM-MT 2.89 2.55 10.42 − 7.33 2.69
Lev-Transformer -4.95 -4.06 7.36 -7.33 − -4.97
DiffuSeq-distilled 0.20 0.56 10.97 -2.69 4.97 −

Table 3: Test statistics for the t-test of slopes with critical value t1987(0.995) ≃ 2.58 for a 1% significance level.
Pairs where the null hypothesis "The relative difference of scores is uncorrelated to the length of the source sequence"
can be rejected and where the slope is positive are marked in bold. By this, a positive test statistic indicates a
significant impact of the length of the source sequence on the relative performance of the models, indicating that the
model at the top of the column performs relatively better on longer sequences than the model at the start of the row.

Models Training Time # of steps Batch Size Decoding Time GPUs
Lev-Transformer 19h 300,000 128 6s 1 NVIDIA RTX 3070

Diffusion-LM 3d 6h 600,000 128 1h 44m 46s 1 NVIDIA TITAN RTX
DiffuSeq 14d 9h 80,000 2048 3h 23m 17s 1 NVIDIA TITAN RTX

DiffuSeq AR 14d 9h 80,000 2048 >30h 1 NVIDIA TITAN RTX
DiffuSeq-distilled 10d 12h 60,000 2048 3h 23m 1 NVIDIA TITAN RTX

Table 4: Key metrics on the training and decoding times of the different non-autoregressive models. Decoding times
are reported for the entire reduced test set containing 2010 samples. When re-evaluating the decoding time for the
Levenshtein Transformer after the initial submission, times between 8.4 and 14.8 seconds were measured.10

higher scores than the standard DiffuSeq model
overall, but follows the same trends as the stan-
dard DiffuSeq model over increasing length of the
source sequences.

The non-autoregressive Levenshtein Trans-
former consistently outperforms all diffusion-based
models, but also falls off faster than the autoregres-
sive Transformer model on longer sequences.

5.3 Training and Decoding Time Comparison

Key metrics on the training and decoding times
of the various non-autoregressive models are sum-
marized in Table 4. The diffusion-based models
suffer from long training and decoding times. For
training time, the slow optimization process can
be explained by two factors. Firstly, the model es-
sentially faces the problem of guessing the whole
target sequence based on the source sequence by
a single evaluation of an encoder stack, which
is a very hard problem. Secondly, the DiffuSeq
and DiffuSeq-distilled models both rely on large
batch sizes to avoid converging to trivial distribu-
tions. The slow decoding speed on the other hand
is largely explained by the number of diffusion
steps, as the decoding process in our case requires
2000 iterations of the encoder stack. A remedy
would be to down-sample the number of diffusion
steps taken (Song et al., 2021) at the cost of sample
quality (Gong et al., 2023).

5.4 Translation Samples

Some translation examples by the different mod-
els are shown in Table 5. With the shortest in-
put, all systems are able to translate correctly apart
from the Diffusion-LM-based models. With the
two longer input sequences, despite mostly cap-
turing the rough meaning of the input, the non-
autoregressive models in general exhibit problems
with output fluency. An exception is the Diffusion-
LM-based model which hallucinates translations
that are unrelated to the input. This is an indication
that the conditional information from the source is
disregarded by the model.

5.5 Open Questions

Tackling Multimodality The experiment results
indicate that similarly to other NAR models the
multimodality problem presents a challenge to dif-
fusion models, with knowledge distillation provid-
ing clear benefits for the performance and conver-
gence properties of diffusion-based MT models.
The improved performance of the model utilizing
sequence-level knowledge distillation is likely due
to decreased nondeterminism in the dataset, which
is in-line with other findings on non-autoregressive
translation systems (Gu et al., 2018). Consequently,
the applicability of other methods employed to
tackle the multimodality problem in NAR models

10The DiffuSeq-based models still showed improvement
even after extensive training duration
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Source Robert Simonds ist verheiratet.
Target Robert Simonds is married.
Transformer Robert Simonds is married.
Diffusion-LM Robert -ieew is married.
DiffuSeq Robert Simonds is married.
DiffuSeq, AR Robert Simonds is married.
Lev-Transformer Robert Simonds is married.
DiffuSeq-distilled Robert Simonds is married.
Source Der Duft von Fruehling stroemte in ihre Nase.
Target The fragrance of spring floated into her nose.
Transformer The The fragrance of spring running in her nose.
Diffusion-LM The of of them ran about the body in the basement.
DiffuSeq The frag of remain in their nose.
DiffuSeq, AR The frag of internationally ended in their nose..
Lev-Transformer The jce of spring, and comes in their ne.
DiffuSeq-distilled The frag of their fragrance in their nose.
Source Gleichzeitig wurde mit der Elektrifizierung des Netzes begonnen.
Target Electrification of the network began at the same time.
Transformer At the same time, the electrification of the network was started.
Diffusion-LM It was closed with the populationun of fin during city of Baden.
DiffuSeq At the same time , the similar railway board has been areas in the network.
DiffuSeq, AR At the same time , the upper sub sh of the network was moved.
Lev-Transformer At the same time, the electrification was started with the netnetwork.
DiffuSeq-distilled At the same time , Soviet inv independent of the estate was started.

Table 5: Examples of translations from the different systems.

to diffusion-based MT models should be studied.

Output Diversity A potential advantage of dif-
fusion models is the diversity of the generated out-
puts. We did not explore how knowledge distilla-
tion affects the diversity score of the system. Gong
et al. (2023) showed that DiffuSeq scores high in
the diverse 4-gram (Deshpande et al., 2019) score
measuring the ration of distinct 4-grams in a set
of outputs for one source sequence. Quite possi-
bly the increased quality of samples when using
sequence-level knowledge distillation comes at a
trade-off for decreased diversity of generation out-
puts. The diversity of results given different seeds
for the generation process can also be leveraged by
applying Minimum Bayes Risk (MBR) decoding
(Kumar and Byrne, 2004), where each candidate
from a set of translations is assigned a risk based
on how similar it is to the other candidates. The
candidate with the lowest risk is then chosen as the
system output (Li et al., 2022; Gong et al., 2023).

Further Improving Diffusion-LM-MT The ex-
periment results show the Diffusion-LM-based
model performed poorly while the standard Dif-
fuSeq achieved acceptable scores. The genera-
tion process of DiffuSeq is also equivalent in im-
plementation to the infilling procedure utilized
by Diffusion-LM and the autoregressive sampling
method, but unlike the infilling procedure used
there, with DiffuSeq the conditioning information

is served to the model in the same way during train-
ing (Gong et al., 2023). This could motivate a
hybrid AR/NAR approach, using a diffusion-based
system to generate few tokens at a time.11

6 Conclusion

Using sequence-level knowledge distillation we
saw a clear improvement in both training speed
and model performance of diffusion-based machine
translation systems. We believe they benefit from
the reduced syntactic conditional entropy of dis-
tilled datasets and conclude that they suffer of a
form of the multimodality problem, similarly to
other NAR machine translation systems. Based
on this, methods employed in other NAR mod-
els to help them handle multimodality in the data
are likely to improve the performance of diffusion-
based machine translation approaches.

The Diffusion-LM-MT model proved capable
of expressing the joint density of source and trans-
lation implying that with an improved infilling al-
gorithm good conditional densities could be sam-
pled from these models. However, using the infill-
ing algorithm, it was ill-fit to produce high quality
samples when used for a sequence to sequence
task in our experiments. In a similar manner, the
method of autoregressive sampling for diffusion-

11Initial experiments often converged to trivial distributions.
To this end, the model should be refined to allow for sequences
of variable length.
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based translation systems had little impact on the
quality of samples.

The diffusion-based MT models studied cur-
rently struggle with training and inference speed.
While some factors contributing to the slow op-
timization of these models such as the static se-
quence length may be alleviated, the problem of
predicting the initial sequence based of the noisy
version remains difficult. Inference speed on the
other hand can be improved with methods such
as DDIM (Song et al., 2021) and newer work
on Diffusion Models for the image domain likely
could be applied to Diffusion Language Models as
well. When using the results of Diffusion Language
models directly without using MBR decoding, the
models still fall decidedly behind the Transformer-
based baselines. At the same time, MBR-decoding
does not seem broadly applicable, as long as infer-
ence is still as slow as in current models.

Limitations

Comparison to SOTA translation models In the
comparison to diffusion-based models, our Trans-
former model was a Transformer-base and was
trained on a small dataset with around 100K paral-
lel sentences. For a comparison to state-of-the-art
translation models, one should use a larger model
trained on over millions of sentence pairs, poten-
tially initialized from pretrained weights. There-
fore, the gap between diffusion-based models and
state-of-the-art translation models is likely even
larger than reported in this paper.

Decoding speed In the current form, the exper-
imented diffusion-based models are prohibitively
slow. Even when the quality gap to standard trans-
lation models is closed, the decoding speed renders
these models unrealistic for deployed systems.
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A Additional Visualization

An example of the forward process is shown in
Figure 2. Here, the initial distribution was a mix-
ture distribution of two normal distributions, seen
at t = 0. Over the course of the forward process
noise was added, resulting in the density curve for
t = 2000 resembling a standard normal distribu-
tion.

Figure 2: Smooth histograms of sampled values at
X0, X1000, X2000 where T = 2000, based on 2000 sim-
ulations.

B Details on Preprocessing

For preprocessing, the special characters ä, ü, ö,
and ß were replaced by ae, ue, oe and ss respec-
tively, accents were removed, and the set of char-
acters was reduced to the alphabet, numerals, and

punctuation marks (excluding brackets and paren-
theses).12 The texts are tokenized by Byte-Pair
Encoding (BPE) (Sennrich et al., 2016) with a vo-
cabulary size of 30,000. After tokenization, the
training data for the diffusion-based models are fur-
ther filtered by removing sequences longer than 64
tokens. This accounted for less than 0.01% of the
samples in the dataset.

C Details on Model Architectures

1. Diffusion-LM-MT: This is the model based
on Diffusion-LM with infilling as described
in Section 3.1. Model hyperparameters:

(a) Embedding dimension: 256
(b) Diffusion steps: 4000

(c) Noise schedule: "sqrt"

(d) Estimated mean parameterized by esti-
mating x0

(e) Batch size: 128

(f) Maximum sequence length: 64

(g) No gradient clipping

(h) Fixed noise schedule

(i) End-to-end training of diffusion kernel
and embedding matrix

(j) Decoding with the clamping trick ap-
plied13

2. DiffuSeq: The standard DiffuSeq model.
Model hyperparameters are as given by Gong
et al. (2023).

3. DiffuSeq, AR: The standard DiffuSeq model
with the method of autoregressive sampling
as described in Section 3.4.

4. DiffuSeq-distilled: The model utilizing
sequence-level knowledge distillation as de-
scribed in Section 3.3, using the same hyper-
parameters. We used the wmt19-de-en model
by Ng et al. (2019) as the teacher model.

12This preprocessing was motivated by the idea of poten-
tially leveraging closely related vocabulary between German
and English and reducing the vocabulary size. The deviation
from standard translation preprocessing steps (removing brack-
ets and parentheses) could slightly affect the compatibility to
other systems.

13The paper introducing Diffusion-LM states that this em-
pirically improves sample quality (Li et al., 2022), however,
some more recent papers suggest that this might not consis-
tently be the case (Yuan et al., 2022)
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D Details on Baselines

Transformer The model is with 6 layers, embed-
ding dimension 512, feed-forward layer embedding
dimension 1024 and 4 attention heads in both en-
coder and decoder. The model uses shared weights
for encoder and decoder embeddings and for the
language modeling head. Besides these parameters,
the other parameters are the same as the original
paper (Vaswani et al., 2017). Decoding was per-
formed with beam size of 10, length penalty of 1,
temperature of 1, and no further modifications to
the standard beam search.

Levenshtein Transformer We follow the imple-
mentation here. Decoding parameters were also
chosen as presented by the paper.
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