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Abstract

Prosodic salience is a heuristic based on word-
level prosody in child-directed speech that is
thought to serve as a cue for attentional fo-
cus. It has been used in the context of robotic
language acquisition to extract the contextu-
ally most relevant words from a human tutor’s
speech to ground them in a robot’s sensorimo-
tor data. However, the pipeline for perform-
ing word-based prosody-recognition operated
in a semi-automatic manner and required sub-
stantial manual effort. We describe our efforts
to automate the existing pipeline by including
real time prosody recognition, and a modern
speech recognition and forced alignment model.
The intention is to enable its use in real time
for human-in-the-loop robotic language acqui-
sition and other socially driven forms of online
learning.

1 Introduction

Prosodic salience is a measure calculated from a
speech signal’s pitch, energy, and duration features,
and can be used to identify the most relevant words
of an utterance produced by caregivers in child-
directed speech.

This heuristic has demonstrated use in robotic
language acquisition (Saunders et al., 2011, 2012),
and can facilitate a more effective language learn-
ing process for robots, drawing on insights from
how human children acquire language.

It has been used as part of the ITALK project
(Broz et al., 2014) to learn the names of, and inter-
actions with, objects based on human tutors’ lin-
guistically unconstrained speech when trying to
teach the robot the names of various objects after
having been told to speak to the robot as if it were
a 2-year old child.

Further research was performed by (Förster et al.,
2011; Förster et al., 2019) demonstrating that nega-
tion words, such as “no”, are prosodically salient
which may explain why it is typically amongst the

first 10 words in English-speaking children’s early
active vocabularies (Fenson et al., 1994).

While the previous work shows prosodic
salience to be useful for word-level language ac-
quisition in developmental robotics, it may have a
wider potential in speech interfaces. For instance,
it might be used within dialogue systems in gen-
erating different responses depending on whether
some word was produced meekly or with strong in-
tonation - think of the difference between a meekly
uttered “no” and a vehemently shouted one.

However, for word-based prosody recognition,
features must be aligned accurately to the correct
segment of the speech signal that is representative
of the word. For prosodic salience, this meant that
a large quantity of manual effort was required in the
past from human transcribers marking word bound-
aries (e.g. Saunders et al., 2011, 2012; Förster et al.,
2011; Förster et al., 2019). Hence for any meaning-
fully large corpus to be processed by this method,
it would need to be scaled up by automating the
alignment process with speech processing methods
and speech recognition models.

The present paper describes our efforts to
automate the existing semi-automatic prosody-
processing pipeline.

2 Background

2.1 Child-Directed Speech and Language
Acquisition

Child-directed and infant-directed speech (CDS
and IDS respectively) are marked out by a number
of modifications compared to adult-directed speech,
that have been hypothesized to be conducive to hu-
man language acquisition. While not all of these
modifications are present in all languages, they typ-
ically include an overall higher pitch, exaggerated
intonation contours, a focus on topics relating to
physically co-present objects or events, and im-
portant words being placed at an utterance-final
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position (Clark, 2009, chap. 2). Moreover, objects
words have been observed to be pronounced rela-
tively loudly (Saxton, 2017, chap. 4). While most
of these observations characterise CDS and IDS
on a general level, Soderstrom (2007) hypothesises
that in IDS some of these acoustic modifications
are performed on a word-level to aid the infant in
both segmenting an utterance and singling out a
target word.

In the context of robotic language acquisition
and for the purpose of symbol grounding, based
on the aforementioned features of CDS, Saun-
ders, Lehmann, Sato, and Nehaniv (2011), oper-
ationalised word-based prosodic salience (cf. sec-
tion 3). This was done to identify and extract
prosodically salient words from an utterance pro-
duced by a human tutor when speaking to a child-
like humanoid robot. Here, the prosodic salience
of a word is identified as the product of a word’s
normalised pitch, energy, and duration values.

2.2 Human-in-the-Loop Real-time
Reinforcement Learning

Senft et al. (2019) created an implementation for
a reinforcement learning agent that learns from so-
cial feedback in an education setting. The reward
signal the robot learned from was in the form of
corrective feedback via a human manually press-
ing buttons to reward, punish, or manually initiate,
actions. Because the teacher must consciously pro-
vide explicit feedback to the robot, their workload
did not sufficiently decrease over time.

Belpaeme et al. (2018) express that the use of
explicit signals in these cases acts as a proxy for nat-
urally expressed implicit social signals. As some of
these signals are typically embedded within speech,
they contend that speech processing technology
presented a bottleneck in their study preventing
them from using such implicit speech-based social
signals.

Prosodic salience is an example of such implicit
social signals and similarly suffers from this bottle-
neck because of its reliance on the temporal align-
ment between the lexical level and the audio signal.

2.3 Forced Aligners

Forced alignment (FA) is the process of aligning
a transcript to an audio signal. The traditional ap-
proach to forced alignment makes use of Hidden
Markov Model (HMM) based automatic speech
recognition pipelines, where statistical methods are

used to model the probability distributions of pho-
netic units and to align the audio with the text.

Whilst traditional speech recognition models
have largely been surpassed by attention based
models such as (Baevski et al., 2020) and (Rad-
ford et al., 2023), attention based forced aligners
haven’t improved performance as significantly. For
instance, NeuFA (Li et al., 2022) only marginally
improves on the HMM based Montreal Forced
Aligner (MFA) (McAuliffe et al., 2017) and Whis-
perX (Bain et al., 2023) simply performs worse.

3 Methods

3.1 Prosodic Salience Pipeline

The prosodic salience estimation pipeline (Saun-
ders et al., 2011) is as follows:

1. Transcribe the speech signal
2. Align the transcription
3. Split words into groups of utterances
4. Estimate the mean pitch and mean energy fea-

tures of each spoken word
5. Estimate salience
6. Create a lexicon using the most salient words

of each utterance
7. Ground sensorimotor experience with lexical

units.
Originally steps 1, 2, and 3 were performed

semi-automatically with human correction, with
transcription alignment comprising the majority
of manual effort from human transcribers. To
automate these processes, we used Deepgram’s
Nova model (Deepgram, 2024) through an API call,
which automatically produces a transcript, word
boundaries, and utterance boundaries.

Additionally, step 4 relied on the Prosodic Fea-
ture Extraction Tool (PFET) (Huang et al., 2006),
to calculate the relevant pitch, duration and energy
features. However, as it was built on top of Praat
(Boersma and Weenink, 2024), it was designed as
an analysis tool, and has limited capabilities for
full automation and real time execution.

To automate this process, we use OpenSMILE
(Eyben et al., 2010) which is a highly configurable
open source toolkit for signal processing and audio
feature extraction. Comparitively, it has real time
execution capabilities, and can be fully automated.

The calculation for estimating prosodic salience
(or step 5), which is independent of the pipeline,
is as follows: for a given word Wi of an utterance
U , with U = [W1, . . .Wn] , the word-based mean
pitch, energy, and duration are scaled with respect
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to the maximum word-based mean value of the
respective measure within U (p = pitch, e = energy,
d = duration, s = prosodic saliency).

p̂(U) = max({p(Wi) |Wi ∈ U}) (1)

ê(U) = max({e(Wi) |Wi ∈ U}) (2)

d̂(U) = max({d(Wi) |Wi ∈ U}) (3)

s(Wi) =
p(Wi)

p̂(U)
× e(Wi)

ê(U)
× d(Wi)

d̂(U)
(4)

For single word utterances, if the word’s pitch,
energy, or duration are larger than the first standard
deviation of pitch, energy, and duration for the
whole interaction session, then the word is also
marked as salient.

3.2 Analysis
Step 1: Test of partially-modified pipeline using
OpenSMILE To test the suitability of OpenS-
MILE to act as replacement for PFET, the modified
pipeline using OpenSMILE was compared against
the original pipeline using PFET by running them
on robot-directed speech (RDS) corpus of Förster
et al. (2019). For this corpus both manual transcrip-
tions and word boundary time stamps are avail-
able, such that no additional method to detect word
boundaries such as Deepgram is needed. Execut-
ing both pipelines yielded two sets of prosodically
salient words whose frequencies we subsequently
compared using Kendall rank correlation test.

Step 2: Test of fully-automated pipeline using
both OpenSMILE and Deepgram The fully-
automated pipeline was tested using Deepgram’s
Nova model which can generate both speech tran-
scripts and word boundary time stamps. Using
this pipeline, we generated a speech aligned tran-
script for the Newman-Ratner CDS corpus (New-
man et al., 2016). This corpus was chosen due to
the similarity of the two scenarios within which
both the Förster and Newman-Ratner corpora were
recorded. For reasons of data protection we were
not allowed to upload the Förster corpus into the
cloud-based Deepgram, hence the need for the
Newman-Ratner corpus. The utterance boundaries
and word alignments generated by Deepgram were
then used with the prosodic features generated by
OpenSMILE to calculate the duration, mean pitch,
and mean energy values for each word, followed by
calculating their prosodic salience. Subsequently
the prosodically most salient words, one per utter-
ance, were extracted for this corpus, and table of

word frequencies created (cf. section 4). Upon
reviewing the extracted words, we noticed an unex-
pected absence of object labels, which are known
to occur frequently in child-directed speech and
we would expect to be prosodically salient, as seen
in the Förster corpus. This necessitated additional
analyses to investigate the cause of the dissimilarity
between the two corpora.

Follow-up Analysis: Forced Aligners on RDS
Listening to the selected section of the audio record-
ings of the Newman-Ratner corpus made it clear
that the fully-automated pipeline had failed to pick
out the prosodically most salient words. After veri-
fying the correctness of the speech transcripts gen-
erated by Deepgram, two potential error sources
were identified: (1) a failure of OpenSMILE to
correctly calculate the different prosodic feature
values, for example due to noise or poor audio
quality, and (2) a failure of Deepgram to correctly
determine the word boundaries, leading to a mis-
alignment of transcript and audio recording.

Hence Deepgram’s alignment accuracy was
tested using a test audio file from the Förster corpus
and by comparing Deepgram’s word boundaries to
the human-generated baseline. The file was 193
seconds long, consisting of 181 words, of which
only 141 were used, as they were a part of an ut-
terance which contained a saliently predicted word
and therefore the most likely to affect the results.
To account for cases where more than one word
was produced by Deepgram, word alignments were
paired based on the closest match of start and end
timestamps. Algorithm 1 was used to quantify the
degree of misalignment.

Algorithm 1 Overlap Function a and b are time in-
tervals under comparison, specifying word bound-
aries as tuples, with a: ground-truth, and b: other
boundaries (here: generated by Deepgram).

1: function OVERLAP(a, b)
2: a_len← |a[1]− a[0]|
3: b_len← |b[1]− b[0]|
4: overlap ← min(a[1], b[1]) −

max(a[0], b[0])
5: missing ← a_len− overlap
6: extra← b_len− overlap
7: return (overlap,missing, extra)
8: end function

The overlap function calculates the overlap,
missing length, and extra length between two inter-
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vals a and b.

4 Results

4.1 Prosodic Feature Extraction
Step 1 The outcome of the analysis performed
in Step 1 is depicted in Fig. 1. Shown are the
relative frequencies of the top 10 most frequent
prosodically salient words of the Förster corpus for
both pipelines. The Kendall rank correlation test
yielded a τB = 0.86 (p <= .001), indicating a
large correlation.

Figure 1: Frequency of the 10 most frequent prosodi-
cally salient words by pipeline. The pipeline is identical
besides the prosodic feature extraction method. Meth-
ods compared are the originally used Chen and Harper’s
prosodic feature extraction tool (PFET) vs OpenSMILE.

Step 2 Table 1 depicts the 10 prosodically most
salient words as detected by the fully-automated
pipeline. Objects labels, dominating the list
of most-frequent prosodically salient words in
Förster’s RDS corpus are suspiciously missing here,
indicating a problem with the prosody detection.

Word Freq. Word Freq.
oh 1367 baby 457

yeah 1032 look 436
you 700 that 339
okay 669 what 240
no 665 see 238

Table 1: 10 most frequent prosodically most salient
words of the Newman-Ratner corpus by frequency of
occurrence over all participants as output by the fully-
automated pipeline.

4.2 Forced Aligners on Robot Directed Speech
Table 2 shows the total overlap, missing, and ex-
tra sections between the baseline word alignment
and the one generated by Deepgram when run on
the test audio file from the RDS corpus. Numeri-
cally, the missing and extra parts of audio account

for nearly the same portion as overlap. This is
catastrophic for prosodic salience estimation, as
word level prosody data can change frequently, and
nearly half of it is either erroneous or missing.

Category Time (seconds)
Overlap 34.021
Missing 14.366

Extra 15.678

Table 2: Totals for Overlap, Missing, and Extra, seg-
ments of audio for Deepgram’s prediction compared to
human aligned. Overlap represents the total time in sec-
onds where the time ranges agree. Missing represents
the portions of audio where the prediction undershoots
the word. Extra represents the portions of audio where
the predicted region overshoots the word.

5 Discussion

Our results indicate that word boundary detec-
tion as performed by forced aligners, still remains
an open problem when applied to child-directed
speech and with respect to word-based prosody
detection. We observed that once a boundary detec-
tion error occurs within an utterance, this type of er-
ror frequently propagates to the boundaries of sub-
sequent words in that utterance. This subsequently
renders word-based prosody detection difficult to
impossible. However, given a correct set of correct
word boundaries, current automatic prosody fea-
ture extraction tools such as OpenSMILE appear
to perform sufficiently well when compared semi-
automatic prosody processing methods involving
tools such as PRAAT. Because traditional FA per-
forms poorly in non-standard domains, settling for
a hybrid usage of HMM and attention models for
speech alignment appears to be insufficient. Purely
attention based forced alignment models hold some
promise for improvement.

Future Work Elsner and Ito (2017) posit that
forced aligners perform poorly on CDS due to
its atypical phonetics, resulting in what they call
“catastrophically aligned words”. In their work, a
Kaldi forced aligner was adapted to CDS by treat-
ing it as a domain adaptation problem. We hence
intend to tune NeuFA (Li et al., 2022) and similar
attention-based aligners to chosen CDS and RDS
corpora to adequately adapt it to the respective do-
mains.
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