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Abstract

The performance of modern language models
(LMs) has been improved by chain-of-thought
(CoT) reasoning, i.e., the process of generating
intermediate results that guide the model to-
wards a final answer. A possible explanation for
this improvement is that CoT reasoning extends
an LM’s computational power, as RNNs and
transformers with additional scratch space are
known to be Turing complete. Comparing LMs
to Turing machines, however, introduces a cat-
egory error—Turing machines decide language
membership, whereas LMs define distributions
over strings. To bridge this gap, we formalize
CoT reasoning in a probabilistic setting. We
present several results on the representational
capacity of recurrent and transformer LMs
with CoT reasoning, showing that they can
represent the same family of distributions over
strings as probabilistic Turing machines.

https://github.com/rycolab/cot-lms

1 Introduction

Motivated by how humans solve complex problems
by noting down intermediary results, Wei et al.
(2022b) introduced chain-of-thought (CoT)
reasoning.1 CoT reasoning helps language models
(LMs) solve reasoning tasks by allowing them to
store intermediary results in a scratch space that is
not part of the final output. The empirical success
of CoT reasoning has made it an established
component of modern neural LMs (Nye et al.,
2021; Wei et al., 2022a,b; Suzgun et al., 2022;
Kojima et al., 2023; Wies et al., 2023)—seemingly
overnight. Such empirical success motivates
a thorough understanding of the abilities of
CoT-augmented LMs. While existing theoretical
treatments have shed light on some aspects of this
framework, we are still far from a concrete theo-
retical understanding of CoT (Feng et al., 2023).

CoT reasoning can be interpreted as encouraging
LMs to perform additional sequential computation

*Equal contribution.
1We use the more general term CoT reasoning over the

original term CoT prompting as prompting is just one way to
elicit CoT reasoning (Wang and Zhou, 2024).
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Figure 1: A schematic overview of our main results,
showing which neural language models extended with
CoT reasoning (left) correspond to which probabilistic
models of computation (right).

steps while storing the result of that computation.
Naturally, this suggests that CoT reasoning should
be formalized in a manner that exploits our under-
standing of well-known, stateful models of compu-
tation. Theory of computation provides a natural
toolbox for this avenue of exploration. Indeed, the
internal configurations of many neural language
models have been previously linked to intermedi-
ate steps in neural LMs (Pérez et al., 2021; Merrill
and Sabharwal, 2024; Feng et al., 2023).

A language model is definitionally a distri-
bution over strings from some fixed alphabet.2

This definition is somewhat at odds with the way
existing work has investigated the representational
capacity of CoT-augmented LMs. Firstly, most
results in this area concern unweighted language
recognition, which is different from the inherently
probabilistic task of language modeling. Secondly,
Turing completeness results such as Pérez et al.’s
(2021) construction—a seminal result showing
the Turing completeness of transformer LMs—
usually require additional symbols not present
in the original alphabet to correctly simulate a
Turing machine. Because the output alphabets
of the transformer LM and the Turing machine
it simulates fundamentally differ, it is difficult

2An alphabet is a finite, non-empty set.
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to discuss their equivalence. This motivates a
more fine-grained treatment of the representational
capacity of neural LMs in which: (1) LMs are
treated as probabilistic models of computation, i.e.,
they assign weights to strings rather than deciding
language membership, and (2) language model
equivalence is defined on the output string level,
and the analysis takes into account the additional
information required to be encoded in additional
outputs to achieve the equivalence.

We address the first point by analyzing CoT-
augmented LMs using probabilistic models of com-
putation, which provide a convenient way of de-
scribing families of distributions over strings with
standard models of sequential reasoning. To ad-
dress the second point, we define a new type of
relationship between language models, which we
call regular reducibility. Intuitively, an LM is
regularly reducible into another one if the strings
generated by the latter are sufficiently simple trans-
formations of those generated by the former. An
instance of such a transformation is the deletion of
the intermediary computation steps of CoT reason-
ing. Formalizing CoT reasoning in this framework,
we find that it increases the computational power
in both RNN and transformer LMs. Concretely,
we find that CoT-augmented constant-precision
RNN LMs are equivalent to probabilistic finite-
state automata (PFSAs). This is in contrast to the
constant-precision RNN LMs without CoT reason-
ing, which are equivalent to deterministic PFSAs
(Svete and Cotterell, 2023). Additionally, we show
how Turing-complete linear-precision RNN LMs
can be thought of as performing CoT reasoning.
Finally, we show that both linearly bounded preci-
sion RNN LMs and logarithmically bounded pre-
cision decoder-only transformer LMs with CoT-
reasoning can simulate any probabilistic Turing
machine. Taken together, our results frame CoT
reasoning in pure language modeling terms and de-
scribe its intuitive and formal connections to prob-
abilistic models of computation.

2 Preliminaries

In our analysis, we assume rational (rather
than real) arithmetic for all definitions and
computations.

2.1 Language Models

A formal language L is a subset of the Kleene
closure Σ∗ of some alphabet Σ. We call an element

y of Σ∗ a string. We denote the empty string by ε,
and we assume that ε /∈ Σ. A discrete semimea-
sure over Σ∗ is a function µ : Σ∗ → [0, 1] such that∑

y∈Σ∗ µ (y) ≤ 1 (Bauwens, 2013; Icard, 2020).
If the semimeasure of all strings sums to one, i.e.,∑

y∈Σ∗ µ (y) = 1, then µ is called a probability
measure.3 Finally, for any alphabet Σ, we define
the set Σε

def
= Σ ∪ {ε}.

Definition 2.1. A language model (LM) p is a
semimeasure over Σ∗. If p is a probability measure,
it is called a tight language model.

Definition 2.2. Two LMs p and q are weakly equiv-
alent if p(y) = q(y) for all y ∈ Σ∗.

Most modern LMs are autoregressive, i.e., they
define p (y) through conditional distributions of
the next symbol given the string produced so far
and the probability of ending the string, i.e.,

p (y)
def
= p (EOS | y)

|y|∏

t=1

p (yt | y<t) . (1)

Here, EOS denotes the special end-of-string
symbol, which specifies that the generation of a
string has halted. The inclusion of EOS allows
(but does not guarantee) that a language model p,
autoregressively, constitutes a probability measure
over Σ∗ (Du et al., 2023); a model defined as in
Eq. (1) may sum to less than 1 in a pathological
case. For any alphabet Σ, we define the set
Σ

def
= Σ ∪ {EOS}. The conditional probability

distributions are usually defined based on vectorial
representations of y<t computed by a language
encoder enc : Σ∗ → RD (Chan et al., 2024).

Definition 2.3. A representation-based LM is any
LM that can be written as an autoregressive lan-
guage model (Eq. (1)) where the conditional distri-
butions over the next symbol yt ∈ Σ are given by

p (yt | y<t)
def
= f(E enc (y<t))yt , (2)

where enc : Σ∗ → RD is a language encoder,
E ∈ R|Σ|×D is an output matrix, and f is a
projection function.4

3This definition differs from Li and Vitányi’s (2008) who
instead define semimeasures over prefix strings.

4A common choice for f is the softmax. Since our anal-
yses use rational arithmetic, we instead opt for sparsemax
(Martins and Astudillo, 2016). However, all of our results can
be extended to the use of the more common softmax func-
tion through the use of log activations and the extended real
numbers R ∪ {−∞,∞} (Svete et al., 2024).
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2.2 Regular Language Models
Probabilistic finite-state automata are a well-
understood probabilistic computational model.

Definition 2.4. A probabilistic finite-state automa-
ton (PFSA) is a tuple (Σ, Q, λ, ρ, δ) where Σ is an
alphabet, Q is a finite set of states, δ ⊆ Q× Σ×
Q≥0×Q is a finite set of weighted transitions where

we write transitions (q, y, w, q′) ∈ δ as q
y/w−−→ q′,

and λ, ρ : Q → Q≥0 are functions that assign
each state its initial and final weight, respectively.
Moreover, for all states q ∈ Q, δ, λ and ρ satisfy∑

q∈Q λ (q) = 1, and
∑

q
y/w−−→q′∈δ

w + ρ (q) = 1.

Next, we will define some basic concepts related
to PFSAs. A PFSA A = (Σ, Q, λ, ρ, δ) is deter-
ministic if |{q | λ (q) > 0}| = 1 and, for every
q ∈ Q, y ∈ Σ, there is at most one q′ ∈ Q such

that q
y/w−−→ q′ ∈ δ with w > 0.5 Any state q where

λ (q) > 0 is called an initial state, and if ρ (q) > 0,
it is called a final state. A path π of length N is a
sequence of subsequent transitions in A, denoted as

q1
y1/w1−−−−→ q2

y2/w2−−−−→ q3· · ·qN
yN/wN−−−−−→ qN+1. (3)

The yield of a path is s (π) def
= y1 · · · yN . The

prefix weight w̃ of a path π is the product of
the transition and initial weights, whereas the
weight of a path additionally has the final weight
multiplied in. In symbols, this means

w̃(π)
def
=

N∏

n=0

wn, (4) w(π)
def
=

N+1∏

n=0

wn, (5)

with w0
def
= λ(q1) and wN+1

def
= ρ(qN+1). We write

Π(A) for the set of all paths in A and we write
Π(A,y) for the set of all paths in A with yield y.
The sum of weights of all paths that yield a certain
string y ∈ Σ∗ is called the stringsum, which we
write as

A (y)
def
=

∑

π∈Π(A,y)

w (π) . (6)

The stringsum gives the probability of the string
y. This way, PFSAs induce a particularly
well-understood family of LMs.

5In this paper, we do not distinguish between a transition
for a given symbol with weight w = 0 and the absence of a
transition for that symbol. That is, we assume there always

exists a transition q
y/w−−→ q′ ∈ δ for any q, q′ ∈ Q and y ∈ Σ,

albeit possibly with w = 0. Such a choice turns out to be
useful in our technical exposition.

Definition 2.5. An LM p is a regular LM if there
exists a PFSA A whose induced language model
pA is weakly equivalent to p.

PFSAs and non-determinism. Although PFSAs
share many properties with unweighted (boolean-
weighted) finite-state automata, one important dif-
ference relates to determinization. In the un-
weighted case, the class of deterministic and non-
deterministic FSAs are equivalent, i.e., any non-
deterministic FSA has an equivalent determinis-
tic FSA that accepts the same language. This re-
sult, however, does not hold for PFSAs: There
exist PFSAs that admit no deterministic equivalent
(Mohri, 1997; Buchsbaum et al., 2000), meaning
that non-deterministic PFSAs are strictly more ex-
pressive than deterministic ones.

Computing string probabilities under non-
determinism. Autoregressive LMs (cf. Eq. (1))
and PFSAs fall under the larger framework of mod-
els that specify probability distributions implicitly
(Icard, 2020).6 However, in autoregressive neural
LMs with fixed precision, only one sequence of
computational actions can yield a particular string,
meaning that they can only model deterministic
weighted regular languages (Svete and Cotterell,
2023). On the other hand, non-deterministic
PFSAs compute string probabilities by additively
combining the probabilities of all paths that yield
the same string, and hence lie outside the grasp
of such neural models.7 As we show later, CoT
reasoning provides a principled way to overcome
this limitation and allow fixed-precision neural
models to simulate non-deterministic automata.

2.3 Regular Functions
We now define a finite-state machine that, in
addition to scanning, also outputs strings.

Definition 2.6. A finite-state transducer (FST) is a
6-tuple T = (Q,Σ,Ξ, I, F , δ), where Q is a finite
set of states, Σ is an alphabet of input symbols,
∆ is an alphabet of output symbols, I, F ⊆ Q
are sets of initial and final states, respectively, and
δ ⊆ Q× Σε ×∆ε ×Q is a set of transitions.

Similar to PFSA transitions, we write FST tran-
sitions of the form (q, x, y, q′) ∈ δ as q

x : y−−→ q′.
6Other examples of such models include hidden Markov

models, which are equivalent to PFSAs (Icard, 2020).
7Note that RNN LMs with linearly bounded precision can

simulate non-deterministic PFSAs in real-time by encoding
a probability distribution over the PFSA’s current state in the
hidden state of the RNN (Svete et al., 2024).
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Finally, we give the following definition which we
will use to formalize CoT reasoning.

Definition 2.7. A regular relation is a relation ϕ ⊆
Σ∗ ×∆∗ that is representable by an FST. If ϕ is a
(partial) function, it is called a regular function.

Like all relations, regular relations ϕ ⊆ Σ∗×∆∗

have a trivial inverse ϕ−1 ⊆ ∆∗ × Σ∗.

2.4 Turing Machines

We consider the following definition of a
probabilistic Turing machine.

Definition 2.8. A probabilistic Turing machine
(PTM) is a two-tape machine with a working
tape and an output tape specified by the 6-tuple
M = (Q,Σ,Γ, δ, qι, qφ), where Q is a finite
set of states, Σ is an output alphabet, Γ is a
tape alphabet including the blank symbol ⊔,
qι, qφ ∈ Q are the initial and final states, and
δ ⊆ Q × Γ × Σε × {L,R} × Q≥0 × Q × Γ is a
rationally weighted transition relation. L and R
signify the PTM head moving left (L) or right (R)
on the tape after a transition. We write transitions

(q, γ, y, d, w, q′, γ′) ∈ δ as (q, γ)
y,d/w−−−→ (q′, γ′).

Moreover, we require that for any given q ∈ Q, γ ∈
Γ, the weights satisfy

∑
(q,γ)

y,d/w−−−→(q′,γ′)∈δ
w = 1.

A transition should be interpreted as follows:
When M in state q, reads γ on the working tape,
writes y on the output tape, writes γ′ on the
working tape, move the head in direction d on the
working tape. Each computation step randomly
selects a transition according to its weight w.8

This definition of Turing machines straightfor-
wardly induces a semimeasure over strings (Nowak
et al., 2023, Remark 2.2). It is sometimes easier
to prove claims about Turing machines through an-
other equivalent machine (Hopcroft et al., 2001).
The probabilistic two-stack pushdown automaton
is one example (Nowak et al., 2023). See App. C.3
for an overview.

2.5 Recurrent Neural Language Models

Recurrent neural LMs are LMs whose conditional
probabilities are given by an RNN.9

8For more details, see App. C.1.
9Throughout this paper, we will focus on Elman RNNs

(Elman, 1990) as they are the easiest to analyze and a special
case of more common networks, e.g., those based on long
short-term memory (LSTM; Hochreiter and Schmidhuber,
1997) and gated recurrent units (GRUs; Cho et al., 2014).

Definition 2.9. An Elman RNN R =
(Σ, σ,D,U,V,b,η) is an RNN with the fol-
lowing hidden state recurrence:

h0 = η (t = 0), (7a)

ht = α (Uht−1 +Vr(yt) + b) (t > 0), (7b)

where ht ∈ QD is the state vector10 at time step
t, η ∈ QD is an initialization parameter, yt ∈ Σ
is the input symbol at time step t, r : Σ → QR is a
symbol representation function, U ∈ QD×D and
V ∈ QD×R are parameter matrices, b ∈ QD is a
bias vector, and α : QD → QD is an element-wise,
non-linear activation function.11

Because ht hides the symbols consumed by the
Elman RNN, we also use the evocative notation
h(y) to denote the result of the application of
Eq. (7b) over the string y = y1 · · · yt. The notation
h(y) makes it clear that an RNN LM implicitly
defines a language encoder.
Definition 2.10. A representation-based LM is
called an Elman LM if its representation function
is defined by the hidden state of an Elman RNN
enc (y<t)

def
= h (y<t).

The most common choice for the projection func-
tion f is the softmax, whose limitation is that it
implies the LM has full support, i.e., an Elman LM
with a softmax projection assigns positive proba-
bility to all strings in Σ∗. To construct non-full-
support Elman LMs, we instead use the sparsemax
(Martins and Astudillo, 2016):

sparsemax(x)
def
= argmin

z∈∆N−1

∥z− x∥22. (8)

In contrast to the softmax function, sparse-
max is the identity on ∆N−1, i.e., we have
sparsemax(x) = x for x ∈ ∆N−1.

2.6 Neural Networks and Numerical Precision
All implementations of LMs on modern hard-
ware require representations to be fixed-precision
floating-point numbers or arbitrary-precision (ra-
tional) numbers. In the case of arbitrary precision,
an important consideration in processing strings
y ∈ Σ∗ is the number of bits required to store the
representations and how the number of bits scales
with the length of the string, |y|. This motivates
the following definition of precision.

10Throughout this paper all vectors are column vectors.
11Common examples of α include the Heaviside function

H(x)
def
= 1 {x > 0}, the sigmoid function σ(x) def

= 1
1+exp(−x)

,

and the ReLU (x)
def
= max (0, x).
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Definition 2.11. The precision ψ (y) of a
representation-based neural LM is the number of
bits required to represent the entries of enc (y):

ψ (y)
def
= max

d∈[D]
min
p,q∈N,

p
q
=enc(y)d

⌈log2 p⌉+ ⌈log2 q⌉. (9)

We say that a representation-based LM is of

• constant precision if ψ (y) = O (1), i.e., if
ψ (y) ≤ C for all y ∈ Σ∗ and some C ∈ R,

• logarithmically bounded precision if ψ (y) =
O (log |y|), i.e., if there exist T 0 ∈ N and
C ∈ R such that for all y ∈ Σ∗ with |y| ≥ T 0,
ψ (y) ≤ C log2 |y|,

• linearly bounded precision if ψ (y) =
O (|y|), i.e., there exist T 0 ∈ N and C ∈ R
such that for all y ∈ Σ∗ with |y| ≥ T 0,
ψ (y) ≤ C|y|, and

• unbounded precision if ψ (y) cannot be
bounded by a function of |y|.

The constructions in the existing literature range
from constant to unbounded precision. The RNNs
considered by Svete and Cotterell’s (2023) encod-
ing of deterministic PFSAs, for example, results in
an RNN that is of constant precision. Weiss et al.
(2018), Merrill (2019) and Merrill et al. (2020)
consider models with logarithmically bounded pre-
cision. In contrast, articles treating the Turing com-
pleteness of neural networks (Siegelmann and Son-
tag, 1992; Nowak et al., 2023) require unbounded
precision to be able to represent the fact that a
Turing machine may fail to halt. Naturally, our
constructions of Turing complete LMs will also
require unbounded precision.

2.7 Transformer Language Models
Transformer LMs compute the conditional distri-
butions p (yt | y<t) by means of self-attention. Be-
cause transformer LMs necessitate the precise intro-
duction of multiple sub-components, we postpone
the full introduction to App. C.4 and only review
the basics here. We borrow much of the notation
and formalization from Svete and Cotterell (2024).

A transformer is a composition of multiple trans-
former layers, each of which implements the atten-
tion mechanism. The attention mechanism works
as follows. It takes a query vector q ∈ RD and
two matrices: The matrix K ∈ RN×D of keys and
the matrix V ∈ RN×D of values and computes
a weighted average of the value vectors based on

the compatibilities of the key vectors to the query
vector, as scored by a scoring function f .

Attention weights are computed by normalizing
the scores f (q,k1) , . . . , f (q,kt). The choice of
the normalization function has concrete implica-
tions on representational capacity (Hao et al., 2022;
Svete and Cotterell, 2024). We focus on the hard
attention projection function.

Definition 2.12. Hard attention is computed with
the hardmax projection function

hardmax (x)d
def
=

{
1
m if d ∈ argmax (x)

0 otherwise,
(10)

for d ∈ [D], where x ∈ RD and m
def
=

| argmax (x) | is the cardinality of the argmax set.

A transformer layer uses the attention mecha-
nism followed by a position-wise MLP12 to com-
pute augmented representations zt of the input rep-
resentations Xt =

(
x⊤
1 ; · · · ;x⊤

t

)
∈ Rt×D. The

query qt, the keys Kt, and values Vt are all trans-
formations of the input representations Xt. Ini-
tially, Xt are computed by some static represen-
tation function of the symbols and their positions.
Multiple transformer layers are stacked into a trans-
former, which computes the (deep) contextual rep-
resentations of all symbols in the string. The con-
textual representation of the final symbol in the
string is then used to define the representation func-
tion enc of a transformer LM.

3 CoT Reasoning and Weak Equivalence

In this section, we argue that CoT reasoning can be
seen as a way of comparing the input language of
a formal automaton with the output language of an
autoregressive LM. We then introduce a formaliza-
tion of CoT reasoning that allows us to characterize
the representational capabilities of CoT-augmented
LMs in terms of their weak equivalence to well-
studied weighted automata.

3.1 Equivalence and Augmented Alphabets

Autoregressive LMs generate strings by outputting
individual symbols y ∈ Σ one at a time until
EOS is generated. The resulting string y is the
output of the LM and the outputs generated in
this manner implicitly define the distribution of
the LM. Models studied in existing work on the
representational capacity of neural LMs, however,

12For more details, see App. C.4

12514



often do not (only) emit symbols from Σ. Rather,
they also emit symbols from some larger alphabet
∆ that includes symbols that encode additional
information required to simulate a given formal
model of computational. For example, the symbols
generated by Pérez et al.’s (2021) transformer con-
tain both the output symbols as well as (the changes
to) the configuration of the Turing machine.

It is not difficult to see how generating strings
from an augmented alphabet can be seen as a form
of CoT reasoning. The outputs not intended to
be a part of the final output can simply be seen
as the result of the additional computational steps
performed by the CoT-augmented LM. These
outputs are later removed in post-processing and
only the string with symbols from our target
alphabet Σ remains. In this sense, Pérez et al.’s
(2021) construction works with a form of CoT
reasoning without explicitly mentioning it. This
connection was made explicit in concurrent work
by Merrill and Sabharwal (2024).

Outputting additional information is not
regarded as an issue when the task is to simulate
(unweighted) Turing machine runs on a given
input string because what matters, in that case,
is only whether the model accepts or rejects the
input (Siegelmann and Sontag, 1992; Pérez et al.,
2021, inter alia). However, when considering
the LM induced by a PTM, we do care about the
alphabet the distribution over strings is over. Thus,
given an LM over Σ∗, it follows that neural LMs
outputting additional information cannot define
the same distribution, i.e., they cannot be weakly
equivalent. Nevertheless, the ability to output
additional information while generating a string
seems natural and useful; it is the heart of CoT
reasoning. And, indeed, models that can only
output symbols that are part of the final string are
restricted to doing real-time computation (Weiss
et al., 2018; Nowak et al., 2023; Svete et al., 2024).

3.2 Regular Reducibility

We now formalize the notion of CoT reasoning
through the following definition which allows a
model to output additional information not consid-
ered part of the final output:

Definition 3.1. An LM p over ∆ is regularly
reducible to a LM q over Σ if there exists a regular
function ϕ : ∆∗ → Σ∗ such that q ◦ ϕ is weakly
equivalent to p.

We can use the function ϕ to map the strings

sampled from an LM, ones additionally encoding
the intermediary steps of computation, into the final
output, i.e., strings y ∈ Σ∗.

Definition 3.2. We say an alphabet ∆ satisfies the
Σ-augmentation condition for an alphabet Σ if
∆ ⊆ Σε × Γε \ {(ε, ε)} for some alphabet Γ.

This means if we care about strings from Σ∗

and we have an LM over the closure of a Σ-
augmented alphabet ∆, then each symbol the LM
outputs encodes is either an output symbol from
Σ, an intermediate computation symbol from Γ, or
both.13 The computation symbols can then easily
be removed by applying the per-symbol projec-
tion function ϕ ((y, γ)) def

= y, lifted to a non-length-
increasing homomorphism over strings ϕ : ∆∗ →
Σ∗ to the LM’s output element-wise.14 This func-
tion can be implemented by a simple single-state
transducer (making it a regular function):

0 ∆ ∋ (y, γ) : y ∈ Σ

3.3 Properties of Regular Reducibility

To motivate our formalization, in this section, we
show several properties of regular reducibility that
will allow us to reason about the representational
capacity of CoT-augmented LMs later in §3.4. Par-
ticularly, as we will see, there exists a strong con-
nection between regular reducibility and the ad-
dition of non-deterministic choices in the model.
To exemplify this concretely, the next theorem
shows that regular reducibility allows us to model
non-deterministic PFSAs with deterministic ones,
which, as discussed in §2.2, cannot be done with
just deterministic PFSAs in general.

Theorem 3.1. Let A = (Σ, Q, δ, λ, ρ) be a PFSA.
Then, there exists a deterministic PFSA A′ over the
alphabet Σ × Q and with the state space Σ × Q
that is regularly reducible to A.

Proof. See App. E. ■

A similar connection exists for PPDAs (see
App. E). Thm. 3.1 captures a crucial property
of regular reducibility: It allows us to simulate
non-determinism with a deterministic device. As

13While in practice the CoT and the final output come from
the same alphabet, we use separate ones for ease of notation
and analysis. This is without loss of generality; see App. D.

14A non-length-increasing homomorphism is a function
h : ∆∗ → Σ∗ where h(ε) = ε, h(x) = y for x ∈ ∆
and y ∈ Σε, and that further satisfies h(x1x2 · · ·xT ) =
h(x1)h(x2) · · ·h(xT ).
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An LM p generates strings from ∆∗ ⊆ (Σ×Q)∗:

x1 = q0, y1, q1, q2, . . . , qN , yT−1, yT ∼ p

x2 = q′0, q
′
1, y1, q2, . . . , yT , q

′
M−1, q

′
M ∼ p

The function ϕ removes the CoT steps:

ϕ (x1) = ϕ (x2) = y1, y2, . . . , yT−1, yT ∼ p

Figure 2: An LM p can generate strings from a state-
augmented alphabet ∆. The intermediate outputs qi
allow it to condition on the previous states of the compu-
tation. By post-hoc removing the intermediate outputs
with ϕ, we obtain a CoT-augmented LM p over Σ∗

that generates more human-readable outputs.

exemplified in the cases of regular LMs, this can
concretely increase the representational capacity
of a model class, as in the case of Thm. 3.1. On the
other hand, regular reducibility never decreases
the representational capacity of a model class,
since ϕ can always be set to the identity function.
Due to the close connection between neural LMs
and determinism (Svete and Cotterell, 2023), one
could hope that a similar increase in capabilities
could be achieved for neural LMs augmented with
CoT reasoning as well. In §3, we show that this
is indeed the case.

3.4 Regular Reducibility and CoT Reasoning

After introducing the notion of regular reducibility
and presenting some of its core properties, we now
use it to define CoT-augmented LMs.

Definition 3.3. Given alphabets Σ and ∆ where ∆
satisfies the Σ-augmentation condition, an LM p
over Σ∗ is called a CoT-augmented LM induced by
LM p over ∆∗ if p is regularly reducible from p .
That is, there exists a regular function ϕ : ∆∗ → Σ∗

such that p def
= p ◦ ϕ−1.

Def. 3.3 defines a CoT-augmented LM p
through the LM p that generates strings from ∆∗

and then applies the regular function ϕ to the gener-
ated strings to obtain strings from Σ∗. This allows p
to output additional information while still defining
a probability distribution over strings from Σ∗ (see
Fig. 2). The weight of a string y ∈ Σ∗ under p is
then computed as the sum over the weights of all
strings in the preimage of ϕ, analogously to Eq. (6):

p (y) =
∑

x∈ϕ−1(y)

p(x). (11)

This is the approach we take in §4.2.2.

BOS y1 · · · · · · · · · yt−1 ? · · ·

q0 q1 qt−1 qt

BOS q0
y1
q1 · · · yt−2

qt−2

yt−1

qt−1 ? · · ·

p(qt,yt|qt−1)

Figure 3: If y≤t uniquely determines a subpath in the
PFSA, the current state qt can be uniquely determined
without knowing the previous state (top). If, however,
the substring y≤t can lead to multiple states, the relevant
next-symbol distribution cannot be determined. Storing
the sampled states as part of the output fixes this by
keeping track of the sampled PFSA subpath (bottom).

4 CoT and Representational Capacity

We now connect the notions introduced in §3 to the
representational capacity of neural LMs. We begin
in §4.1 by showing how CoT reasoning endows
autoregressive LMs with non-determinism by using
scratch space to keep track of the current branch
of execution. We then use similar principles to
emulate probabilistic Turing machines with Elman
RNNs (§4.2.1) and transformers (§4.2.2).

Neural LMs and formal models of computation.
Probabilistic models of computation are often pre-
sented as autoregressive generators of strings that
implicitly define probability (semi)measures (Icard,
2020). This interpretation is particularly important
when addressing non-determinism, because it al-
lows for multiple executions (for example, in the
case of PFSAs, multiple different paths) generat-
ing the same string. Here, we treat neural LMs
as autoregressive generators of strings and show
that, by defining identical next-symbol distribu-
tions, they implicitly define the same semimea-
sures over strings as classical probabilistic models
of computation.

4.1 Neural LMs and Regular LMs
We first discuss the connection between CoT-
augmented neural LMs and PFSAs.

4.1.1 Recurrent Neural LMs
Minsky’s (1954) construction provided one of the
first connections between a neural network and
a formal computational model. It showed that
RNNs can emulate (deterministic) FSAs, where
the RNN accepts string by activating a particular

12516



neuron after reading the string. The relationship
in the probabilistic case was explored by Svete
and Cotterell (2023), who show the equivalence
of pure Elman RNNs (without CoT reasoning)
and deterministic PFSAs.15 This illustrates an im-
portant distinction between the deterministic and
non-deterministic frameworks and thus a discrep-
ancy between general PFSAs and RNN LMs. In-
tuitively, the discrepancy comes from the fact that
there is no non-determinism in the recurrence of
an RNN, which is thus unable to capture the possi-
bly non-deterministic decisions of the PFSA. CoT
reasoning endows an RNN with exactly this non-
determinism because it allows the RNN to sam-
ple and refer back to trajectories rather than only
symbols by annotating each of its outputs with the
current state of the PFSA.16 Upon reading the pre-
viously randomly generated state of the automaton
captured in the output, it can follow the randomly
sampled generating trajectories.

The following two theorems show that RNN
LMs with fixed precision and CoT reasoning are
weakly equivalent to general PFSA. This requires
showing the correspondence in both directions, i.e.,
that (1) the distribution induced by any PFSA can
be generated by a constant-precision RNN LM with
CoT, and (2) any CoT-augmented constant-preci-
sion RNN LM can be emulated by a PFSA.

Theorem 4.1. For any regular LM, there ex-
ists a weakly equivalent CoT-augmented constant-
precision Elman RNN LM.

Proof intuition. We show how, using the RNN’s
recurrence and output sampling step, we can
implement the transition function of any PFSA.
The RNN starts by sampling an output symbol
containing an initial state q0 according to the
initial distribution λ without emitting a language
symbol. This output gets fed back into the RNN at
the next time step, allowing it to read the sampled
state, and the next symbol–state pair is sampled
according to the conditional distribution defined
by the output state, as illustrated by Fig. 3. Finally,
the states in the generated string are removed by a
regular function, leaving only the language output.
See App. F for the detailed proof. ■

15The relationship between RNN LMs and non-
deterministic PFSAs was explored by Svete et al. (2024),
albeit with linearly bounded-precision RNNs.

16Recall that non-determinism means that multiple possible
transitions to different states can yield the same symbol (§2.2).

Theorem 4.2. For any constant-precision CoT-
augmented Elman RNN LM, there exists a weakly
equivalent PFSA.

Proof. See App. F. ■

Thms. 4.1 and 4.2 establish the equivalence be-
tween CoT-augmented constant-precision Elman
RNN LMs and general regular LMs. This illumi-
nates the added representational capacity awarded
by CoT reasoning: Storing the current FSA state
in the output string and removing it later allows
the model to handle non-determinism which is not
possible without the additional information.

4.1.2 Transformer LMs
We now show an analogous claim to Thm. 4.1
for Transformer LMs with CoT. This is simply
a stepping stone towards full probabilistic Tur-
ing completeness—a similar construction will then
lead us to the full proof that transformer LMs with
unbounded precision can simulate PTMs.

Theorem 4.3. For any regular LM, there ex-
ists a weakly equivalent CoT-augmented constant-
precision transformer LM.

Proof sketch. We use the construction from Svete
and Cotterell (2024) which shows how to encode
n-gram LMs in a transformer. Here, the alphabet of
the transformer is augmented with the states of the
PFSA, i.e., the symbol at each position t contains
not only an output symbol but also the current state
of the PFSA at time t. Thereby each input symbol
contains all the information required to compute
the next-symbol probabilities (it is effectively a
unigram LM). Because the next symbol probabil-
ities in a PFSA only depend on the current state,
the transformer does not need to use attention at
all and can rely solely on the output of its residual
connections. See App. F for the detailed proof. ■

4.2 Neural LMs and PTMs

We now extend the results from the previous sec-
tion from representing the simple regular LM to ex-
pressing all enumerable semimeasures over strings
by emulating probabilistic Turing machines. For
this, in the RNN case, we require unbounded pre-
cision and ReLU activation functions rather than
fixed precision and Heaviside activations.

4.2.1 Recurrent Neural LMs
First, note the following definition:
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Definition 4.1. An autoregressive LM is called a
real-time LM if it never outputs empty symbols (ε).

Nowak et al. (2023) show that RNN LMs with
rationally valued activations that are not restricted
to operating in real time are Turing complete and
weakly equivalent to a subset of rationally weighted
PTMs. Intuitively, not operating in real time gives
an LM additional computation time while storing
the results of its computations in the hidden states.
This is a form of CoT reasoning since we could
equivalently let the LM output additional symbols
that do not count toward the final output. 17 The
ability to erase certain symbols, as done by our
transducer ϕ, helps make the setup of Nowak et al.
(2023) realistic. Importantly, beyond giving the
LM more computation time, CoT also allows the
LM to model non-determinism in PTMs.

Theorem 4.4. For every LM induced by a non-
deterministic probabilistic Turing machine, there
exists a weakly equivalent CoT-augmented RNN
LM without unbounded precision.

Proof intuition. The proof follows Nowak et al.’s
(2023) probabilistic version of the proof by Siegel-
mann and Sontag (1992), but extended to account
for CoT reasoning. For the ability to simulate all
PTMs rather than just a subset, we augment the
output alphabet of the RNN with enough informa-
tion about the current PTM configuration so that
subsequent steps can uniquely identify the previous
action taken. Concretely, the output alphabet ∆
contains information about the current state, the
symbol written on the working tape of the PTM,
and the head action performed. This additional in-
formation is then removed by our regular function
at the end, yielding only the output of the simulated
PTM generated according to its probability. A
detailed proof is presented in App. F. ■

4.2.2 Transformer LMs
The representational capacity of transformer LMs
has received a lot of attention in the last few
years. Pérez et al. (2021) established that the
encoder–decoder variant of the architecture is Tur-
ing complete. Since then, concurrent work has
shown non-probabilistic Turing completeness of
LM-oriented decoder-only variants (Merrill and
Sabharwal, 2024; Feng et al., 2023). We extend the
work to the probabilistic case.

17On the other hand, some CoT-augmented LMs do operate
in real time but over an extended alphabet; see §4.1.

Theorem 4.5. For any PTM-induced LM, there
exists a weakly equivalent unbounded-precision
CoT-augmented Transformer LMs.

Proof intuition. The proof follows Pérez et al.
(2021) but is adapted to the probabilistic case.
Again, the main idea is to augment the output al-
phabet with enough information about the current
PTM configuration to reconstruct the probabilities
of possible actions at each time step. This infor-
mation and appropriate positional encodings are
enough to recover the PTM’s current configuration
and thus the next-action distribution, allowing us to
construct a weakly equivalent transformer LM. A
regular function then removes the additional infor-
mation from the string. See App. F for details. ■

4.2.3 Weak Equivalence

Thms. 4.4 and 4.5 show that transformer and RNN
LMs with CoT reasoning are at least as powerful as
PTMs. Weak equivalence requires us to also prove
the reverse of these two theorems, analogous to
Thm. 4.2 for constant-precision Elman RNN LMs.

Theorem 4.6. For any rationally valued RNN LM
and transformer LM with CoT reasoning, there
exists a weakly equivalent PTM.

Proof. RNN LMs define enumerable semimea-
sures (Nowak et al., 2023, App. G), which can
always be expressed by a PTM (Icard, 2020, Thm.
3). Following the same reasoning, transformer
LMs define enumerable semimeasures as well;
the probability of a string y is defined as the sum
probabilities of all runs of the transformer which
result in the output y, of which there are countably
many. Finally, there is only a countable number of
ways a regular function can transform any string,
so RNN LMs and Transformer LMs with CoT still
define enumerable semimeasures. ■

5 Conclusion

Many modern language models have been shown
to perform better with CoT reasoning. Despite its
empirical success, CoT reasoning has yet to be
well understood formally. Recent theoretical work
in this area has analyzed the Turing completeness
of CoT-augmented LMs, failing to account for the
inherently probabilistic nature of LMs. We fix this
mismatch in the current literature by introducing
a novel formalization of CoT reasoning.
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Limitations

Our constructions simulating PFSAs rely on fixed-
precision arithmetic in line with the finite-memory
nature of such automata. In contrast, the Turing-
complete models all rely on unbounded precision
with respect to the length of the string—either to
be able to encode arbitrarily large stacks in the
hidden state in the case of RNN LMs or to be
able to encode positional information in the case
of transformer LMs. This inevitably results from
the unbounded number of computational steps per
emitted symbol by a Turing machine and is dis-
tinctly different from the scaling with respect to the
number of computational steps. In the transformer
case, the precision scales logarithmically with the
number of steps (since we use the same positional
encodings as Pérez et al. (2021)), which is standard
for theoretical investigations of transformer mod-
els (Yao et al., 2021; Merrill et al., 2022; Merrill
and Sabharwal, 2023). In the case of RNNs, the
precision scales linearly with the computation se-
quence length, due to the encoding of a stack as
a rational number, where each entry on the stack
occupies a single digit. While in line with previous
theoretical work, these assumptions are unrealistic
in practice since neural LMs normally use fixed
precision floating point arithmetic.

We do not use layer normalization with
transformers—this is done for simplicity—but note
that layer normalization has been found to increase
the representational capacity of transformers in
some cases (Chiang and Cholak, 2022; Merrill and
Sabharwal, 2024).

Moreover, we only prove theoretically the equiv-
alence between CoT-augmented LMs and formal
models of computation. That is, we do not give a
training algorithm to elicit the emergence of spe-
cific Turing complete or non-deterministic regular
automata in neural LMs, and we make no claims
about the training efficiency or even the feasibility
of training neural LMs for this purpose.

Ethics Statement

Since this work deals with purely theoretical prop-
erties of neural language models, we do not foresee
any ethical issues arising from this work.
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A Discussion

At a high level, our claims characterize neural architectures endowed with CoT reasoning in terms of
well-understood probabilistic models of computation, giving the framework of CoT reasoning a novel
probabilistic perspective. This allows the reconciliation of theoretical results about neural LMs with
the general probabilistic language modeling framework. In doing so, we put existing results about the
representational capacity of LMs into perspective and show how they can be thought of as performing
“CoT reasoning in disguise.” Perhaps surprisingly, the inclusion of CoT reasoning steps results in a
natural inclusion of non-determinism in otherwise deterministic neural LMs, as exemplified by Thm. 4.1.
Outputting the states as part of the generated string—whose generation is inherently non-deterministic—
allows a neural LM to keep track of the trajectory of the current execution. This suggests that CoT
reasoning might provide an interesting avenue for exploring the non-deterministic representational capacity
of neural LMs. Note that this means CoT reasoning can endow neural LMs with higher expressivity
since, e.g., non-deterministic PFSAs are strictly more expressive than deterministic ones. Similarly, our
result that RNNs or transformer LMs with CoT reasoning can simulate PTMs rather than regular Turing
machines is important as it allows probabilistic computation using such neural LMs. This means one can
sample from them multiple times to assess the certainty of string inclusion in a language. Furthermore,
the problems LMs could solve efficiently can be described by different complexity classes such as BPP,
ZPP, etc. instead of P. 18

B Related Work

Turing completeness of RNNs. Plenty of existing work has investigated the representational capacity
of RNNs, both as recognizers as well as LMs (e.g., McCulloch and Pitts, 1943; Kleene, 1956; Siegelmann
and Sontag, 1992; Hao et al., 2018; Korsky and Berwick, 2019; Merrill, 2019; Merrill et al., 2020; Hewitt
et al., 2020; Chung and Siegelmann, 2021; Merrill et al., 2022; Merrill and Tsilivis, 2022; Svete and
Cotterell, 2023; Nowak et al., 2023, inter alia). Most relevant to our work, Siegelmann and Sontag (1992);
Chung and Siegelmann (2021) show how RNNs with unbounded precision and unbounded computation
time can simulate Turing machines and discuss the implications. Nowak et al. (2023) extend this to the
probabilistic setting, showing that RNN LMs can emulate certain PTMs, but require the LMs to be able to
perform non-emitting steps.

Turing completeness of transformers. Pérez et al. (2021) show the Turing completeness of hard
attention encoder–decoder transformer by encoding the configuration of the Turing machine in the output
of the transformer. Bhattamishra et al. (2020) provide a different perspective on Turing completeness
of the architecture by showing that transformers can simulate RNNs. Turing completeness is in this sense
a simple consequence of the Turing completeness of RNNs. Bhattamishra et al.’s (2020) construction,
however, relies on emitting symbols from an (uncountably) infinite set (rational-valued vectors), in
contradiction to the requirement of the LM working over a finite alphabet. In this sense, they make use
of the so-called regression transformer setup, which does not lend itself well to the discrete language
modeling (Von Oswald et al., 2023). In concurrent work, Merrill and Sabharwal (2024) adapt Pérez
et al.’s (2021) result to the CoT setting, connecting Turing completeness of transformer decoders to
CoT reasoning similar to our work. In contrast to our work, they make statements about the model’s
ability to decide language membership (simulating a Turing machine that accepts or rejects an input)
and not to represent probabilistic languages. In that sense, the transformer they construct is not a language
model. Besides being probabilistic, our construction also enables the analysis of any autoregressive LM
architecture, and we focus on RNN and transformer LMs. Feng et al. (2023) similarly show that CoT
transformers can perform arithmetic expressions and dynamic programming by generating intermediate
results, backing these claims up with experimental evidence, but stopping short of showing Turing
completeness. Du et al. (2023) provide a related result, showing that transformer LMs with continuous
transformation functions are tight. This might at first glance contradict the results on Turing completeness,
since the latter might require the model to run indefinitely, resulting in a non-tight model. However,

18For a comparison of these complexity classes, see e.g. Papadimitriou (1994).
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the discrepancy is resolved by noting that the tightness result crucially relies on the use of the softmax
normalization function over the reals R (without ±∞) in Eq. (2). This, together with the encoding
function of the transformer, results in a non-diminishing probability of generating EOS and thus in a tight
model. Our use of the sparsemax function sidesteps this issue by allowing us to assign EOS probability 0.

C Additional Preliminaries

In our construction, we assume that strings are prefixed with the beginning-of-string symbol BOS. This is
to give a base case for recurrent definitions such as Def. 2.1. This is just for ease of notation in our proofs.
Note that instead of p (y | BOS), we could also equivalently write p (y | ε).

C.1 Turing Machines
Under our definition, a probabilistic Turing machine has two tapes.19 The first is the processing tape
on which symbols from the tape alphabet can be read and written. The second is a write-only output
tape for symbols of the output alphabet. In the beginning, the processing tape contains the designated ⊥
symbol in the leftmost cell while all other cells contain the blank symbol ⊔. The output tape is empty at
the beginning. Starting in the initial state qι, at each time step t, a transition is sampled out of all available
transitions for the given state q and the current working tape symbol γ, and then applied. The sampling
happens according to the transition probability w (recall that the transition weights w are non-negative

and sum to 1 for each pair of state q tape symbol γ). We write transitions as (q, γ)
y,d/w−−−→ (q′, γ′), where

q, q′ ∈ Q, γ, γ′ ∈ Γ, y ∈ Σε, w ∈ Q≥0, and d ∈ {L,R}, with the following interpretation. When the
machine is in state q and its head is reading γ on the working tape, it moves to state q′, writes γ′ to
the working tape, writes y to the output tape if y ∈ Σ or nothing if y = ε, and it moves the head on
the working tape by one symbol in the direction d, i.e., to the left (L), or to the right (R). As with any
non-deterministic machine, the above definition naturally gives rise to the notion of a tree of possible
computations (Sipser, 2013, p. 48). A branch π of the computation tree of a PTM is a sequence of
consecutive transitions

(qι,⊥)
y1,d1/w1−−−−−→ (q2, γ

′
1), (q2, γ2)

y2,d2/w2−−−−−→ (q3, γ
′
2), · · · (qN , γN )

yN ,dN/wN−−−−−−−→ (qN+1, γ
′
N ) (12)

We say that a branch is accepting if the branch reaches the final state qφ.20 The yield of an accepting com-
putation branch21 is the sequence of symbols y ∈ Σ∗ written on the output tape at that point in the compu-
tation, i.e., a concatenation of the (non-ε) symbols y1, · · · , yN , whereN = |π| is the number of transitions
in the branch. The weight of an accepting branch is the product of the weights of its transitions, i.e.,

w(π)
def
=

N∏

n=0

wn. (13)

We denote the branches that yield a given string y by Π(M,y). The sum of weights of all branches that
yield a certain string y ∈ Σ∗ is the stringsum of that string, defined as

M(y)
def
=

∑

π∈Π(M,y)

w(π). (14)

This definition gives rise to a semimeasure over strings whose sum over all possible strings is exactly
the halting probability22 of the PTM, i.e., the probability that starting from the initial state qι, M reaches
a final state qφ ∑

y∈Σ∗
M(y) = P(M halts). (15)

19Adding another tape does not increase the computational power of a Turing machine (Sipser, 2013, Ch. 3).
20The final state has no outgoing transitions.
21We only consider branches that end in a final state when discussing the yield and weight of branches. This means we only

take into account finite instances of computation.
22The halting probability is the probability that the execution of the PTM will end in a halting state after finitely many steps.
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C.2 Pushdown Automata
Definition C.1. A probabilistic pushdown automaton (PPDA) is a tuple (Q,Σ,Γ, δ, (qι,S), (qφ, ε))
where Q is a finite set of states, Σ is the input alphabet, Γ is the stack alphabet, δ ⊆ Q × Γ × Σε ×
Q≥0 × Q × Γ∗ is a finite set of weighted transitions, and (qι, S) and (qφ, ε) are called the initial and
final configuration, respectively. Moreover, for all states q ∈ Q and stack symbols γ ∈ Γ, δ satisfies∑

(q,γ)
y/w−−→(q′,γ)∈δ

w = 1.

Our definition of PPDA is similar to that of Abney et al. (1999), but, unlike theirs, our machine must
end its computation in the final configuration rather than just empty the stack. We write transitions

(q, γ, y, w, q′,γ) ∈ δ as (q, γ)
y/w−−→ (q′,γ) which represent a move with weight w from state q to q′ while

scanning or outputting y, popping the symbol γ from the stack and pushing the sequence of symbols γ.
Definition C.2. A configuration (q,γ) ∈ Q× Γ∗ is a pair containing the current state and the current
contents of the stack.

A PPDA P = (Q,Σ,Γ, δ, (qι,S), (qφ, ε)) is called deterministic if for every q ∈ Q, γ ∈ Γ and

y ∈ Σε, there is at most one transition (q, γ)
y/w−−→ q′,γ with w > 0. Additionally, if there is a transition

q, γ
y/w−−→ q′,γ such that y ∈ Σ, then there is no transition q, γ

ε/w′
−−−→ q′′,γ ′ with w′ > 0. Intuitively, there

exists at most one next move given any configuration in a deterministic PPDA. A run π of a PPDA is a
sequence of configurations and transitions,

(q0,γ0), τ1, (q1,γ1), . . . , τN , (qN ,γN ), (16)

where (qn,γn) is the confguration reached by taking transition τn from configuration
(
qn−1,γn−1

)
for

any n ∈ [1, N ]. If (q0,γ0) = (qι,S) and (qN ,γN ) = (qφ, ε), we call π accepting. The yield of an
accepting run is s (π) def

= y1 · · · yN , where yn is the symbol scanned by τn. The weight of an accepting
run, w (π), is the product of the weight of its transitions,

w (π)
def
=

N∏

n=1

wn, (17)

where wn is the weight of transition τn. We write Π(P,y) for the set of all accepting runs with yield y.
The sum of the weights of all accepting runs of some PPDA P that yield a certain string y ∈ Σ∗ is called
the stringsum and is defined as

P (y)
def
=

∑

π∈Π(P,y)

w (π) . (18)

C.3 Two-stack Pushdown Automata
Definition C.3. A two-stack pushdown automaton (2PDA) is a machine specified by the 6-tuple P =
(Q,Σ,Γ, δ, qι, qφ), where Q is a finite set of states, Σ is an alphabet of input symbols, Γ is an alphabet of
stack symbols, including the bottom-of-stack symbol ⊥, δ : Q× Γ×Σε ×Q≥0 ×Q× Γ4

ε is a finite set of
rationally-weighted transitions, and qι and qφ are the initial and the final state, respectively.

We use a definition similar to that of Nowak et al.’s (2023), which assumes without loss of generality
that transitions are determined by the current state and the top symbol of the first stack only. See Nowak

et al. (2023, Appendix B) for a proof. We write transitions as q
γ,y,γ1→γ3/w−−−−−−−−→

γ2→γ4

q′, which represent a move

with weight w from state q, with the top of the first stack γ, to state q′, while scanning or outputting y,
popping γ1 and γ2 from the first and second stack, respectively, and pushing γ3 and γ4 to the first and
second stack, respectively. A 2PDA is called probabilistic if, for every state q and top symbol γ of the
first stack, the weights of the transitions define a probability distribution, i.e.,

∑

q
γ,y,γ1→γ3/w−−−−−−−−→

γ2→γ4
q′∈δ

w = 1. (19)
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Symbol Type Meaning

[N ] ⊂ N The set {1, . . . , N} for N ∈ N.
Σ,Σ,Σ alphabet Σ is a set of symbols, Σ def

= Σ ∪ {BOS}, Σ def
= Σ ∪ {EOS}

y, y, y ∈ Σ A symbol, element of Σ,Σ, or Σ.
y ∈ Σ∗ A string over Σ.
yi
j ∈ Σ∗ A substring of y, a string.

JyK ∈ {0, 1}|Σ| One-hot encoding of the symbol y ∈ Σ.
D ∈ N Size of the contextual representations in the transformer or RNN.

∆N−1 ⊆ RN The N − 1-dimensional probability simplex.
f RD × RD → R A scoring function.
f RN → ∆N−1 A normalization function.

Q, K, V , O RD → RD The query, key, value, and output functions.
F RD → RD The final transformer LM transformation function.
enc Σ∗ → RD The string representation function.
rΠ Σ× N → RD The position-augmented representation function.
L ∈ N Number of layers.
H ∈ N Number of heads.
H RHD → RD The head combining function.

(· ; · · · ; ·) Vertical concatenation operator of vectors or matrices.

Table 1: A summary of the notation used in the paper.

As before, we define a run in the 2PDA as a sequence of consecutive transitions. A run is called accepting
if it ends in a final configuration. The yield of an accepting run is the sequence of symbols y ∈ Σ that the
2PDA scans (or outputs) during the run. And the weight of an accepting run, w (π), is the product of the
weight of its transitions,

w (π)
def
=

N∏

n=1

wn, (20)

where wn is the weight of transition τn. Finally, the stringsum of string y is defined as the sum of the
weights of all accepting runs that yield y, i.e., Π(P,y):

P (y)
def
=

∑

π∈Π(P,y)

w (π) . (21)

C.4 Transformer Language Models
Transformer LMs are LMs whose conditional distributions p (yt | y<t) are computed by a transformer.
A transformer is a composition of multiple transformer layers, each of which implements the attention
mechanism. We give definitions of these building blocks in what follows. Our formalization and notation
closely follows Svete and Cotterell (2024).

Notation. We use bold unitalicized letters such as x ∈ RD to denote real-valued vectors and italicized
letters xj ∈ R for their entries. Capital bold letters such as X ∈ RN×D denote matrices. All vectors are
column vectors unless transposed. We define the vertical stacking operator (· ; · · · ; ·), which denotes
the vertical concatenation of the D-dimensional column vectors x1, . . . ,xN into a ND-dimensional
vector (x1; · · · ;xN ) ∈ RND and the concatenation of the D-dimensional row vectors x⊤

1 , . . . ,x
⊤
N into a

matrix X ∈ RN×D with N rows and D columns. Given the matrix X =
(
x⊤
1 ; · · · ;x⊤

N

)
, we write Xn =(

x⊤
1 ; · · · ;x⊤

n

)
for the submatrix composed of the first n rows. We call a function f : RD×RD → R whose

purpose is to evaluate the compatibility of two vectors a scoring function. A normalization function
f : RN → ∆N−1 maps vectors in RN to N probabilities. Here, ∆N−1 def

=
{
x ∈ [0, 1]N |∑N

n=1 xn = 1
}

is the N − 1-dimensional probability simplex. This notation is summarized in Tab. 1.

The Attention Mechanism. The attention mechanism works as follows. It takes a query vector q ∈ RD

and two matrices: The matrix K ∈ RN×D of keys and the matrix V ∈ RN×D of values and computes a
weighted average of the value vectors based on the compatibilities of the key vectors to the query vector,
as scored by a scoring function f . A formal definition is given below.
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Definition C.4 (Attention Mechanism). The attention mechanism Att : RD × RN×D × RN×D → RD

is defined as

Att (q,K,V)
def
=

N∑

n=1

snvn (22)

where q ∈ RD be a query vector and let K =
(
k⊤
1 ; · · · ;k⊤

N

)
∈ RN×D and V =

(
v⊤
1 ; · · · ;v⊤

N

)
∈

RN×D be matrices of keys and values, respectively, and

s
def
= f (f (q,k1) , . . . , f (q,kN )) (23)

is the vector of normalized scores between the query q and the keys in K, f is a scoring function and f is
a normalization function.

Attention types. Attention weights are computed by normalizing the scores f (q,k1) , . . . , f (q,kt).
The choice of the projection function f determines the type of attention and has concrete implications on
representational capacity (Hao et al., 2022). We focus on the hard attention projection function.

Definition C.5. Hard attention is computed with the hardmax projection function:

hardmax (x)d
def
=

{
1
m if d ∈ argmax (x)

0 otherwise
(24)

for d ∈ [D], where x ∈ RD and m def
= | argmax (x) | is the cardinality of the argmax set.

Definition C.6. A multi-layer perceptron (MLP) F : RD → RD is a function defined as the composition
of elementary functions f1, . . . , fL

F (x)
def
= fL ◦ fL−1 ◦ · · · ◦ f1 (x) , (25)

where each function f ℓ for ℓ ∈ [L] is defined as

f ℓ(x)
def
= β (Wℓx+ bℓ) ℓ ∈ [L− 1] (26a)

fL(x)
def
= WLx+ bL, (26b)

where Wℓ ∈ RD×D is a square weight matrix specific to layer ℓ, bℓ ∈ RD is a bias vector, and β is an
element-wise non-linear activation function. The function f1 is called the input layer, the function fL is
called the output layer, and the function f ℓ for ℓ = 2, . . . , L− 1 are called hidden layers.23

The Transformer Architecture. A transformer layer uses the attention mechanism to compute aug-
mented representations zt = Att (qt,Kt,Vt) of the input representations Xt = (x1; · · · ;xt). The query
qt, the keys Kt, and values Vt are all transformations of the input representations Xt.

Definition C.7. Given query, key, value, and output functions Q,K, V ,O : RD →RD, a transformer
layer is a function L : RT×D → RT×D that computes

L
(
x⊤
1 ; · · · ;x⊤

T

)
=
(
z⊤1 ; · · · ; z⊤T

)
∈ RT×D (27)

for t ∈ [T ] where

at
def
= Att (qt,Kt,Vt) + xt ∈ RD (28a)

zt
def
= O (at) + at ∈ RD. (28b)

23Note that we refer to MLPs by the number of hidden layers, e.g., a one-layer-MLP is an MLP with one hidden layer.
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Here, we define

qt
def
= Q (xt) ∈ RD (29a)

Kt
def
=
(
K (x1)

⊤ ; · · · ;K (xt)
⊤
)
∈ Rt×D (29b)

Vt
def
=
(
V (x1)

⊤ ; · · · ;K (xt)
⊤
)
∈ Rt×D. (29c)

Note: For simplicity, we do not include layer normalization.

The functions Q,K, V are usually implemented as linear transformations and O as an MLP. Some
theoretical literature, however, also considers more general function classes, e.g., all smooth functions
(Hahn, 2020).

Without further modification, the transformations applied by the transformer layer are position-invariant,
which necessitates the addition of explicit positional information.

Definition C.8. A symbol representation function is a function r : Σ → RDr and a positional encoding
is a function Π: N → RDΠ . A position-augmented representation function rΠ : Σ × N → RD (with
D = Dr +DΠ) is defined as

rΠ

(
y
t
, t
)

def
=
(
r
(
y
t

)
; Π (t)

)
. (30)

Definition C.9. A static encoding R is a function R : ΣT → RT×D defined for any T ∈ N as

R (y)
def
=
(
rΠ (y1, 1)

⊤; · · · ; rΠ (yT , T )
⊤
)
. (31)

Multiple transformer layers are stacked into a transformer, which computes the (deep) contextual
representations of all symbols in the string.

Definition C.10. For L ∈ N, an L-layer transformer T is defined as

T (R)
def
= LL ◦ · · · ◦ L1 ◦ R, (32)

where Lℓ for ℓ ∈ [L] are transformer layers and R is a static encoding.

A transformer computes the contextual representations of the symbols y = y1 · · · yT as

(
z⊤1 ; · · · ; z⊤T

)
def
=
(
xL⊤
1 ; · · · ;xL⊤

T

)
def
= T (R) (y) . (33)

If R is clear from the context or arbitrary, we will omit it as an argument to T and just write T (y).

Definition C.11. Given a transformer T , a final representation transformation function F : RD → RD,
and a string y ∈ Σ∗ with |y| = T , we define the encoding function enc as

enc (y)
def
= F (zT ) (34)

where zT is the representation of the T th symbol in y computed by T , i.e.,
(
z⊤1 ; · · · ; z⊤T

)
= T (y).

Transformer Language Models. So far, we have only defined how the transformer architecture can be
used to compute the contextual representations of the symbols. To complete the definition, we define a
transformer language model as follows.

Definition C.12. A transformer LM pT is the representation-based autoregressive LM with the represen-
tation function enc from Eq. (34). That is, pT defines the conditional probability distributions

pT (yt | y<t)
def
= sparsemax(E enc (y<t))yt

. (35)
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C.5 Weighted Finite-state Transducers
Definition C.13. A (rational-)weighted finite-state transducer (WFST) is the tuple (Σ,Ξ, Q, δ, λ, ρ)
where Σ and Ξ are the input and output alphabets, respectively, Q is a finite set of states, δ ⊆ Q ×
Σε × Ξε ×Q≥0 ×Q is a finite set of weighted transitions where we write transitions (q, y, x, w, q′) ∈ δ

as q
y:x/w−−−→ q′, and λ, ρ : Q → Q≥0 are functions that assign each state its initial and final weight,

respectively.

WFSTs are thus a special class of (weighted) finite-state automata that operate over two alphabets.
Just like PFSAs are a generalization of unweighted FSAs, WFSAs represent a more general class of
machines than unweighted FSTs, such as the ones used in the definition of regular reducibility (cf.
Def. 3.1). The weighted versions will prove useful when talking about various aspects of equivalence with
regular reducibility. As a special case of weighted finite-state automata, WFSTs compute weights of their
inputs—in this case, weights of pairs of strings (the inputs and their outputs):

T (y,x)
def
=

∑

π∈Π(T ,(y,x))

w (π) . (36)

Of interest are also marginal sums of the inputs, i.e.,

T (y)
def
=
∑

x∈Ξ∗
T (y,x) . (37)

C.5.1 Operations on WFSTs
We will use WFSTs as building blocks in the exposition of regular reducibility (cf. §3.2). In this subsection,
we outline some operations on the computational models that will be particularly useful.

Composition. The composition of two WFSTs results in a WFST that, similarly to function composition,
maps the strings with the first WFST, passes them to the second one, and returns the (weight of the)
output of the second transducer (Pereira and Riley, 1997). More formally, given the WFSTs T 1 =
(Σ,Υ, Q, δ, λ, ρ) and T 2 = (Υ,Ξ, Q, δ, λ, ρ), their composition T 2 ◦ T 1 computes

(T 2 ◦ T 1) (y,x)
def
=
∑

z∈Υ∗
T 2 (z,y) · T 1 (x, z) . (38)

Intuitively, Eq. (38) computes the weight of all the possible ways of mapping y to x by first mapping y to
some z ∈ Υ∗ and then mapping that z into x. The WFST (T 2 ◦ T 1) can be computed from T 1 and T 2

in time O ((|Q1|+ |δ1|) (|Q2|+ |δ2|)) (Mohri, 2009).

Projecting a WFST. Any WFST can be projected onto an (input or output) weighted finite-state
automaton (WFSA)24 that computes the cumulative weights of individual input or output strings (Mohri
et al., 2008). Given a WFST T = (Σ,Ξ, Q, δ, λ, ρ), its input projection is the automaton AI =
(Σ, Q, δI , λ, ρ) that computes

AI (y)
def
=
∑

x∈Ξ∗
T (y,x) . (39)

The output projection automaton is defined analogously. While it might not be immediately obvious that
Eq. (39) represents the computations of a WFSA, AI can be easily constructed by ignoring the output
labels on the transitions (and additively merging any transitions that become identical after the removal of
the output labels). That is:

δI =



q

y/
∑

q
y:x/w−−−→q′∈δ

w

−−−−−−−−−−−−→ q′ | q, q′ ∈ Q, y ∈ Σε



. (40)

24A weighted finite-state automaton is a generalization of a probabilistic finite-state automaton where the weights do not have
to form probability distributions. We also extend the definition of WFSAs to allow ε-transitions, i.e. with symbols from Σε.
Note that every such WFSA can be converted into a weakly equivalent WFSA without ε-transitions.
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Lifting a PFSA. Lifting transforms a given PFSA into a trivial WFST that implements the identity func-
tion y 7→ y. Concretely, given the PFSA A = (Σ, Q, λ, ρ, δ), its lifted WFST T A = (Σ,Σ, Q, δT , λ, ρ)
defines the transitions

δT
def
=

{
q

y:y/w−−−→ q′ | q y/w−−→ q′ ∈ δ

}
. (41)

It is easy to see that T A computes

T A
(
y,y′) = 1

{
y = y′}A (y). (42)

Lifting is useful when one wants to compose a PFSA with a WFST, as is the case when discussing regular
reducibility.

Inverting a WFST. The inverted WFST of some WFST T = (Σ,Ξ, Q, δ, λ, ρ) is the WSFT T −1 =(
Ξ,Σ, Q, δ−1, λ, ρ

)
that maps the outputs of T to their inputs. δ−1 is defined as

δ−1 def
=

{
q

x:y/w−−−→ q | q y:x/w−−−→ q ∈ δ

}
, (43)

i.e., it is composed of transitions from δ with their input–output labels flipped.

D Separation of Alphabets

In our analysis, we use a different alphabet for the chain of thought (Γ) than for the final output (Σ) to
clarify the distinction between output that encodes automata configurations vs the output that constitutes
the weighted output language of that automaton. However, we can also define a regular function for the
case where Γ = Σ. For this, we choose a specific symbol in Σ, e.g., X , whose first occurrence signifies
the boundary between the chain of thought and the language output. Then, ϕ can be defined as:

ϕ(yX z)
def
= z (44)

where y ∈ Σ∗\{X}, and z ∈ Σ∗. This can be easily modeled by the following simple two-state
transducer:

0 1

y ∈ Σ\{X} : ε

X : ε

z ∈ Σ : z

Figure 4: A simple WFST T implementing ϕ.

Note that in this case, the chain of thought has to be confined in its entirety as one string, with the entire
final output coming afterward. This simply means that the simulated Turing machine first performs all the
computations it needs on the working tape, and then writes the final string to the output tape in real time.
The proof of Thm. 4.4 can easily be adapted to work in this setting by only tagging the ε symbols in Γ,
e.g. by symbols a and b and defining ϕ to remove them until the occurrence of another symbol, e.g. c.

E Proofs: Regular Reducibility

E.1 Nondeterminism in PFSAs

Theorem 3.1. Let A = (Σ, Q, δ, λ, ρ) be a PFSA. Then, there exists a deterministic PFSA A′ over the
alphabet Σ×Q and with the state space Σ×Q that is regularly reducible to A.
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Proof. Given the PFSA A = (Σ, Q, λ, ρ, δ), we want to show the existence of a deterministic PFSA
A′ over the alphabet Σ × Q that is regularly reducible to A. We construct the deterministic PFSA
A′ =

(
Σ×Q,Σ×Q, δ′, λ′, ρ′

)
as follows.

δ′ def
=

{
(y, q)

(y′,q′)/w−−−−−→
(
y′, q′

)
| q y′/w−−−→ q′ ∈ δ, y ∈ Σ

}
(45a)

λ′ (y, q) def
=
λ (q)

|Σ| , ∀y ∈ Σ, q ∈ Q (45b)

ρ′ (y, q) def
= ρ (q) , ∀y ∈ Σ, q ∈ Q (45c)

We first prove that A′ is probabilistic and deterministic.

• Probabilistic: We compute

∑

(y,q)∈Σ×Q

λ′ (y, q) =
∑

(y,q)∈Σ×Q

λ (q)

|Σ| (46a)

=
∑

y∈Σ

∑

q∈Q

λ (q)

|Σ| (46b)

=
∑

q∈Q
λ (q) (46c)

= 1 (46d)

and, for any (y, q) ∈ Σ×Q,

∑

(y,q)
(y′,q′)/w−−−−−→(y′,q′)∈δ′

w + ρ′ (y, q) =
∑

(y,q)
(y′,q′)/w−−−−−→(y′,q′)∈δ′

w + ρ (q) (47a)

=
∑

q
w/y′−−−→y′∈δ

w + ρ (q) (47b)

= 1 (47c)

• Deterministic: Let (y, q) ∈ Σ×Q be a state of A′ and (y′, q′) a symbol in its alphabet. By definition
of δ′, (y′, q′) uniquely determines the target state, which is identical to the symbol—(y′, q′).

We now show that A′ is indeed regularly reducible to A. The alphabet Σ × Q clearly satisfies the
Σ-augmentation condition. We define the regular function ϕ (y, q) def

= y, an instance of the general function
described in §3.2. We will show that A′ is weakly equivalent to A ◦ ϕ, or, equivalently, that A′ ◦ ϕ−1 is
weakly equivalent to A.

Since A′ is an acceptor of strings in (Σ×Q)∗, we first transform it into weighted finite-state transducer
T A implementing the mapping25

T A′
(
x,x′) def

= 1
{
x = x′}A (x) (48)

for x,x′ ∈ ∆∗. This is a simple WFST with transitions δT A′
def
=

{
q

(y,q):(y,q)/w−−−−−−−−→ q′ | q (y,q)/w−−−−→ q′ ∈ δ′
}

.

T A′ can then be composed with the weighed version of the FST implementing ϕ−1, T ϕ−1 :

T ϕ−1 (y,x)
def
= 1

{
x ∈ ϕ−1 (y)

}
. (49)

25See App. C.5 for a definition of weighted finite-state transducers and the operations on them.
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T A′ ◦ T ϕ−1 then computes, for y ∈ Σ∗,x′ ∈ ∆∗,

(
T A′ ◦ T ϕ−1

) (
y,x′) =

∑

x∈∆∗
T ϕ−1 (y,x) · T A′

(
x,x′) (50a, Eq. 15.4 in Pereira and Riley (1997).)

=
∑

x∈∆∗
1
{
x ∈ ϕ−1 (y)

}
· T A′

(
x,x′) (50b)

=
∑

x∈ϕ−1(y)

T A′
(
x,x′) (50c)

=
∑

x∈ϕ−1(y)

1
{
x = x′}A (x) (50d)

= 1
{
x′ ∈ ϕ−1 (y)

}
A
(
x′) (50e)

We then turn T A′ ◦ T ϕ−1 into a PFSA in the standard way by projecting the WFST onto the transition
input labels (Mohri et al., 2008). This results in a PFSA that assigns the string y ∈ Σ∗ the probability that
equals the sum of all possible mappings of y to any x′ ∈ ∆∗:

(
T A′ ◦ T ϕ−1

)
(y)

def
=
∑

x′∈∆∗

(
T A′ ◦ T ϕ−1

) (
y,x′) (51a)

=
∑

x′∈∆∗
1
{
x′ ∈ ϕ−1 (y)

}
A
(
x′) (51b)

=
∑

x′∈ϕ−1(y)

A
(
x′) (51c)

= A′ (ϕ−1 (y)
)

(51d)

=
(
A′ ◦ ϕ−1

)
(y) (51e)

= A (y) (51f)

This shows that A′ ◦ ϕ−1 is weakly equivalent to A, which finishes the proof. ■

E.2 Nondeterminism in PPDAs
Theorem E.1. Let P = (Q,Σ,Γ, δ, (qι,S), (qφ, ε)) be a PPDA. Then, there exists a deterministic PPDA
P ′ over the alphabet (Σε)×Q× Γ with the state space (Σε)×Q× Γ that is regularly reducible to P .

Proof. Given a PPDA P = (Q,Σ,Γ, δ, (qι,S), (qφ, ε)), we prove the existence of a deterministic PPDA
P ′ over the alphabet Σε ×Q× Γ that is regularly reducible to P .

We construct the deterministic PPDA P ′ =
(
Σε ×Q× Γ,Σε ×Q× Γ,Γ, δ′, (qι, S), (qφ, ε)

)
with the

set of transitions

δ′ def
= {(y, q, γ), γ′ (y′,q′,γ′)/w−−−−−−−→ (y′, q′, γ′),γ |q, γ′ y′/w−−−→ q′,γ ∈ δ,

y ∈ Σε, γ ∈ Γ}. (52)

• Probabilistic: For any (y, q, γ) ∈ Σε ×Q× Γ and γ′ ∈ Γ,
∑

(y,q,γ),γ′ (y′,q′,γ′)/w−−−−−−−→(y′,q′,γ′),γ

w =
∑

q,γ′ y′/w−−−→q′,γ

w (53a)

= 1 (53b)

• Deterministic: Just like in the finite-state case, let (y, q, γ) ∈ Σε ×Q× Γ be a state, γ′ ∈ Γ a stack
symbol and (y′, q′, γ′) ∈ Σε × Q × Γ an input symbol. Then (y′, q′, γ′) uniquely determines the
next configuration.
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We now show that P ′ is regularly reducible to P . More precisely, we define the regular function
ϕ(y, q, γ)

def
= y and show that P ′ ◦ ϕ−1 is weakly equivalent to P .

Let G′ be a CFG26 that is equivalent to P ′ (see Hopcroft et al., 2001, Section 6.3.2 for the construction).
Using grammars, rather than pushdown automata, will simplify the proof as there are well-known
constructions (e.g., Bar-Hillel et al. (1961), Pasti et al. (2023)) for composing CFGs and FSTs. We
therefore prove that G′ ◦ ϕ−1 is weakly equivalent to P .

Recall that ϕ−1 can be implemented as an FST T ϕ−1 defined as

T ϕ−1 (y,x)
def
= 1

{
x ∈ ϕ−1 (y)

}
. (54)

Adapting Corollary 1 from Pasti et al. (2023) to the FST case, we get

(
G′ ◦ T ϕ−1

)
(y,x) = G′ (x) · T ϕ−1 (y,x) (55a)

= G′ (x) · 1
{
x ∈ ϕ−1 (y)

}
. (55b)

Then, just like in the regular case, we compute
(
G′ ◦ T ϕ−1

)
(y) by summing over all possible x ∈ Σ∗

values:
(
G′ ◦ T ϕ−1

)
(y)

def
=
∑

x∈Σ∗

(
G′ ◦ T ϕ−1

)
(y,x) (56a)

=
∑

x∈Σ∗
G′ (x)1

{
x ∈ ϕ−1 (y)

}
(56b)

=
∑

x∈ϕ−1(y)

G′ (x) (56c)

=
∑

x∈ϕ−1(y)

P ′ (x) (56d)

= P ′ (ϕ−1 (y)
)

(56e)

=
(
P ′ ◦ ϕ−1

)
(y) (56f)

= P (y) . (56g)

This shows that G′ ◦ T ϕ−1 is weakly equivalent to P , thus P ′ ◦ T ϕ−1 is weakly equivalent to P . This
concludes the proof. ■

F Proofs: Representational Capacity of Neural LMs

F.1 Finite-state Language Models

Theorem 4.1. For any regular LM, there exists a weakly equivalent CoT-augmented constant-precision
Elman RNN LM.

Proof. Let A = (Σ, Q, λ, ρ, δ) be a PFSA. We divide the definition of a weakly equivalent Elman LM
R = (Σ×Q,D,U,V,b,η) with the output matrix E into multiple steps.27

Note: The paper assumes a BOS-padding of the input strings. Since CoT-augmented LMs work over
a potentially larger alphabet, the padding symbol has to be changed accordingly. Particularly, the CoT-
augmented RNN will work over the alphabet Σ×Q. For simplicity, assume that any input string is padded
by the symbol (BOS, q0) for some arbitrary (but fixed) state q0 ∈ Q.

26Similar to the notation used for PPDAs, we use G (y) to denote the weight of the string y under the grammar G.
27Notice that R is CoT-augmented by construction, as it works over the alphabet ∆ def

= Σ × Q. ∆ also satisfies the
Σ-augmentation condition.
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Hidden states. Let D = |Σε||Q|. We will represent the input symbols with the one-hot representation
function J·, ·K that computes Jy, qK ∈ {0, 1}|Σε||Q|:28

Jy, qK
y,q

def
= 1 (57)

while other entries of the vector are zero.29 We can define η
def
= 0D.

Recurrence. Conveniently, the CoT-augmented RNN will store the current PFSA state in its output
“symbol”. Therefore, its next hidden state ht will not, in fact, depend on the previous one (ht−1); ht−1 will
only be used to compute the next-symbol–state output distribution through Eq. (2). The RNN therefore
only has to appropriately incorporate the input information. With this in mind, we define the following
Elman RNN parameters U,V, and b:

U
def
= OD U ∈ RD×D (58a)

V
def
= ID V ∈ RD×D (58b)

b
def
= 0D b ∈ RD (58c)

where OD is a D ×D-dimensional matrix of zeros, ID is the D-dimensional identity matrix, and 0D is a
D-dimensional vector of zeros. Then, we define the output matrix E ∈ R|Σε||Q|×D as

E(y′,q′),(y,q)
def
= p

(
q′, y′ | q

)
q, q′ ∈ Q, y ∈ Σε, y

′ ∈ Σε (59a)

E(ε,q),(BOS,q0)
def
= λ (q) q ∈ Q (59b)

E(EOS,q),(y,q)
def
= ρ (q) q ∈ Q, y ∈ Σε. (59c)

Computation of string probabilities. We now show that R with E defines the same conditional
distributions as A, meaning that it implicitly defines the same probability distribution over strings. As
mentioned above, we assume that the input string is prefixed with the (BOS, q0) symbol. Let the previously
generated output symbol ∈ ∆ be

(
y, q
)

(in the first step, the “generated” pair is (BOS, q0)). We get that

ht = H
(
Uht−1 +VJy, qK + b

)
(60a)

= H
(
ODht−1 +VJy, qK + 0D

)
(60b)

= H
(
VJy, qK

)
(60c)

= Jy, qK (60d)

The one-hot encoding Jy, qK is then used to “index” the appropriate column of the output matrix E as Eht,
which contains the probabilities of the next symbol–state pairs defined by the PFSA, as per Eq. (59a):

(Eht)(q′,y′) = E(y′,q′),(y,q) =

{
λ (q′) if y = BOS, q = q0, y

′ = ε

p (q′, y′ | q) otherwise
. (61)

Passing Eht through the normalization function, the next state and symbol are sampled and passed
as input to the RNN, repeating the update step. Since the Elman RNN following these dynamics by
constructions generates paths (sequences of states in the output symbols) with the same probabilities as
the input automaton, it enumerates all accepting paths of any string y ∈ Σ∗ with the same probabilities as
the original PFSA. Applying the transformation ϕ to the produced outputs and summing over sequences
that yield the same string will thus result in strings sampled from the PFSA. This finishes the proof. ■

Theorem 4.2. For any constant-precision CoT-augmented Elman RNN LM, there exists a weakly equiva-
lent PFSA.

28Throughout the paper, we index vectors and matrices directly with set elements rather than integer values, meaning each
index corresponds to exactly one element from the given set.

29If any of the two arguments are empty, its corresponding component is also zero.
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Proof. Let p be a CoT Heaviside Elman RNN LM over the alphabet Σ with the regular function
ϕ : ∆∗ → Σ∗ for an Σ-augmented alphabet ∆. Let p be the underlying RNN LM over ∆∗, that is,

p = p ◦ ϕ−1 and p = p ◦ ϕ

by Def. 3.3. We want to show the existence of a possibly non-deterministic PFSA A that is weakly
equivalent to p . We write p ∼= p′ to mean p is weakly equivalent to p′ (cf. Def. 2.2).

By Svete and Cotterell (2023, Lem. 4.1), there exists a DPFSA A = (∆, Q, δ, λ, ρ) over the augmented
alphabet ∆ weakly equivalent to p. This means that

A ∼= p ∼= p ◦ ϕ (62)

and thus
p ∼= A ◦ ϕ−1. (63)

Just like in the proof of Thm. 3.1, A ◦ ϕ−1 can be computed as a composition of (lifted) WFSTs that is
then projected onto the input component, resulting in a PFSA weakly equivalent to p . This finishes the
proof. ■

Theorem 4.3. For any regular LM, there exists a weakly equivalent CoT-augmented constant-precision
transformer LM.

Before we proceed to the full proof of Thm. 4.3, we first show the following simple but useful lemma.

Lemma F.1. Define the following linear transformation functions:

V (x)
def
= 0, (64a)

O (x)
def
= 0 (64b)

for all x ∈ RD. A transformer layer L with the parameters V and O and residual connections implements
the identity function irrespective of the parameters Q,K, and f :

L (x) = x (65)

for all x ∈ RD.

Proof. By definition of a transformer layer (cf. Eqs. (27), (28a) and (28b)), L computes

a = Att (q,K,V) + x =
N∑

n=1

snvn + x =
N∑

n=1

sn0+ x = x (66a)

L (x) = O (a) + a = 0+ a = a = x. (66b)

■

This allows us to show Thm. 4.3.

Proof. Let A = (Σ, Q, λ, ρ, δ) be a PFSA. Like the CoT-augmented RNN in Thm. 4.2, the CoT-
augmented transformer LM will work over the alphabet ∆ def

= Σε × Q. It will start by generating a
random initial state according to the initial-state distribution λ upon reading the designated padding
symbol (BOS, q0). Then, at step t of generation, it will generate the next symbol–state pair by sampling
from the next-transition distribution p

(
qt, yt | qt−1

)
given the state stored in the previously generated

output tuple.
More formally, define BOS′ def

= (BOS, q0) for some arbitrary but fixed q0 ∈ Q. Further, define the static
representation function

R
((
y, q
)
, t
) def
= Jy, qK ∈ {0, 1}|Σε||Q| (67)
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as in Eq. (57). Let L be the identity transformer layer from Lemma F.1 and T the transformer with the
single layer L. Then, by Lemma F.1,

T (R)
(
(BOS, q0) , (y1, q1) , . . . ,

(
yt−1, qt−1

))
=
(
JBOS, q0K⊤; Jy1, q1K⊤; · · · ; Jyt−1, qt−1K⊤

)
(68)

for any t. Defining the transformation F (x)
def
= x, it therefore holds that

enc
(
(BOS, q0) , (y1, q1) , . . . ,

(
yt−1, qt−1

))
= F

(
x1
t−1

)
= Jyt−1, qt−1K. (69)

In words, enc (y<t) contains the current symbol–state pair of the PFSA. The CoT-augmented transformer
LM can therefore sample the next symbol–state pair from the conditional distribution defined by the PFSA
by setting the values of the output matrix E as in Thm. 4.1:

E(y′,q′),(y,q)
def
= p

(
q′, y′ | q

)
q, q′ ∈ Q, y, y′ ∈ Σ (70a)

E(ε,q′),(BOS,q0)
def
= λ (q) q ∈ Q (70b)

E(EOS,q),(y,q)
def
= ρ (q) q ∈ Q, y ∈ Σε. (70c)

Clearly, the identical conditional probabilities defined by the CoT-augmented transformer T result in
strings over Σε × Q sampled with probabilities equal to the path probabilities from the PFSA, as in
Thm. 4.1. Applying the transformation ϕ to the produced outputs will thus result in strings sampled
from the PFSA, giving us a CoT-augmented transformer LM weakly equivalent to A. Lastly, since
all the representations in the model are position-invariant, the constructed transformer is of constant
precision. ■

F.2 Probabilistic Turing Machine Language Models
RNN LMs with CoT reasoning. Next, we show that, for every PTM, its induced LM can be encoded in
an unbounded precision CoT RNN LM.
Theorem 4.4. For every LM induced by a non-deterministic probabilistic Turing machine, there exists a
weakly equivalent CoT-augmented RNN LM without unbounded precision.

Proof. We rely mainly on existing results by Nowak et al. (2023) but use the additional information
afforded by the augmented output alphabet, resulting in a simpler construction and interpretation. By
Nowak et al. (2023, Prop. 3.1 and Thm. 3.1), the LM families induced by PTMs and probabilistic 2PDA
are weakly equivalent, so it suffices to show that a CoT RNN LM can encode any given 2PDA.

We first reiterate their main result together with its condition.

Definition F.2. A 2PDA P is called Σ-deterministic if, for any current state q any top symbol on its first
stack γ and any output symbol from Σε, there is at most one transition with non-zero weight.

Theorem F.3. Nowak et al. (2023, Thm 3.2) Every Σ-deterministic probabilistic 2PDA can be encoded in
an RNN LM that can output empty tokens ε.

Nowak et al. (2023, Thm. 3.2) shows that an RNN LM with output alphabet Σε can simulate any
probabilistic 2PDA over Σ if it is Σ-deterministic. Let P be an arbitrary probabilistic 2PDA, with
P = (Q,Σ,Γ, δ, qι, qφ). Now define another 2PDA P = (Q,∆,Γ, δ′, qι, qφ), which generates outputs
over the extended alphabet ∆ def

= Q× Γ4
ε × Σε. Define the transitions, add the following transitions to δ′

in P ′:

δ′ def
=

{
q

γ,(q,γ1,γ2,γ3,γ4,y),γ1→γ3/w−−−−−−−−−−−−−−−−−−→
γ2→γ4

q′ | q γ,y,γ1→γ3/w−−−−−−−−→
γ2→γ4

q′ ∈ δ

}
(71)

The constructed P ′ satisfies the required Σ-determinism condition, meaning that we can construct a
weakly equivalent RNN LM with ε outputs. Finally, define the following regular function ϕ : ∆ε → Σε

that removes all additional information post-hoc:

ϕ(x)
def
=

{
y if x = (q, γ1, γ2, γ3, γ4, y)

ε if x = ε
(72)
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The RNN LM therefore directly simulates runs from the 2PDA P ′. Applying ϕ to the outputs of the RNN
LM results in strings in Σ∗. Since the transformation groups all execution runs that output y ∈ Σ∗ and
the resulting CoT-augmented LM p (cf. Def. 3.3) sums over them, we are left with a weakly equivalent
LM. ■

Theorem 4.5. For any PTM-induced LM, there exists a weakly equivalent unbounded-precision CoT-
augmented Transformer LMs.

Proof. Here, we adapt the construction by Pérez et al. (2021) to the decoder-only case with prompt
length (denoted by n in Pérez et al. (2021)) zero since we only care about generating strings from the
CoT-augmented transformer LM. Moreover, rather than implementing a deterministic transition function
of a Turing machine (which is simulated by a particular layer of their transformer), we implement the
probabilistic transition function of a rational-valued PTM in the sampling step of the transformer LM. As
in our previous constructions, this step endows the model with non-determinism.

At a high level, we will construct a CoT-augmented transformer LM over Σ∗ that will output symbols
from the augmented alphabet ∆ def

= Q × Γ × Σε × A × A. Here, A def
= {−1, 0, 1}, where we will for

conciseness identify the action LEFT with −1 and the action RIGHT with 1. Note that we, like Pérez et al.
(2021), do not allow the action NOOP in our construction, but we include the value 0 in the action set as
it will be useful for the starting conditions of the constructed transformer. As explained later, such an
alphabet ∆ contains enough information for the transformer LM to be able to reconstruct the configuration
of the PTM at every time step, and thus match its conditional probability distributions.

Notation. Let M = (Q,Σ,Γ, δM, qι, qφ) be a QPTM and p the LM over Σ∗ it induces. In the following,
we denote with qt ∈ Q the state of the PTM, with vt ∈ Γ the symbol written to the working tape, with at
the action performed, with st the symbol read, and with yt the symbol written to the output tape, all at
time step t.

High-level idea of the construction. Before formally describing the components of the CoT-augmented
transformer LM in separate lemmata, we give a high-level overview of the construction. The two-
layer (single-head) transformer will, when computing enc

(
y<t

)
for y<t ∈ ∆∗, perform the following

computations, very similar to those described by Pérez et al. (2021):

1. Input representations (R; Lemma F.5): The input representation function represents the input
symbols y ∈ ∆ with a multi-hot encoding (one that contains an individual one-hot encoding of
each of the components qt, vt−1, yt−1, at−1, at−2) of the form30,31

rΠ

(
y , t

)
=




JqtK
Jvt−1K
Jat−1K

at−1, at−2

0, 0
0,0|Γ|

1, t+ 1, 1
t+1 ,

1
(t+1)2




(73)

for t ∈ N≥0. The representations also include additional components (the “empty” zero values
in the vector, explained below) used for processing and the positional encoding of the time step,
1, t+ 1, 1

t+1 ,
1

(t+1)2
. This component is explained in more detail in Lemma F.5.

2. Layer 1 (L1; Lemma F.6): The first layer uses the information about the actions performed at all
previous time steps (contained in the input static representations of the CoT-augmented symbols) to

30In the following, green color denotes the components that are added or computed by each of the described components.
31Notice that the symbol y ∈ Σ is not part of the internal representation, since it is not required for the simulation of the PTM.

It is only used to construct the final output string stored in the output tape.
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compute the locations of M’s head at each time step. This results in the internal representations of
the form

x1
t =




JqtK
Jvt−1K
Jat−1K

at−1, at−2
c(t)
t+1 ,

c(t−1)
t+1

0,0|Γ|
1, t+ 1, 1

t+1 ,
1

(t+1)2




(74)

for t ∈ N≥0, where c (t) denotes the position of M’s head at time t. This component is identical
to the second layer of the transformer from Pérez et al. (2021) and is explained in more detail in
Lemma F.6.

3. Layer 2 (L2; Lemma F.7): Uses the L1-computed information about the head locations at each time
step to (almost) compute st—the symbol read by the head of the PTM at time step t. This results in
the internal representations of the form

x2
t =




JqtK
Jvt−1K
Jat−1K

at−1, at−2
c(t)
t+1 ,

c(t−1)
t+1

ℓ (t), Jvℓ(t)K
1, t+ 1, 1

t+1 ,
1

(t+1)2




(75)

for t ∈ N≥0, where ℓ (t) denotes the last time step when M’s head wrote to c (t). This component
is analogous to the third layer of the transformer from Pérez et al. (2021) and is explained in more
detail in Lemma F.7.

4. Output function (F ; Lemma F.8): The function F uses the information computed by the two layers
of the transformer to compute the one-hot encoding of the current configuration of the PTM. In
particular, this includes M’s current state (qt), the symbol read by M’s head (st), and, for reasons
that we explain shortly, the action performed by M at the previous time step (at−1). This results in
the representation

enc
(
y<t

)
= Jqt, st, at−1K, (76)

which is used for sampling the next transition of the PTM. This component resembles the output
function of Pérez et al. (2021) and is explained in more detail in Lemma F.8.

5. Sampling (Lemma F.9): The representation Jqt, st, at−1K is used to index the output matrix E that
contains the conditional probabilities p (· | qt, st). This can be used to sample the next augmented
symbol Jqt+1, vt, yt, at, at−1K (here, the last component, at−1, equals the “input” to the sampling
step). This component is explained in more detail in Lemma F.9.

The idea of the construction—iteratively computing and storing the modifications to the PTM configuration
in the generated string y —is therefore identical to Pérez et al.’s (2021) one. In particular, the two
components that perform the bulk of the simulation—Layer 1 and Layer 2—are identical to the components
from Pérez et al. (2021). We describe and show the correctness of the components in the lemmata in the
rest of the section. The correctness of the construction follows from the correctness of the components.

Weak equivalence. To define a CoT-augmented LM with such a transformer, we can define a transducer
that projects the outputs in

(
Q× Γ× Σε ×A×A

)∗ onto Σ∗ in the standard way by retaining only the
outputs in Σε. This collapses all the executions of the transformer LM (which simulates the executions of
the PTM with the same probabilities, as per Lemma F.9) yielding the same string in Σ∗, resulting in a
CoT-augmented transformer LM weakly equivalent to p.
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Precision. The constructed transformer computes and stores position-dependent values at several points
during the computation. The precision required for the representation of these values grows logarithmically
with the number of computational steps. However, since the number of computational steps performed by
a PTM generating a string is potentially unbounded in the length of the string (Hopcroft et al., 2001, p.
339), the transformer’s precision is subsequently unbounded as well (Nowak et al., 2023). ■

We begin with a general lemma about the disjunction of one-hot encodings.

Lemma F.4. Let S1, . . . ,Sn be finite sets and let Js1, . . . , snK ∈ {0, 1}|S1|···|Sn| denote the one-hot
encoding of the tuple (s1, . . . , sn) ∈ S1 × · · · × Sn. Define the matrices

WSi ∈ {0, 1}|Si|×|S1|···|Sn| (77)

element-wise as

WSi

s,(s1,...,si−1,s,si+1,...,sn)

def
= 1 for all sj ∈ Sj , j ∈ 1, . . . , n, j ̸= i. (78)

Then, it holds that
WSiJs1, . . . , snK = JsiK. (79)

Proof. Eq. (78) can equivalently be written as

WSi

s,(s1,...,si−1,si,si+1,...,sn)

def
= 1 {si = s} . (80)

Indexing the elements of WSiJs1, . . . , snK directly with s ∈ Si, we then compute
(
WSiJs1, . . . , snK

)
s
=

∑

s′j∈Sj

j=1,...,n

WSi

s,(s′1,...,s′n)
Js1, . . . , snKs′1,...,s′n (81a)

=
∑

s′j∈Sj

j=1,...,n

1
{
s′i = s

}
Js1, . . . , snKs′1,...,s′n (81b)

=
∑

s′j∈Sj

j=1,...,n

1
{
s′i = s

}
1
{
s′1 = s1, . . . , s

′
n = sn

}
(81c)

=
∑

s′i∈Si

1
{
s′i = s

} ∑

s′j∈Sj

j=1,...,n, j ̸=i

1
{
s′1 = s1, . . . , s

′
n = sn

}

︸ ︷︷ ︸
=1

(81d)

=
∑

s′i∈Si

1
{
s′i = s

}
, (81e)

which is the definition of the elements of JsiK. The equality in Eq. (81d) follows from the fact that the
summand is non-zero exactly when s′j = sj for all j ̸= i. ■

Lemma F.5 (Input representations). Define the following static representation function of the CoT-
augmented symbols y def

=
(
q, v, y, a′, a

)
∈ ∆:

rΠ

(
y , t

)
def
=




WJq, v, y, a′, aK
0, 0

0,0|Γ|
1, t+ 1, 1

t+1 ,
1

(t+1)2


 ∈ RD (82)

where Jq, v, y, a′, aK ∈ {0, 1}|Q||Γ||Σε||A||A| denotes the one-hot encoding of the tuple
(
q, v, y, a′, a

)
,

W
def
=
(
WQ;WΓ;WA;A′;A

)
∈ RD×(|Q||Γ||Σε||A||A|) (83)
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for matrices WQ,WΓ,WA from Lemma F.4, A′,A ∈ R1×D defined as32

A′
1,(q,v,y,a′,a)

def
= a′, q ∈ Q, v ∈ Γ, y ∈ Σε, a, a

′ ∈ A (84a)

A1,(q,v,y,a′,a)
def
= a, q ∈ Q, v ∈ Γ, y ∈ Σε, a, a

′ ∈ A, (84b)

and D def
= [|Q|+ |Γ|+ |A|+ 2] + 2 + [1 + |Γ|] + 4. Then, it holds that

rΠ

(
y , t

)
=




JqtK
JvK
JaK
a′, a
0, 0

0,0|Γ|
1, t+ 1, 1

t+1 ,
1

(t+1)2




(85)

Proof. The first part (computing the one-hot encodings of ∼δ, v, and a′) follows from the construction of
the matrices WQ,WΓ, and WA from Lemma F.4. The second part (computing the values a′ and a with
the matrices A′ and A) follows from the definition of the matrices A and A′: By construction, the values
of a′ and a will be copied from the one-hot encodings into the resulting entry of the vector. ■

We now describe the two layers of the transformer that compute the quantities required to be able to
determine the current configuration of the PTM at each time step. Here, we heavily rely on the construction
by Pérez et al. (2021).

Let M = (Q,Σ,Γ, δM, qι, qφ) be a rationally-weighted PTM. Let t ∈ N and define

c (t)
def
=

t−1∑

j=0

aj (86)

as the position of the head of the PTM at time t. Further, define the set

L (t)
def
= {j | c (j) = c (t) , j ∈ [t− 1]}. (87)

L (t) contains the time steps at which the PTM M so far visited (and thus wrote to) the tape cell read by
M at time t. Then, define ℓ (t) as

ℓ (t)
def
=

{
maxL (t) if |L (t) | > 0

t otherwise.
(88)

In words, ℓ (t) denotes the time step at which the PTM M last visited (and thus wrote on) the tape cell
read by M at time t if this cell was visited yet. Otherwise, ℓ (t) equals t.

Now, define the BOS symbol over the augmented alphabet Γ as

BOS
def
= (q0,⊥, BOS, 0, 0) ∈ Q× Γ× Σε ×A×A. (89)

Let qι, q1, . . . , qT , ⊥, v1, . . . , vT , BOS, y1, . . . , yT , and a0, a1, . . . , aT be the sequences of states visited,
symbols written on the processing tape, symbols written on the output tape, and actions performed by M
in the first T steps. Define a−1 = a0

def
= 0,

x0
t

def
=

{
rΠ

(
BOS , t

)
if t = 0

rΠ ((qt, vt, yt, at−1, at−2) , t) otherwise,
(90)

32Recall that we can identify the actions of the PTM with the integers −1, 0, and 1.
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and
X0 def

=
(
x0
0;x

0
1; · · · ;x0

T

)
. (91)

These will be the inputs to the transformer layers and thus,33

R
(
y<t

)
def
=
(
x0
0;x

0
1; · · · ;x0

t−1

)
. (92)

With this, we can describe and prove the correctness of the first layer of the transformer we are building.

Lemma F.6 (Layer 1). There exists a transformer layer L1 that, given the inputs X0, computes the values
c(t)
t+1 and c(t−1)

t+1 for all t = 1, . . . , T . More precisely, denoting

X1 def
=
(
x1
0;x

1
1; · · · ;x1

T

)
= L1

(
X0
)
, (93)

it holds that x1
t contains the entries containing the values c(t)

t+1 and c(t−1)
t+1 :

x1
t =




JqtK
Jvt−1K
Jat−1K

at−1, at−2
c(t)
t+1 ,

c(t−1)
t+1

0,0|Γ|
1, t+ 1, 1

t+1 ,
1

(t+1)2




(94)

Proof. This follows from Pérez et al. (2021, Lemma 9), which we summarize here.34 Concretely, L1 is
implemented by a transformer layer with trivial (zero-valued) query and key transformations and a value
transformation V that copies the values of the actions at−1 and at−2 to the entry that will hold the values
c(t)
t+1 and c(t−1)

t+1 . Since the current head location c (t) is simply the sum of those values (cf. Eq. (86)),
attending to all previous positions results in Eq. (94).

Formally, we define

Q1 def
= 0D×D, K1 def

= 0D×D, (95a)

f (q,k)
def
= ⟨q,k⟩ (95b)

V1
n′,: = V1

n,: =




0|Q|
0|Γ|
0|A|
0, 0
1, 1

0,0|Γ|
0, 0, 0, 0




⊤

(95c)

O1 = 0D×D (95d)

Here, n′ and n refer to the indices of the rows at which the values c(t)
t+1 and c(t−1)

t+1 will be stored (that is,
the rows below the values of at−1 and at−2). All other rows of V1 are zero.

Then, for t ∈ N≥0, it holds that

f (qt,kj) = f
(
Q
(
x0
t

)
,K
(
x0
j

))
= f

(
Q1x0

t ,K
1x0

j

)
= ⟨0,0⟩ = 0 (96)

33Note that since the transformer over the augmented alphabet is deterministic, this representation is unique.
34More precisely, since their construction stores the actions at and at−1 (the former is possible because the action is not

sampled but deterministically computed based on the configuration of the PTM), their layer computes the values c(t)
t+1

and c(t)
t+1

.
As we show later in Lemma F.7, this does not affect the correctness of the construction.
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for all j ≤ t, resulting in st = hardmax (0) = 1
t+11t, and

V
(
x0
j

)
=




0|Q|
0|Γ|
0|A|
0, 0

aj−1, aj−2

0,0|Γ|
0, 0, 0, 0




. (97)

This results in

Att (qt,Kt,Vt) =

t∑

j=0

sjV
(
x0
j

)
(98a)

=
t∑

j=0

1

t+ 1
V
(
x0
j

)
(98b)

=
1

t+ 1

t∑

j=0

V
(
x0
j

)
(98c)

=
1

t+ 1

t∑

j=0




0|Q|
0|Γ|
0|A|
0, 0

aj−1, aj−2

0,0|Γ|
0, 0, 0, 0




(98d)

=
1

t+ 1




0|Q|
0|Γ|
0|A|
0, 0

c (t) , c (t− 1)
0,0|Γ|
0, 0, 0, 0




(98e)

=




0|Q|
0|Γ|
0|A|
0, 0

c(t)
t+1 ,

c(t−1)
t+1

0,0|Γ|
0, 0, 0, 0




. (98f)
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Furthermore, we have that

at = Att (qt,Kt,Vt) + x0
t =




0|Q|
0|Γ|
0|A|
0, 0

c(t)
t+1 ,

c(t−1)
t+1

0,0|Γ|
0, 0, 0, 0




+




JqtK
Jvt−1K
Jat−1K

at−1, at−2

0, 0
0,0|Γ|

1, t+ 1, 1
t+1 ,

1
(t+1)2




=




JqtK
Jvt−1K
Jat−1K

at−1, at−2
c(t)
t+1 ,

c(t−1)
t+1

0,0|Γ|
1, t+ 1, 1

t+1 ,
1

(t+1)2




(99)

x1
t = O (at) + at = 0D +




JqtK
Jvt−1K
Jat−1K

at−1, at−2
c(t)
t+1 ,

c(t−1)
t+1

0,0|Γ|
1, t+ 1, 1

t+1 ,
1

(t+1)2




=




JqtK
Jvt−1K
Jat−1K

at−1, at−2
c(t)
t+1 ,

c(t−1)
t+1

0,0|Γ|
1, t+ 1, 1

t+1 ,
1

(t+1)2




, (100)

which is what we needed to show. ■

Lemma F.7 (Layer 2). There exists a transformer layer L2 that, given the outputs X1 of L1 from
Lemma F.6, computes the values ℓ (t) and Jvℓ(t)K for all t = 1, . . . , T . More precisely, denoting

X2 def
=
(
x2
0;x

2
1; · · · ;x2

T

)
= L2

(
X1
)
, (101)

it holds that x2
t contains the entries containing the values ℓ (t) + 1 and Jvℓ(t)K:

x2
t =




JqtK
Jvt−1K
Jat−1K

at−1, at−2
c(t)
t+1 ,

c(t−1)
t+1

ℓ (t) + 1, Jvℓ(t)K
1, t+ 1, 1

t+1 ,
1

(t+1)2




. (102)

Proof. This follows from Pérez et al. (2021, Lemma 10). The idea of the construction is for the self-
attention mechanism at time t to attend to exactly the entry from time step ℓ (t) + 1 (i.e., to compute the
query and key vectors such that argmax (st) = ℓ (t) + 1) since that entry will contain the information
about the symbol written at the time step before—at ℓ (t). Then, the values ℓ (t) and vℓ(t) are obtained by
copying the corresponding values of the positional encoding and the written symbol from that time step.
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Formally, we define

Q2 def
=

· · ·
c(t)
t+1︷ ︸︸ ︷ · · ·

1
t+1︷ ︸︸ ︷

1

(t+1)2︷ ︸︸ ︷ · · ·
( )1

1
1
3

(103a)

K2 def
=

· · ·
c(t−1)
t+1︷ ︸︸ ︷ · · ·

1
t+1︷ ︸︸ ︷

1

(t+1)2︷ ︸︸ ︷ · · ·
( )1

−1
1
3

(103b)

f (q,k)
def
= −|⟨q,k⟩| (103c)

V2 def
=

· · ·
Jvt−1K︷ ︸︸ ︷ · · ·

t+1︷ ︸︸ ︷ · · ·





...
1 ℓ (t) + 1

I|Γ| Jvℓ(t)K
...

(103d)

O1 = 0D×D (103e)

Pérez et al. (2021, Lemma 10) show that, given the parameters above, the output of the scoring function
f is maximized at the entry ℓ (t) ∈ {0, . . . , t}.35 Since V2 copies the second value from the positional
encoding of the symbol at time step ℓ (t), which is ℓ (t)+1, this entry appears in the output of the attention
mechanism. Furthermore, V2 also copies the value Jvℓ(t)K from the same entry. This, together with the
zero-valued function O and residual connections, results in Eq. (102). ■

Lemma F.8 (Correctness of the output function). There exists an MLP F that, given the outputs X2 of
L2, computes the one-hot encoding of the current configuration of the PTM. More concretely, it holds that

F
(
x2
t

)
= Jqt, st, at−1K. (104)

Proof. Here, we define a function F similar to that of Pérez et al. (2021, Lemma 11), but with an additional
layer that handles the addition of the ⊥ symbol not handled by Pérez et al. (2021). The logic nonetheless
remains the same: F receives the output of L2 of the form

x2
t =




JqtK
Jvt−1K
Jat−1K

at−1, at−2
c(t)
t+1 ,

c(t−1)
t+1

ℓ (t) + 1, Jvℓ(t)K
1, t+ 1, 1

t+1 ,
1

(t+1)2




. (105)

and (1) copies the value of qt, (2) copies the value of at−1 (3) compares the value of ℓ (t) to t to determine
whether st = ⊔ or st = vℓ(t), (4) compares the value of t to 0 to determine whether st = ⊥ or st = vℓ(t).

35More precisely, their construction results in the maximum being at ℓ (t+ 1), since layer 1 in their construction, in contrast to
ours, computes the values c(t+1)

t+1
and c(t)

t+1
, shifting all computations by one step. This is the consequence of the aforementioned

difference between their deterministic and our probabilistic framework.
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Concretely, F will take the form of a three-layer MLP

F (x)
def
= ReLU(W5ReLU(W4ReLU(W3ReLU(W2ReLU(W1x+ b1) + b2) + b3) + b4) + b5)

(106)
where

W1 ∈ R(|Q|+|Γ|+|A|+|Γ|+|Γ|+2)×D (107a)

W2 ∈ R(|Q|+|Γ|+|A|+|Γ|+|Γ|+2)×(|Q|+|Γ|+|A|+|Γ|+|Γ|+2) (107b)

W3 ∈ R(|Q|+|Γ|+|A|+|Γ|+|Γ|)×(|Q|+|Γ|+|A|+|Γ|+|Γ|+2) (107c)

W4 ∈ R(|Q|+|Γ|+|A|)×(|Q|+|Γ|+|A|+|Γ|+|Γ|) (107d)

W5 ∈ R(|Q||Γ||A|)×(|Q|+|Γ|+|A|) (107e)

(107f)

are the weights of the MLP and b1, . . . ,b5 are the corresponding biases. For conciseness, we will denote

C1
def
= |Q| (108a)

C2
def
= C1 + |Γ| (108b)

C3
def
= C2 + |A| (108c)

C4
def
= C3 + |Γ| (108d)

C5
def
= C4 + |Γ| (108e)

C6
def
= C5 + 2 (108f)

and

D1
def
= |Q| (109a)

D2
def
= D1 + |Γ| (109b)

D3
def
= D2 + |A| (109c)

D4
def
= D3 + 2 (109d)

D5
def
= D4 + 2 (109e)

D6
def
= D5 + 1 + |Γ| (109f)

D7
def
= D6 + 4 (109g)

Then, we define

W1 =

1:D1︷ ︸︸ ︷ D1:D2︷ ︸︸ ︷ D2:D3︷ ︸︸ ︷ · · ·
D5+1︷ ︸︸ ︷ D6+1︷ ︸︸ ︷ D6+2︷ ︸︸ ︷ · · ·






I|Q|
I|Γ|

I|A|

1 1 −1
2 −1

(110)

b1 =







0|Q|
0|Γ|
0|A|
J⊔K
J⊥K
0
0

(111)
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W2 =

1:C1︷ ︸︸ ︷ C1:C2︷ ︸︸ ︷ C2:C3︷ ︸︸ ︷ C3:C4︷ ︸︸ ︷ C4:C5︷ ︸︸ ︷ C5+1︷ ︸︸ ︷ C5+2︷ ︸︸ ︷






I|Q|
I|Γ|

I|A|
I|Γ|

I|Γ|
1 −1

1

(112) b2 =







0|Q|
0|Γ|
0|A|
0|Γ|
0|Γ|
0
0

(113)

W3 =

1:C1︷ ︸︸ ︷ C1:C2︷ ︸︸ ︷ C2:C3︷ ︸︸ ︷ C3:C4︷ ︸︸ ︷ C4:C5︷ ︸︸ ︷ C5+1︷ ︸︸ ︷ C5+2︷ ︸︸ ︷






I|Q|
I|Γ| −1|Γ| −1|Γ|

I|A|
I|Γ| 1|Γ|

I|Γ| 1|Γ|

(114)

b3 =







0|Q|
0|Γ|
0|A|
−1|Γ|
−1|Γ|

(115)

W4 =

1:C1︷ ︸︸ ︷ C1:C2︷ ︸︸ ︷ C2:C3︷ ︸︸ ︷ C3:C4︷ ︸︸ ︷ C4:C5︷ ︸︸ ︷





I|Q|
I|Γ| I|Γ| I|Γ|

I|A|

(116) b4 =







0|Q|
0|Γ|
0|A|

(117)

Lastly, we set W5 and b5 such that the the function x 7→ ReLU
(
W5x+ b5

)
computes the one-hot

encoding of the three input one-hot encodings JqtK, JstK, Jat−1K by implementing the logic AND operations,
as in Svete and Cotterell (2024, Lemma B.1).
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By construction, we get that

y1 = ReLU
(
W1x2

t + b1
)

(118a)

=




JqtK
Jvt−1K
Jat−1K
J⊔K
J⊥K

ReLU(ℓ (t) + 1 + 1− (t+ 1))
ReLU(2− (t+ 1))




(118b)

=




JqtK
Jvt−1K
Jat−1K
J⊔K
J⊥K

ReLU(ℓ (t) + 1− t)
ReLU(1− t)




(118c)

=




JqtK
Jvt−1K
Jat−1K
J⊔K
J⊥K

1 {ℓ (t) ≥ t}
1 {t < 1}




(118d)

=




JqtK
Jvt−1K
Jat−1K
J⊔K
J⊥K

1 {ℓ (t) = t}
1 {t = 0}




(118e)

y2 = ReLU
(
W2y1 + b2

)
(119a)

=




JqtK
Jvt−1K
Jat−1K
J⊔K
J⊥K

ReLU(1 {ℓ (t) = t} − 1 {t = 0})
1 {t = 0}




(119b)

(119c)

=




JqtK
Jvt−1K
Jat−1K
J⊔K
J⊥K

1 {1 {ℓ (t) = t}&1 {t > 0}}
1 {t = 0}




(119d)
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y3 = ReLU
(
W3y2 + b3

)
(120a)

=




JqtK
ReLU

(
Jvt−1K − (1 {ℓ (t) = t ∧ t > 0}+ 1 {t = 0})1|Γ|

)

Jat−1K
ReLU

(
J⊔K + 1 {ℓ (t) = t ∧ t > 0}1|Γ| − 1|Γ|

)

ReLU
(
J⊥K + 1 {t = 0}1|Γ| − 1|Γ|

)




(120b)

=




JqtK
1 {¬ (ℓ (t) = t ∧ t > 0) ∧ ¬ (t = 0)} Jvt−1K

Jat−1K
1 {ℓ (t) = t ∧ t > 0} J⊔K

1 {t = 0} J⊥K




(120c)

=




JqtK
1 {(ℓ (t) < t ∨ t = 0) ∧ t > 0} Jvt−1K

Jat−1K
1 {ℓ (t) = t ∧ t > 0} J⊔K

1 {t = 0} J⊥K




(120d)

=




JqtK
1 {ℓ (t) < t ∧ t > 0} Jvt−1K

Jat−1K
1 {ℓ (t) = t ∧ t > 0} J⊔K

1 {t = 0} J⊥K




(120e)

y4 = ReLU
(
W4y3 + b4

)
(121a)

=




JqtK
1 {ℓ (t) < t ∧ t > 0} Jvt−1K + 1 {ℓ (t) = t ∧ t > 0} J⊔K + 1 {t = 0} J⊥K

Jat−1K


 (121b)

def
=




JqtK
JwtK

Jat−1K


 (121c)

Since the three logical expressions in Eq. (121b) are complementary, it holds that the second component of
y4 holds either the value of vt−1, ⊔, or ⊥ depending on the value of ℓ (t) and t. This is exactly the symbol
that will be read by the PTM at time step t, i.e., st: If ℓ (t) < t (which means that cell c (t) has been visited
before), then st = vt−1; if ℓ (t) = t and t > 0 (which means that cell c (t) has not been visited before,
and t > 0), then st = ⊔; and if t = 0 (meaning that the PTM just started executing and is still reading the
initial symbol ⊥), then st = ⊥. By the construction of W5 and b5, we get that y5 = Jqt, st, at−1K. ■

Lemma F.9 (Correctness of the sampling step). Define the output matrix E ∈ R|Q||Γ||Σε||A||A|×|Q||Γ||A| as

E(q′,v,y,a′,a),(q,s,a)
def
=

{
p (q′, v, y, a′, a | q, s) if y ̸= EOS

p (qφ, v, y, a
′, a | q, s) otherwise

(122)

for q, q′ ∈ Q, v ∈ Γ, y ∈ Σε, a ∈ A, a′ ∈ {−1, 1}, and s ∈ Γ. Then, it holds that

EF
(
x2
t

)
= p (· | qt, st) . (123)

Proof. Follows directly from Lemma F.8 and the construction of E:By Lemma F.8, we have that

F
(
x2
t

)
= Jqt, st, at−1K. (124)
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By construction of E, we have that
(
EF

(
x2
t

))
(q′,v,y,a′,a) = (E Jqt, st, at−1K)(q′,v,y,a′,a) (125a)

= E(qt,st,at−1),(q′,v,y,a′,a) (125b)

=

{
p (q′, v, y, a′, a | q, s) if y ̸= EOS

p (qφ, v, y, a
′, a | q, s) otherwise

. (125c)

■

12548


