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Abstract

Fine-tuning large-scale pre-trained models is
inherently a resource-intensive task. While it
can enhance the capabilities of the model, it
also incurs substantial computational costs, pos-
ing challenges to the practical application of
downstream tasks. Existing parameter-efficient
fine-tuning (PEFT) methods such as Low-Rank
Adaptation (LoRA) rely on a bypass frame-
work that ignores the differential parameter
budget requirements across weight matrices,
which may lead to suboptimal fine-tuning out-
comes. To address this issue, we introduce
the Dynamic Low-Rank Adaptation (DoRA)
method. DoRA decomposes high-rank LoRA
layers into structured single-rank components,
allowing for dynamic pruning of parameter bud-
get based on their importance to specific tasks
during training, which makes the most of the
limited parameter budget. Experimental results
demonstrate that DoRA can achieve compet-
itive performance compared with LoRA and
full model fine-tuning, and outperform various
strong baselines with the same storage param-
eter budget. Our code is available at https:
//github.com/MIkumikumi0116/DoRA

1 Introduction

Pre-trained Language Models (PLMs) (Kenton and
Toutanova, 2019; Brown et al., 2020; Liu et al.,
2019; He et al., 2020, 2021b) play a crucial role
in Natural Language Processing (NLP), offering
substantial improvements in various downstream
tasks (Lee et al., 2020; Mars, 2022; Raffel et al.,
2020). Customizing these models for specific tasks
typically involves fine-tuning them to adapt pre-
trained knowledge to particular requirements (Al-
abi et al., 2022; Uppaal et al., 2023). However,
with the increasing scale of PLMs, the cost of full-
model fine-tuning becomes prohibitive (Qiu et al.,
2020). This has highlighted the demand for and

*Equal contributions.
†Corresponding author.

increased interest in more parameter-efficient fine-
tuning (PEFT) methods (Zeng et al., 2023; Ding
et al., 2023b).

Common PEFT methods introduce extra param-
eters to adapt downstream tasks and freeze all orig-
inal parameters (Li and Liang, 2021a; Liu et al.,
2022; Lester et al., 2021a). For instance, Low-Rank
Adaptation (LoRA) (Hu et al., 2022a) has gained
popularity for its streamlined approach by incor-
porating low-rank trainable matrices into existing
fixed weight matrices in a PLM. However, LoRA
assigns trainable parameters uniformly across all
matrices, and there are studies (Zhang et al., 2023)
indicate that not all weights contribute equally to
fine-tuning performance. This could result in in-
efficient parameter usage. Therefore, for optimal
fine-tuning, is it possible to evaluate the parame-
ter budget needs of each matrix and strategically
allocate the limited parameters?

Fortunately, there are methods like
AdaLoRA (Zhang et al., 2023) that can alle-
viate the limitations of the prior PEFT methods by
introducing a more nuanced parameter distribution
strategy. Training with AdaLoRA begins with a
higher parameter budget and simulates an SVD
(Singular value decomposition) decomposition
process, progressively pruning smaller singular
values and corresponding singular vectors. It opens
the door to implementing adaptive allocation of
parameter budgets. However, its dependence on
orthogonal regularization for the simulated SVD
decomposition might restrict further improvements
in fine-tuning efficiency. Additionally, the pruning
strategy of AdaLoRA focuses solely on singular
values and does not fully exploit all the available
information in projection matrices, potentially
leading to less-than-optimal decisions.

To address existing challenges, this work intro-
duces the Dynamic Low-Rank Adaptation (DoRA)
method, as depicted in Figure 1. Different from
LoRA approaches, DoRA decomposes high-rank
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Figure 1: Figure (a) and Figure (b) illustrate the reparameterization of LoRA and DoRA. LoRA introduces a pair of
low-rank matrices, A and B, each with a rank of r, into the weight matrix. In contrast, DoRA introduces r′ pairs
of single-rank matrices, each acting as a LoRA component. During training, DoRA evaluates the contribution of
each component to the overall performance and prunes components with smaller contributions, achieving adaptive
allocation of parameters.

LoRA layers into sums of single-rank components,
evaluates the contribution of each component to
overall performance, and prunes components with
fewer contributions. This allows for the on-demand
allocation of parameter budgets to modules of the
PLM, maximizing the use of limited parameter bud-
gets. Compared to existing methods of dynamic pa-
rameter allocation (e.g., AdaLoRA), DoRA can al-
locate parameter budgets more appropriately based
on a richer set of information from projection ma-
trices.

To sum up, our contributions are as follows:

• We introduce a novel PEFT method, DoRA,
which surpasses the performance of full model
fine-tuning with less than 0.3% of the train-
able parameters.

• DoRA can efficiently identify the modules
in PLMs that play a crucial role in the fine-
tuning task, thereby allocating a larger param-
eter budget to these key modules.

• DoRA maximizes the use of a limited pa-
rameter budget. Experiments demonstrate
that DoRA outperforms baseline approaches
across multiple downstream tasks under the
same parameter budget constraints.

2 Background

The emergence of PLMs such as BERT (Kenton
and Toutanova, 2019), GPT (Radford et al., 2019),
and Llama (Touvron et al., 2023) has meaning-
fully advanced the field of NLP. Trained on exten-
sive text datasets, PLMs capture intricate linguistic
patterns, enabling superior performance in vari-
ous NLP tasks such as text categorization, named
entity recognition, and machine translation (Zhao
et al., 2023). Their flexibility in adapting to spe-
cific datasets via fine-tuning renders them exceed-
ingly versatile for addressing various linguistic
challenges.

PLMs predominantly leverage the Transformer
architecture (Vaswani et al., 2017) which features
stacked Transformer blocks. Each block com-
prises two key components: a Multi-Head At-
tention (MHA) mechanism and a Feed-Forward
Neural (FFN) network. In particular, MHA effec-
tively captures contextual relationships in text and
is given by:

MHA(x) = Concatenate(head1(x),

head2(x), . . . , headh(x))Wo
(1)

headi(x) = Softmax
(
(xWqi)(xWki)

T

√
dh

)
xWvi

(2)
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Method Parameter allocation strategy Parametric method Regularization penalty term

LoRA Equal allocation Low-rank adaptation N/A
AdaLoRA Adaptive allocation LoRA with SVD decomposition SVD proximity

DoRA Adaptive allocation LoRA with component-wise decomposition Component variance

Table 1: Comparison of DoRA, LoRA, and AdaLoRA

where x ∈ Rn×d is the input feature, n is the se-
quence length and d is the hidden dimension. The
mechanism consists h self-attention heads, each
aiming to capture different aspects of information.
For each head headi, there are three projection ma-
trices: query Wqi, key Wki, and value Wvi, each
with dimensions Rd×dh , where dh is the dimension
of each head, typically set to d/h. The output pro-
jection matrix Wo ∈ Rd×d is used to produce the
final output.

Attention scores are calculated by normalizing
the dot product of queries and keys through the
softmax function and are given by:

Softmax(xi) =
exi

∑n
j=1 e

xj
(3)

These scores determine the attention each se-
quence position pays to other positions. Subse-
quently, these scores are multiplied by the value
projection result to yield the output of each head.
Finally, the outputs of all heads are concatenated
and multiplied by the output projection matrix Wo,
forming the final MHA output.

Following MHA, the FFN further processes the
information:

FFN(x) = ReLU(xWf1 + b1)Wf2 + b2 (4)

This allows for more complex interactions be-
tween the features extracted by the self-attention
mechanism. Each Transformer block incorporates
a residual connection that adds the input of the
block directly to its output. This approach helps
to alleviate the vanishing gradient problem and
ensures a consistent information flow across the
layers of the models.

3 Dynamic Low-Rank Adaptation

In this paper, we aim to optimize the use of a
limited parameter budget in fine-tuning PLMs
with LoRA. We make improvements based on
LoRA (Hu et al., 2022a) and AdaLoRA (Zhang
et al., 2023), as shown in Table 1. We propose

Algorithm 1 DoRA
1: Input: Dataset D; total steps T ; initial budget

b(0); final budget b(T ); learning rate γ; reg-
ularization coefficient η; smoothing factor β,
DoRA parameters A, B, and c.

2: for t = 1 to T do
3: Sample a mini-batch d from D and compute

the true label loss Ltrue = L(A,B, c, d);
4: Compute the regularization loss Lreg as

Equation 10;
5: Combine losses by adding true label loss

and regularization loss Lcombined = Ltrue +
ηLreg;

6: Perform backpropagation to compute the
gradients of Lcombined, and update the pa-
rameters with the learning rate γ;

7: Compute the importance score s as Equa-
tion 7, update smoothed importance score
s̃(t) as Equation 8;

8: Compute the current parameter budget b(t)
as Equation 9;

9: Prune the components with smaller s̃(t)
based on b(t), set their c to 0;

10: end for
11: Output: The fine-tuned parameters {A,B, c}.

DoRA that stands out due to its innovative ap-
proach, comprising three main strategies: a decom-
position strategy that views a high-rank LoRA layer
as a combination of multiple single-rank LoRA
components, a dynamic rank allocation mechanism
that adjusts these components based on their contri-
bution to the overall performance of the model and
a regularization penalty to ensure stable pruning
throughout the process. The overall algorithm is
shown in Algorithm 1.

3.1 Parameterization
DoRA introduces a novel perspective on PEFT for
PLMs, building upon and enhancing the founda-
tional LoRA technique. A standard LoRA layer is
defined as:

W = W0 +∆W = W0 +AB (5)
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where W is the weight matrix after fine-tuning,
W0 denotes the original weight matrix, and A, B
are the low-rank matrices introduced by LoRA. By
contrast, DoRA reinterprets this configuration and
is given by:

W = W0 +

r′∑

i=1

∆Wi = W0 +

r′∑

i=1

AiBici (6)

here, r′ represents the number of LoRA compo-
nents, which will be explained in detail in Sec-
tion 3.3. A LoRA component is a triplet of Ai, Bi,
and ci, where Ai and Bi are single-rank matrices,
shaped as d×1 and 1×d respectively. ci is a scalar
used for pruning the component, it is set to 0 if the
component is to be pruned.

3.2 Importance Scoring

To evaluate the importance of each LoRA compo-
nent, we employ an importance scoring mechanism
that quantifies the contribution of each ∆Wi and is
given by:

si = ∥∆Wi∥F /∥
r′∑

j=1

∆Wj∥F

= ∥AiBici∥F /∥
r′∑

j=1

AjBjcj∥F

(7)

here, ∥x∥F denotes the Frobenius norm, a measure
that calculates the square root of the sum of the
squares of all elements in a matrix.

Employing the Frobenius norm allows us to mea-
sure the proportion of each LoRA component con-
tribution to the total update magnitude of its cor-
responding LoRA layer. This metric facilitates
an estimation of the potential impact on the total
update of the LoRA layer if a particular compo-
nent were to be pruned. Components with smaller
impacts on the overall update magnitude are prior-
itized for pruning. This ensures that the pruning
process minimally affects the performance, focus-
ing on removing components that contribute the
least to the effectiveness of the LoRA layer.

Compared to previous methods (Zhang et al.,
2023), we use ∥∆Wi∥F instead of ci to assess the
importance of components, thereby incorporating
information from Ai and Bi for a more comprehen-
sive evaluation of component importance.

Moreover, to enhance the precision of the im-
portance score, we employ a smoothing method by

applying an exponential moving average to the im-
portance scores. The smoothed importance score
for the i-th LoRA component at time t, denoted as
s̃i(t), blends the current importance score si with
the previous one, adjusted by a factor β:

s̃i(t) = β · s̃i(t− 1) + (1− β) · si (8)

3.3 Parameter Scheduling and Pruning
Strategy

Parameter budget refers to the average number of
LoRA components in each LoRA layer. It starts
with an initial parameter budget, b(0) = r′, which is
deliberately set higher than the eventual target bud-
get, b(T ) = r, where r′ and r are hyperparameters.
Setting r′ greater than r allows DoRA to explore
a wider range of potential parameter allocations,
facilitating the search for the optimal distribution.

DoRA adopts a gentle pruning strategy. For the
pruned triplets Ai, Bi, and ci, pruning is performed
merely by setting ci to 0 while keeping Ai and Bi

unchanged. During subsequent training, the pruned
triplets can be restored as long as ci is updated to
a non-zero value by backpropagation and is not
pruned again.

DoRA warms up the training without pruning
for the first ti step, i denotes initial steps and then
follows a cubic decrement pattern to prune com-
ponents with lower importance scores until the re-
maining components reach the budget b(T ). Subse-
quently, it fixes the component distribution in the
last tf steps, f denotes the final steps. The overall
budget scheduler is given by:

b(t) =





b(0) if 0 ≤ t < ti,

b(0) − (b(0) − b(T ))

b(0)
·
(

t− ti
tf − ti

)3

if ti ≤ t ≤ T − tf ,

b(T ) if t > T − tf .

(9)

3.4 Dimensional Equilibrium Modulator

DoRA utilizes the Frobenius norm of components
for pruning, with a preference for clipping those
with smaller norms. However, a potential issue
arises when a component has most elements near
zero and a few with considerably high values, lead-
ing to a relatively low Frobenius norm and thus
being selected for pruning. This scenario can result
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in remarkable alterations in a limited number of di-
mensions of the total update, ∆W , resembling the
effects of gradient explosion and adversely impact-
ing model stability and fine-tuning performance.

To avoid this, we introduce the Dimensional
Equilibrium Modulator (DEM) loss, which penal-
izes the variance of components as:

R =
1

n

n∑

i=1

(Var(Ai) + Var(Bi)) (10)

where Var(Ai) and Var(Bi) represent the variances
of components Ai and Bi, with n indicating the
number of components. DEM encourages a uni-
form distribution of elements within components,
avoiding disproportionate impacts from isolated
or few dimensions, effectively reducing perturba-
tions from model pruning, and enhancing model
stability.

4 Experiments

4.1 Experimental Setup
We compared DoRA with existing baseline meth-
ods to evaluate its performance in natural language
understanding (NLU), question answering (QA),
and text generation (summarization) tasks. We
chose RoBERTa (Liu et al., 2019) and Bart (Lewis
et al., 2019) as the foundational models, used re-
spectively for NLU and QA tasks, and for summa-
rization tasks.

RoBERTa is an optimized version of the
BERT (Kenton and Toutanova, 2019) architecture,
which significantly improves performance on a va-
riety of language understanding tasks through ex-
tended training, larger datasets, and finer tuning of
parameters. Bart is a Transformer-based (Vaswani
et al., 2017) sequence-to-sequence pre-trained
model specifically designed for text generation
tasks, such as summarization. It effectively han-
dles various generation tasks by combining bidi-
rectional and autoregressive Transformer architec-
tures.

We tested the performance on several standard
datasets: using the GLUE (General Language Un-
derstanding Evaluation) (Wang et al., 2018) dataset
to evaluate NLU tasks, SQuAD (Rajpurkar et al.,
2016) (Stanford Question Answering Dataset) for
QA, and Xsum (Narayan et al., 2018) for text sum-
marization. GLUE is a set of dataset for train-
ing and testing NLU systems, including various
tasks such as sentiment analysis and textual entail-
ment. SQuAD is a question answering dataset that

consists of questions generated from Wikipedia
articles and their corresponding answers. Xsum
provides a testing environment for extreme summa-
rization tasks aimed at generating single-sentence
summaries, challenging the models under extreme
information compression conditions.

We selected several mainstream fine-tuning
methods as baselines, including LoRA, AdaLoRA,
Adapter Tuning, BitFit, and full model fine-tuning.
LoRA fine-tunes the model weights by adding
low-rank matrices to the pre-trained matrices;
AdaLoRA is an improvement of LoRA, adding an
adaptive adjustment mechanism. Adapter Tuning
fine-tunes by inserting lightweight network mod-
ules into the PLM. BitFit adjusts only the bias pa-
rameters in the PLM. Full model fine-tuning is a
traditional method that involves comprehensive ad-
justment of all model weights.

We report the average results based on 5 random
seeds, as shown in Table 2, Table 3, and Table 4,
The hyperparameter settings for the experiments
can be found in Appendix E.

4.2 Results
We investigate the performance of DoRA and base-
line methods across subtasks of the GLUE bench-
mark, conducting experiments under two different
parameter budget scenarios.

As shown in Table 2, DoRA and AdaLoRA, em-
ploying adaptive parameter allocation strategies,
outperform all baseline methods using uniform
parameter distribution, demonstrating the remark-
able effectiveness of adaptive parameter allocation.
Across the GLUE benchmark, DoRA surpasses
LoRA by 0.84% and 0.88%, and AdaLoRA by
0.59% and 0.45% under two parameter budgets,
further proving the broad applicability and effec-
tiveness of DoRA’s adaptive parameter allocation
strategy in multiple tasks.

Especially noteworthy is DoRA’s performance
on the CoLA dataset, where it shows the highest
improvement, surpassing the highest performing
baseline method by 1.48% and 1.73% under two
parameter budgets. This highlights DoRA’s advan-
tage in handling the linguistic acceptability task,
showcasing its efficiency in dealing with challeng-
ing NLP tasks. However, DoRA’s performance
on the MNLI task slightly lags behind AdaLoRA,
likely due to MNLI being the largest dataset in
GLUE with high task complexity, indicating a need
for further optimization of the adaptive parameter
allocation strategy when dealing with large-scale
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Method Trainable
Parameters RTE MRPC STS-B CoLA SST-2 QNLI QQP MNLI Avg

Full FT 124.65M 78.63 88.33 90.31 60.26 94.73 92.58 90.75 87.68 85.41
BitFit 0.10M 79.57 89.07 90.55 61.16 94.38 90.99 88.08 85.50 84.91

H-Adapter 1.20M 80.43 89.90 90.16 62.62 93.73 92.82 90.83 86.53 85.88
P-Adapter 1.19M 80.51 89.51 90.65 63.87 93.83 92.61 90.53 86.75 86.03

LoRA 1.33M 80.65 89.90 90.91 63.54 93.71 92.76 90.44 87.11 86.13
AdaLoRA 1.27M 81.23 89.02 91.22 63.23 95.11 92.84 90.48 87.89 86.38

DoRA 1.31M 81.73 90.05 91.34 65.35 95.21 92.97 91.32 87.81 86.97
H-Adapter 0.31M 78.56 88.64 90.88 61.76 93.54 92.52 90.16 86.31 85.30
P-Adapter 0.30M 79.07 88.74 90.44 62.92 93.24 92.59 89.94 86.23 85.40

LoRA 0.33M 78.63 88.68 91.24 62.40 93.25 92.75 90.12 87.01 85.50
AdaLoRA 0.32M 79.04 88.81 91.06 63.17 94.79 92.87 90.07 87.64 85.93

DoRA 0.34M 79.15 89.72 91.28 64.90 94.98 92.93 90.64 87.45 86.38

Table 2: Results of fine-tuning RoBERTa base on GLUE. We report results on development set, Pearson correlation
for STS-B, Matthew’s correlation for CoLA, average accuracy for MNLI (matched and mismatched), and accuracy
for other tasks. “Full FT”, “H-Adapter”, and “P-Adapter” represent full fine-tuning, Houlsby adapter, and Pfeiffer
adapter. The best results are in bold.

Trainable Parameters SQuAD v1 SQuAD v2

Full FT 124.65M 85.32/91.49 79.95/83.09
BitFit 0.10M 82.34/89.45 74.28/77.46

H-Adapter 1.20M 84.95/91.07 79.14/82.08
P-Adapter 1.19M 84.86/90.86 78.86/81.84

LoRA 1.33M 85.13/91.39 79.25/82.34
AdaLoRA 1.28M 85.34/91.72 79.87/82.84

DoRA 1.30M 85.97/92.24 80.43/83.53
H-Adapter 0.31M 84.60/90.44 78.48/81.55
P-Adapter 0.30M 84.44/90.34 78.22/81.34

LoRA 0.33M 84.91/90.91 78.83/81.78
AdaLoRA 0.32M 85.13/91.32 79.47/82.40

DoRA 0.34M 85.73/91.88 79.90/82.92

Table 3: Results of fine-tuning RoBERTa based on
SQuAD. We report the exact match and F1 scores on
the development set. The best results are in bold.

Trainable Parameters Xsum

Full FT 124.65M 40.61/17.76/32.91
LoRA 1.33M 38.77/15.63/30.66

AdaLoRA 1.27M 39.14/16.23/31.34
DoRA 1.31M 39.67/16.73/31.78
LoRA 0.33M 37.17/14.57/29.72

AdaLoRA 0.32M 38.32/15.69/30.74
DoRA 0.34M 38.94/16.22/31.36

Table 4: Results of fine-tuning Bart base on Xsum. We
report the Rouge-1, Rouge-2, and Rouge-L scores on
the development set. The best results are in bold.

complex tasks.
It is worth mentioning that DoRA demonstrates

exceptional parameter efficiency, surpassing the
performance of full model fine-tuning with only
0.34M parameters, less than 0.3% of full model
fine-tuning, highlighting DoRA’s capability in ef-
fectively utilizing a limited parameter budget.

Similar results are also observed in the exper-
iments on SQuAD and Xsum, where DoRA out-
performes all baseline PEFT methods under both
parameter settings.

5 Analysis and Discussion

5.1 Effectiveness of DEM

To verify the effectiveness of DEM, we tested
fine-tuning on datasets including STS-B, CoLA,
and SST-2, with and without DEM, without DEM
means setting hyper-parameter regularization coef-
ficient η to 0, as shown in Table 5.

Model STS-B CoLA SST-2

with DEM 91.34 65.35 95.21
without DEM 91.23 64.17 95.12

Table 5: Performance comparison of DEM

Enabling DEM imposes penalties on the vari-
ance of LoRA components, encouraging a uniform
weight distribution, and avoiding extreme varia-
tions in overall update ∆W across a few dimen-
sions due to pruning. Fine-tuning with DEM en-
abled achieved higher results, demonstrating the
effectiveness of DEM.
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Figure 2: Rank distribution under four parameter budgets

5.2 Parameter Allocation Preference

To validate whether DoRA can identify key mod-
ules in PLMs, we set the final budgets b(T ) to 2,
4, 8, and 16, with 1.5 times the final budget as
the initial budget b(0), and conducted fine-tuning
experiments on SST-2 dataset respectively.

The results are visually presented in Figure 2,
which shows that, in the intermediate layers, the
query and key matrices are allocated with more
parameter budget, while the value matrices are allo-
cated with fewer budget. The initial output matrices
receive more budget. In the feed-forward neural
network, the lower projection matrices, represented
as Wf2 in the figure, at the backend, especially in
the last few layers, are allocated with very few bud-
gets.

DoRA exhibited the same parameter allocation
tendencies across all four configurations, demon-
strating its ability to consistently identify key mod-
ules in PLMs and allocate more parameter budgets
to them accordingly.

5.3 Impact of Initial Budget

We investigated the impact of the initial budget b(0)

across the MRPC, STS-B, and SST-2 datasets. We
fine-tuned models starting from various initial bud-
gets and pruned them to a consistent final budget
b(T ) of 2. The results are presented in Table 6. The
first row indicates that when the initial budget is 2,

it matches the final budget, which means no model
pruning was performed.

Intriguingly, our findings suggest that maintain-
ing a constant final parameter budget while starting
with a higher initial parameter budget improves
model performance. We attribute this improvement
to a more generous initial parameter budget offer-
ing a wider exploration space for DoRA, thereby in-
creasing the chance of preserving essential param-
eters during pruning and optimizing the model’s
final performance.

Initial Budget MRPC STS-B SST-2

2 76.32 90.97 94.88
3 89.74 91.28 94.98
4 89.92 91.40 95.01
6 90.14 91.62 95.05
8 90.17 91.65 95.11

Table 6: The Impact of Initial Rank Size

6 Related Work

PEFT is crucial for the fine-tuning of PLMs in
practical applications. These techniques primarily
focus on updating a select subset of the model’s
parameters or introducing new parameters on
a small scale, enabling more efficient use of
resources. These approaches are particularly
valuable in scenarios constrained by computational
resources. Existing PEFT methods can generally
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be divided into three categories: addition-based
methods, specification-based methods, and
reparameterization-based methods (Ding et al.,
2022).

Addition-based methods achieve adjustment by
adding extra modules or trainable parameters to
PLMs, such as trainable adapters or soft prompts.
These methods are scalable and applicable to
models of various sizes, with the performance
gap between them and full model fine-tuning
narrows as model size increases. Examples include
adapters (Houlsby et al., 2019; Pfeiffer et al.,
2021; He et al., 2021a; Zhu et al., 2021), which
insert small neural modules into transformer layers
for adjustment, and prompt-based tuning (Li
and Liang, 2021b; Gao et al., 2021; Hu et al.,
2022b; Tan et al., 2022; Lester et al., 2021b; Vu
et al., 2021), which stimulates PLMs by adding
additional context around the original input.

Specification-based methods focus on fine-tuning
a few inherent parameters within the model
without altering its internal structure (Vucetic
et al., 2022; Holmes et al., 2021). By directly
specifying which parts of the parameters to
optimize, these approaches achieve efficient
model adaptation, maintaining performance close
to full parameter fine-tuning while reducing
the number of parameters adjusted. Examples
include BitFit (Ben Zaken et al., 2022), which
optimizes only the bias terms in the model, and
Diff Pruning (Guo et al., 2021), which introduces
sparsity by optimizing a difference vector.

Reparameterization-based methods optimize
models by transforming adaptive parameters into
more efficient forms, often based on the low-rank
hypothesis. These methods (Holmes et al., 2021;
Karimi Mahabadi et al., 2021; Edalati et al., 2022;
Zhang et al., 2023; Lialin et al., 2023; Ding et al.,
2023a; Valipour et al., 2023; Su et al., 2024)
aim to reduce computational and memory costs
by optimizing low-dimensional proxy parameters
while maintaining or surpassing the performance
of full parameter fine-tuning. They are grounded
in the theory that PLM adaptations to downstream
tasks are inherently low-rank. Examples include
LoRA (Hu et al., 2022a), which optimizes based
on the hypothesis of a low intrinsic rank of weight
changes.

7 Conclusion

In this paper, we introduce Dynamic Low-Rank
Adaptation (DoRA), a novel method aiming at en-
hancing the efficiency of fine-tuning PLMs by dy-
namically adjusting parameter distribution. DoRA
innovatively allocates parameter budgets based on
their importance to specific tasks, demonstrating
considerable improvements in NLP applications.
Experimental results indicate that DoRA surpasses
baseline methods, highlighting its potential for
broader adoption in model optimization efforts.

The innovation of DoRA lies in its adoption of
an adaptive parameter allocation strategy, which,
unlike traditional uniform distribution, dynamically
adjusts the distribution of parameter budgets based
on their contribution. Additionally, DoRA employs
a component-wise decomposition approach for han-
dling LoRA layers, treating high-rank LoRA layers
as a combination of single-rank LoRA components.
These components are adjusted through a dynamic
rank allocation mechanism, pruned according to
their contribution to the overall model performance.
To ensure stable pruning throughout the process,
DoRA incorporates a regularization penalty term
focused on reducing component variance.

Limitation

Our study confirms the effectiveness of DoRA in
several NLP tasks. However, its evaluation has
been limited to these tasks, and its efficacy in han-
dling more complex NLP challenges, such as ma-
chine translation or multimodal tasks, has yet to
be established. Moreover, the models used in our
experiments are somewhat limited in scale, as we
have not conducted experiments with large lan-
guage models (LLMs). Addressing this limita-
tion, future work could explore DoRA’s potential
in these sophisticated areas of NLP.
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A Potential Risks of Our Method

Since our proposed method adapts pre-trained mod-
els to specific tasks, it has the potential to extend
the range of languages supported by these models.
However, there is a risk that some malicious users
might exploit this new capability to provide ser-
vices in politically sensitive languages and tasks.
For instance, a malicious user could use our method
to generate hateful or offensive sentences in some
politically sensitive languages.

B Dataset Detail

GLUE (Wang et al., 2018) benchmark is a col-
lection of diverse natural language understanding
tasks designed to evaluate and analyze the per-
formance of models across a wide range of lin-
guistic challenges. The benchmark encompasses a
variety of tasks, including linguistic acceptability
(CoLA (Warstadt et al., 2019)), sentiment analysis
(SST-2 (Socher et al., 2013)), paraphrase detection
(MRPC (Dolan and Brockett, 2005), QQP (Wang
et al., 2018)), semantic textual similarity (STS-
B (Wang et al., 2018)), and natural language in-
ference (MNLI (Williams et al., 2018), QNLI (Ra-
jpurkar et al., 2016), RTE (Bentivogli et al., 2009)).
The dataset statistics are presented in Table 7.

Corpus Train Valid Test Metrics

RTE 2.5k 277 3k Accuracy
MRPC 3.7k 408 1.7k Accuracy
STS-B 5.7k 1.5k 1.4k Pearson corr
CoLA 8.5k 1,043 1,063 Matthews corr
SST-2 67k 872 1.8k Accuracy
QNLI 105k 5.5k 5.5k Accuracy
QQP 364k 40.4k 391k Accuracy
MNLI 393k 20k 20k Accuracy

Table 7: Statistics of the GLUE Benchmark Datasets

SQuAD (Rajpurkar et al., 2016) is an extensive
reading comprehension dataset aimed at evaluat-
ing the ability of models to understand and an-
swer questions based on Wikipedia article contents.
The dataset features two major versions: SQuAD
1.1 and SQuAD 2.0. SQuAD 1.1 consists of over
100,000 question-answer pairs on 500+ articles,
where questions are posed by crowd workers on
a given passage and the answers are segments of
text from the passage. SQuAD 2.0 extends the
SQuAD 1.1 dataset with over 50,000 additional
unanswerable questions that are written adversar-
ially by crowd workers to look similar to answer-
able ones but do not have answers in the text. This

makes SQuAD 2.0 more challenging and helps
models better emulate human reading comprehen-
sion abilities by not only retrieving answers but also
determining when no valid answer exists within the
text.

Xsum (Narayan et al., 2018) is designed specif-
ically for the task of single-sentence news sum-
marization to create a concise abstract of a news
article. Xsum consists of approximately 227,000
articles collected from the British Broadcasting
Corporation (BBC). Each article comes with a pro-
fessionally written, single-sentence summary, mak-
ing it particularly challenging for models due to
the extreme brevity and the need for models to ab-
stract rather than simply extract content. Unlike
other summarization datasets, which often focus on
extracting salient sentences directly from the text,
Xsum requires models to generate informative, con-
cise, and grammatically coherent summaries that
capture the core essence of the article content, often
requiring synthesis and rephrasing skills beyond
mere extraction.

C Baseline Detail

LoRA (Hu et al., 2022a): LoRA achieves fine-
tuning by integrating low-rank matrices within the
weight matrices of the PLM. It maintains efficiency
by adjusting a reduced set of parameters, which
is particularly advantageous for scaling to large
models.

AdaLoRA (Zhang et al., 2023): Building upon
LoRA, AdaLoRA optimizes parameter utiliza-
tion by adaptively adjusting the parameter budget
throughout the training process. This adaptive strat-
egy improves fine-tuning efficiency and has demon-
strated enhanced performance in a variety of NLP
tasks.

Adapter Tuning (Houlsby et al., 2019; Rebuffi
et al., 2017; Pfeiffer et al., 2021): Incorporates
methods such as the Houlsby Adapter (H-Adapter)
and Pfeiffer Adapter (P-Adapter). Adapter Tun-
ing fine-tunes models by inserting small, trainable
adapter modules between existing layers of the
PLM. This approach does not modify the original
weights in the PLM, offering a flexible yet conser-
vative way to adapt the model to new tasks.

BitFit (Ben Zaken et al., 2022): An minimalistic
PEFT method that focuses solely on adjusting the
bias terms within the model. BitFit has been shown
to achieve performance levels comparable to those
of full model fine-tuning under specific conditions.
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Full Model Fine-tuning: This conventional
method updates all the parameters of a PLM to
tailor it to specific downstream tasks. Full model
fine-tuning demands remarkable computational re-
sources.

D Training Setup

Our experiments were conducted using the Py-
Torch (Paszke et al., 2019) framework, with models
and datasets sourced from the Huggingface (Wolf
et al., 2020) platform. The computations were per-
formed on NVIDIA GeForce RTX 3090 GPUs.

We refer to LoRA’s initialization method, apply-
ing Kaiming initialization (He et al., 2015) to Ai

and Bi, and initializing ci with 0. This ensures that
the initial update amount ∆Wi of each component
is 0, preserving the behavior of the original model
at the initial stage of training.

E Hyper Parameter

We fix the following hyperparameters across all
experiments:

• Initial budget b(0): 1.5 times the final budget
b(T )

• Smoothing factor β: 0.9

• Initial steps ti: 15% of the total steps

• Final steps tf : 50% of the total steps

We fixed sentence length and searched remain
hyperparameters, including the learning rate, batch
size, number of training epochs, regularization co-
efficient, and pruning step interval, as shown in
Table 8

F Computing Efficiency

We evaluate the computational efficiency of DoRA
compared to baseline methods based on the train-
ing time per epoch on QNLI dataset and GPU
memory usage. The results are shown in Table 9.
DoRA’s computational efficiency is comparable to
AdaLoRA, slightly lower than LoRA, and signifi-
cantly higher than full model fine-tuning.
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Corpus length learning rate batch size epochs regularization coefficient pruning step interval

RTE 128 2e-03 16 80 0.5 10
MRPC 128 2.5e-03 16 30 0.3 50
STS-B 128 3e-03 16 45 0.3 10
CoLA 128 2e-03 16 45 0.3 10
SST-2 128 8e-04 64 60 0.5 10
QNLI 128 3.5e-03 16 12 0.5 50
QQP 128 1e-03 16 10 0.3 50
MNLI 128 3e-03 32 10 0.3 50
SQuAD v1 384 5e-03 16 14 0.1 100
SQuAD v2 384 3.4e-03 16 14 0.1 100
Xsum 768 3.4e-03 16 15 0.1 100

Table 8: Hyper-parameter setup

Time Per Epoch/min GPU memory consumption/MiB

DoRA 7.8 4112
AdaLoRA 7.9 4130

LoRA 7.2 4094
H-Adapter 6.8 3698
P-Adapter 6.4 3678

BitFit 6.4 3612
Full FT 10.3 6104

Table 9: Computing Efficiency Comparison
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