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Abstract
Automatic evaluation methods for large lan-
guage models (LLMs) are hindered by data con-
tamination, leading to inflated assessments of
their effectiveness. Existing strategies, which
aim to detect contaminated texts, focus on quan-
tifying contamination status instead of accu-
rately gauging model performance. In this
paper, we introduce KIEval, a Knowledge-
grounded Interactive Evaluation framework,
which incorporates an LLM-powered "inter-
actor" role for the first time to accomplish
a dynamic contamination-resilient evaluation.
Starting with a question in a conventional
LLM benchmark involving domain-specific
knowledge, KIEval utilizes dynamically gen-
erated, multi-round, and knowledge-focused
dialogues to determine whether a model’s re-
sponse is merely a recall of benchmark answers
or demonstrates a deep comprehension to ap-
ply knowledge in more complex conversations.
Extensive experiments on seven leading LLMs
across five datasets validate KIEval’s effective-
ness and generalization. We also reveal that
data contamination brings no contribution or
even negative effect to models’ real-world ap-
plicability and understanding, and existing con-
tamination detection methods for LLMs can
only identify contamination in pre-training but
not during supervised fine-tuning.

1 Introduction

The landscape of artificial intelligence has been sig-
nificantly reshaped by the emergence of Large Lan-
guage Models (LLMs) as they have been pivotal
in various natural language understanding and gen-
eration tasks (Brown et al., 2020; OpenAI, 2023;
Bubeck et al., 2023). To better understand the ca-
pabilities and weaknesses of LLMs, their effective
evaluation becomes increasingly essential (Chang
et al., 2023; Guo et al., 2023).

Automatic evaluation methods of LLMs gener-
ally fall into two categories: static dataset-based
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and LLM-based evaluation (Chang et al., 2023).
The former (Clark et al., 2018; Zellers et al., 2019;
Hendrycks et al., 2020; Huang et al., 2023) re-
quires evaluated LLMs to generate a short span
of text containing choices or answers for pre-
defined questions (Gao et al., 2021) to challenge
their knowledge. The latter (Chiang and Lee,
2023), also known as LLM-as-a-judge, typically
depends on LLM evaluators to evaluate the model’s
outputs given predetermined questions or instruc-
tions (Zheng et al., 2023; Lin and Chen, 2023;
Fu et al., 2023; Wang et al., 2023c). Despite
these promising efforts, current evaluation method-
ologies still broadly face the bottleneck of data
contamination (Schaeffer, 2023; Wei et al., 2023;
Oren et al., 2023; Sainz et al., 2023; Daniele and
Suphavadeeprasit, 2023), where models trained on
test splits of datasets can artificially inflate bench-
mark performance, overestimating their real-world
efficacy and even potentially misleading scientific
conclusions (Zhou et al., 2023).

Recently, two primary strategies have been em-
ployed to mitigate data contamination of LLMs.
The first involves identifying whether specific texts
or test samples exist in the training dataset by as-
sessing loss values (Wei et al., 2023; Shi et al.,
2023) or probing datasets like Common Craw (Li,
2023). The limitation lies in its capacity to only
measure contamination levels rather than actual
model performance. Meanwhile, this technique de-
mands access to the model’s internal structure or
training datasets, rendering it ineffective for propri-
etary LLMs. The second strategy creates dynamic
evaluation samples through heuristic methods, such
as graph-based processes (Zhu et al., 2023), yet
this is confined to particular tasks (e.g., multi-step
reasoning). Currently, there is a lack of a gen-
eralized evaluation protocol capable of assessing
genuine performance amidst data contamination
across diverse tasks and domains for both open and
closed-source LLMs.
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To this end, we propose KIEval, a Knowledge-
grounded Interactive Evaluation framework, where
a novel LLM-powered role, named "interactor," is
introduced into the evaluation process for the first
time. The term "knowledge-grounded" refers to
our evaluation’s starting point, which involves pos-
ing a question from an existing benchmark dataset
that demands domain-specific knowledge. By "in-
teractive," we mean the evaluation process delves
deeper with structured and dynamic multi-round
dialogues—tailored by the proposed interactor—to
explore knowledge related to the initial question.
These technical designs inherently provide our eval-
uation framework with two distinct merits.

• Contamination-Resilient: KIEval marks a de-
parture from conventional approaches that evalu-
ate a model’s capability in responding to static
questions. Dynamic multi-round interactions al-
low us to distinguish whether a model’s answer
stems from a simple recall of benchmark an-
swers or reflects a sound understanding to apply
knowledge in problem-solving.

• Generalized and Scalable: Leveraging the ca-
pabilities of advanced LLMs as interactors ren-
ders our evaluation method universally applica-
ble and eliminates the need for additional hu-
man efforts. Meanwhile, by reusing high-quality
benchmark datasets as a foundation for domain
knowledge, KIEval enables efficient scalability
across diverse domains, tasks, and languages
without significant resource expenditure.

We validate KIEval’s alignment with humans
and compare it against previous evaluation meth-
ods. Our experiments show that KIEval achieves
a high Pearson correlation coefficient of 0.81 with
human scores, underscoring KIEval’s proficiency
in reflecting human preferences in our settings com-
pared to previous evaluation methods. We also ana-
lyze KIEval’s correlation with static dataset-based
benchmarks, identifying that notable disparities in
performance could signal data contamination.

Overall, our core contributions are three-fold:

• A novel dynamic evaluation protocol. KIEval
pioneeringly evaluates LLMs through dynamic
multi-round interactions to mitigate data contam-
ination. By seamlessly integrating with existing
datasets as knowledge sources, KIEval can cost-
effectively assess knowledge memorization and
generalization across domains and tasks.

• Extensive evaluation of popular LLMs. We con-
duct thorough experiments and analysis with
seven leading LLMs across five datasets with
KIEval, assessing their generative abilities and
domain knowledge, confirming the susceptibil-
ity of current evaluation methods (e.g., static
dataset-based and LLM-based evaluations) to
data contamination.

• New insights into data contamination. Our in-
vestigation reveals the incompetence of data con-
tamination in improving LLMs’ genuine under-
standing and generalization, with current detec-
tion methods unable to identify contamination
in the fine-tuning phase.

We release all necessary code and data for repro-
ducing our method and the compared baselines.1

2 Related Work

2.1 Evaluating LLMs

Human evaluation approaches manually design
experiments and tests (Novikova et al., 2017; Bom-
masani et al., 2023). While it provides insights
into human-model interaction, it faces challenges
due to the subjectivity and inconsistency of hu-
man judgments (Chang et al., 2023). Moreover,
it is resource-intensive in terms of time and cost,
limiting its feasibility for large-scale assessments
(Karpinska et al., 2021).

Static dataset-based approaches assess LLMs
focused on domain-specific questions or tasks us-
ing pre-defined static datasets. Typical evaluation
tasks include solving single or multiple-choice
problems (Clark et al., 2018; Hendrycks et al.,
2020; Huang et al., 2023) and question answer-
ing (Lin et al., 2021; Cobbe et al., 2021), these
tasks require LLMs to generate short spans of text
containing answers to the questions (Gao et al.,
2021). The performance of LLMs is measured by
their ability to correctly answer or perform these
tasks.

LLM-based evaluation, utilizing one strong
LLM (Brown et al., 2020; OpenAI, 2023) to as-
sess others, is a recent approach that often employs
pairwise comparisons to identify nuanced differ-
ences in model outputs, addressing the challenge
of determining clear model superiority (Wang et al.,
2023c; Zheng et al., 2023). This method bridges

1We release all materials at https://github.com/
zhuohaoyu/KIEval.
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Question: Snow, rain, hail, and fog are all forms of?
Choices: A. gas. B. water. C. wind. D. clouds.          Answer: B. water.

Model Output: B. water.

Accuracy(4): The candidate's explanation is factually correct ...
...

Interactor

What led you to choose water as the 
commonality among snow, rain, hail, and fog? All of these weather phenomena are formed 

from water in its various states...

Candidate

Accuracy(1): The candidate's revised answer is incorrect; selenium has 6 valence electrons.
Reasoning(1): ...

How do you reconcile the fact that fog is 
made up of tiny water droplets, which ... Snow, rain, and hail are all forms of water in 

its solid state ...

Accuracy(2): Contains a factual error. Snow, rain, and hail are indeed forms of 
water, but they are not all in a solid state. 
Logic(2): Logic is flawed because it incorrectly categorizes…
Relevance(3): The response is relevant to the interactor's question but ...
Coherence(2): The candidate's response is coherent in structure but ...
Conciseness(4): The candidate's response is concise in addressing ...
Overall Comment: The candidate attempted to reconcile ...
             Overall Score: 2               Stop Conversation: TrueEvaluator

...Evaluator

Candidate

Interactor

Benchmark
Datasets

ARC, MMLU, ...

Validated
Samples

Interactive
Evaluation

KIEval
Score

Which of the 
following ... ?

Sampling & Validation

Multi-turn Automatic Interaction of LLMs

Previous Work

Our Work

LLM-based Benchmark

Static Dataset-based Benchmark

Question: Snow, rain, hail, and fog are all forms of?
Choices: A. gas. B. water. C. wind. D. clouds.                     Answer: B. water.                    
Model Output: B. water

Benchmark 
Datasets

Accuracy

Instruction: Explain the concept of 'opportunity cost' in simple terms.

Response #2 is better because it clearly explains the concept ...

Evaluator LLM

Model Output #1:
Opportunity cost is like when you 
choose to spend your money ...

Model Output #2:
Opportunity cost refers to the 
benefits you miss out ... Predefined

Instructions
Win Rate

Figure 1: The pipeline of KIEval compared to previous static dataset-based and LLM-based evaluation methods.

the gap between human and dataset-based evalua-
tions by focusing on generative abilities. However,
this approach has limitations, including reliance
on fixed templates (Zheng et al., 2023), instruc-
tions (Wang et al., 2023c; Li et al., 2023b), or
multi-round chat datasets (Fu et al., 2023; Lin and
Chen, 2023), limiting its scope in capturing diverse
domain knowledge and real-world applicability. It
also faces contamination risks, as training on out-
puts from a strong LLM can inflate results, as noted
in work from Daniele and Suphavadeeprasit (2023)
collect data from MT-Bench (Zheng et al., 2023)
as training data while AlpacaEval (Li et al., 2023b)
contains evaluation set from various instruction-
tuning dataset. Additionally, studies indicate these
LLM evaluators might be biased (Zeng et al., 2023;
Wang et al., 2023b,c). While leveraging LLMs to
evaluate themselves can be an efficient alternative
to human evaluation, understanding and mitigating
the potential bias is a crucial problem.

2.2 Addressing Data Contamination of LLMs

Data contamination refers to the inclusion of infor-
mation in the training set of models that provides
insights into the test set of a benchmark dataset, and
then evaluated in the same benchmark. Recently,
the AI community has become increasingly con-
cerned (Schaeffer, 2023; Zhou et al., 2023; Oren
et al., 2023) about data contamination in LLMs.
Detecting data contamination, a form of Member-
ship Inference Attack (MIA), poses challenges for
large language models (LLMs) due to their train-
ing on vast corpora and the difficulty of conduct-
ing ablation studies (Shi et al., 2023). To detect
such contamination of LLMs, Wei et al. (2023)
suggested comparing average loss values between
training and test datasets, while Shi et al. (2023)
introduced Min-K% Prob based on loss values to
identify texts used in training. Our experiments
show these methods are effective for pre-training
but not for detecting contamination during fine-
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tuning. Zhu et al. (2023) leveraged DAG to dynam-
ically generate evaluation data in reasoning tasks to
avoid contamination. In comparison, KIEval only
requires access to output texts of evaluated models
and detects data contamination through evaluating
its ability to generalize and utilize knowledge as
well as generative ability, which requires a deeper
understanding of knowledge instead of mere memo-
rization of the answers. Moreover, our experiments
suggest that KIEval is resilient to data contamina-
tion, offering a reliable means to discern whether
models have been trained on test sets. This makes
it a valuable tool for complementing traditional
benchmarks, providing a more nuanced understand-
ing of a model’s exposure to and handling of con-
taminated data.

3 Methodology

3.1 Overview of the KIEval Framework

KIEval involves a series of iterative interactions,
as depicted in Figure 1. KIEval is engineered to
dynamically evaluate the conversational abilities
of LLMs through interactive dialogues focusing on
domain-specific topics that challenge LLMs’ gener-
ative ability and in-depth generalization of knowl-
edge. It simulates realistic conversation flows, of-
fering a dynamic alternative to the static question-
answer format of traditional benchmarks.

KIEval orchestrates an evaluation where an
LLM, referred to as the candidate (the model un-
der evaluation), must understand and respond to
an evolving series of questions. These question
prompts are generated by an interactor model, de-
signed to challenge the candidate with contextually
rich scenarios. The responses from the candidate
are then assessed by an evaluator model, which
scrutinizes the output for factual accuracy, rele-
vance, and coherence. The interactor and evalu-
ator are both strong LLMs (e.g., GPT-4, Gemini,
Claude 2, LLaMA2-70B-chat, etc.) as the standard
practice of LLM-based evaluation protocols.

The design of KIEval emphasizes the importance
of reproducibility and consistency in LLM evalu-
ations. By employing separate models for the in-
teractor and evaluator roles, KIEval ensures that
the dialogue context remains consistent across dif-
ferent evaluations, as it is fair for the same con-
versation to be assessed by various evaluators or
the same evaluator with different seeds, facilitating
a voting strategy to ensure consistent evaluation
results. To achieve reproducibility, KIEval utilizes

Algorithm 1 KIEval Interactive Evaluation Procedure

Require: Benchmark datasetQ, Interactor modelMI , Can-
didate modelMC , Evaluator modelME , seed r.

1: Seed everything with r, disable temperature sampling for
MI ,MC ,ME to ensure deterministic outputs.

2: QS ← Sample subset fromQ with random seed r.
3: QV ← Verify, filter samples fromQS withMI ,ME .
4: for each question q : (qinput, qans) inQV do
5: Initialize interaction history S ← ∅ and evaluation

history E ← ∅.
6: qpred ← Predict withMC given question qinput.
7: OI ← Generate initial question prompt from MI

using question q and candidate’s answer qpred.
8: S ← S ∪ {OI}
9: while not end of dialogue do

10: OC ← Generate response fromMC using S.
11: S ← S ∪ {OC}.
12: OE ← Evaluate response usingME with S, E.
13: E ← E ∪ {OE}.
14: if Early stopping criteria met for OC then
15: break
16: end if
17: OI ← Generate next question fromMI using S.
18: S ← S ∪ {OI}
19: end while
20: Parse and store results from E.
21: end for
22: K ← Calculate KIEval scores with E.
23: return K

deterministic outputs from LLMs, such as the latest
GPT-4 model with temperature sampling disabled
and a fixed seed or deploying local models as eval-
uators. This guarantees identical responses in every
run. Due to space limits, we show the complete
system prompts in Appendix K.

3.2 Interactive Evaluation Procedure
The interactive evaluation procedure can be de-

scribed by Algorithm 1 and the complete imple-
mentation can be found in our repository. In LLM-
based benchmarks, we hypothesize that the eval-
uator (ME) models, given their advanced capa-
bilities, can reliably evaluate the performance of
less sophisticated candidate models (MC) (Zheng
et al., 2023; Zeng et al., 2023). Nevertheless, their
applicability as definitive standards is not without
limitations, especially when confronting arduous
benchmarks. To counteract this, we test the evalua-
tor models against benchmark datasets and sample
a fixed number of questions they answer correctly,
to ensure the validity of their judgments.

3.3 Evaluation Metrics
KIEval implements a scoring system to quantita-
tively grade the performance of candidate LLMs in
different aspects. Responses are rated on a defini-
tive scale from 1 to 4 for each aspect, where 1
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Table 1: Evaluation Metrics and Scoring Guide for KIEval. We compute KIEval Score for each metric and a overall
KIEval Score as described in 3.3. We design the criteria following Zheng et al. (2023); Wang et al. (2023c); Guo
et al. (2023).

Evaluation Metrics Scoring Guide
Metric Description Score Criteria

Accuracy Truthfulness and factual correctness of the candidate’s response. 1 Poor Significant deficiencies or inaccuracies.
Logic Logical structure and soundness of reasoning, including the support and validity of conclusions. 2 Below Avg. Noticeable weaknesses, lacking in several areas.
Relevance The extent to which the response stays on topic and within the scope of the assistant role. 3 Above Avg. Mostly on target with a few minor shortcomings.
Coherence Integration into the context, consistency with previous statements and conversational flow. 4 Strong Strong performance, often surpasses expectations.
Conciseness Brevity and clarity of the response, avoiding unnecessary elaboration or repetition.

and 4 denote ‘Poor’ and ‘Strong’ performance, re-
spectively, as detailed in Table 1. These scores
are intended to be definitive to encourage decisive
evaluations and are accompanied by comments for
interpretability and insights into each score.

We then calculate the KIEval score, which quan-
titatively measures the results given by the evalua-
tor model, emphasizing sustained and high-quality
conversations. Formally, the KIEval score for
single-turn scores s0, s1, . . . , sn in n rounds can
be computed as:

KIEvalScore =

∑n
i=1 siwi∑n
i=1wi

,

where the decaying weight wi = exp(− i
n) placing

more emphasis on early turns of the conversation.
The normalization ensures a bounded KIEval score,
with 1.0 indicating perfect performance across all
rounds. In addition to these metrics, KIEval incor-
porates an early stopping mechanism within the
evaluative process. The evaluator model (ME)
possesses the discretion to prematurely end the
conversation if the candidate’s response is egre-
giously inadequate. Criteria for early termination
include significant deviations from the topic, empty
responses, unpermitted role shifts, and hallucina-
tory content. We adopt this strategy to measure
how well the candidates maintain a meaningful
conversation. We further examine the effectiveness
of these techniques through an ablation study, with
detailed experiments and results available in Ap-
pendix D.

4 Experiments

In this section, we conduct experiments designed
to rigorously test the KIEval framework. Our ob-
jectives are threefold: (1) to evaluate the generative
performance and generalizable knowledge of popu-
lar large language models on KIEval using existing
benchmark datasets; (2) to assess the impact of
data contamination on model performance, specifi-
cally examining whether such contamination leads

to mere memorization or contributes to genuine
understanding and generalization; and (3) to de-
termine the alignment with human, reliability, and
effectiveness of KIEval.

Experiment Setup. We select GPT-42 (Ope-
nAI, 2023) to be both the evaluator and interactor
model by feeding it corresponding prompts with
a fixed seed to ensure deterministic outputs. We
select 200 samples for each dataset, allowing a
maximum of 5 rounds of conversation. The can-
didates’ performance is assessed using the KIEval
framework, which evaluates responses based on
accuracy, logic, relevance, coherence, and concise-
ness. We also report dataset-based benchmark ac-
curacies in 5-shot settings and LLM-based bench-
mark scores from AlpacaEval (Li et al., 2023b) and
MT-Bench (Zheng et al., 2023) in comparison, as
depicted in Table 2.

4.1 Evaluation of Popular LLMs by KIEval

In this experiment, we utilized five popular
LLM benchmark datasets: ARC-Easy and ARC-
Challenge (Clark et al., 2018), HellaSwag (Zellers
et al., 2019), MMLU (Hendrycks et al., 2020), and
C-Eval (Huang et al., 2023). For candidate models,
we selected a diverse set of 7 LLMs: including
proprietary model GPT-3.5 (Brown et al., 2020)
with API access and open-access foundation mod-
els: Llama 2 (Touvron et al., 2023b) 7B, 13B, 70B;
Mistral-7B (Jiang et al., 2023); Yi-6B-chat (01.AI,
2023); MPT-7B (MosaicML, 2023).3 Detailed in-
troduction of these datasets and models can be
found in Appendix B.

Referencing Table 2, we observe the following
trends: GPT-3.5 demonstrated consistently high
performance across all datasets, particularly ex-
celling in KIEval scores, which indicates strong

2We use gpt-4-1106-preview from OpenAI’s offi-
cial API for all experiments, including MT-Bench (0.2.32) and
AlpacaEval (0.3.6).

3By default, we use the ‘chat’ versions of Llama2, Yi,
and MPT models and the ‘Instruct’ version of Mistral model.
Links to the models are released in our GitHub repository.
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Table 2: Comparative Evaluation of LLMs using AlpacaEval, MT-Bench and KIEval on different benchmark
datasets. We report AlpacaEval win-rates and MT-Bench scores; ‘Acc.’ denotes 5-shot accuracy setting on each
dataset or average accuracies in ‘Overall’; ‘KIEval’ and ‘Rnds’ denote the KIEval score and average rounds of valid
conversation rounds.

ARC-Easy ARC-Challenge MMLU HellaSwag C-Eval Overall
Acc. KIEval Rnds. Acc. KIEval Rnds. Acc. KIEval Rnds. Acc. KIEval Rnds. Acc. KIEval Rnds. Acc. AlpacaEval MT-Bench KIEval

GPT-3.5 92.7 97.6 4.97 82.3 95.5 4.94 58.2 96.2 4.95 76.6 88.2 4.82 50.8 83.3 4.72 72.1 81.7 8.39 92.1
LLaMA2 70B 92.3 90.7 4.85 80.4 84.1 4.66 61.8 89.6 4.80 74.4 80.1 4.41 42.0 61.0 3.94 70.2 92.7 6.86 81.1
LLaMA2 13B 81.9 86.2 4.70 65.7 78.6 4.56 52.1 87.4 4.76 59.3 78.5 4.66 37.8 54.4 3.74 59.4 81.1 6.65 77.0
LLaMA2 7B 73.6 78.9 4.49 55.7 74.4 4.44 44.5 83.0 4.61 39.8 76.4 4.54 33.4 49.3 3.62 49.4 71.4 6.27 72.4
Mistral 7B 83.5 80.8 4.64 67.5 78.5 4.46 52.7 83.0 4.62 54.4 70.3 4.34 39.3 52.2 3.61 59.5 65.5 6.84 73.0
Yi 6B 90.7 83.8 4.58 79.0 76.8 4.33 61.9 86.5 4.58 73.7 68.7 4.20 71.5 55.6 3.66 75.4 54.5 4.86 74.3
MPT 7B 53.3 68.4 4.34 43.4 65.5 4.33 33.9 74.7 4.46 27.3 57.3 4.10 26.2 44.9 3.52 36.8 43.4 5.42 62.2

5-shot
Acc.

KIEval
Acc.

KIEval
Log.

KIEval
Rel.

KIEval
Coh.

KIEval
Con.

KIEval
Overall

30
40
50
60
70
80
90

100
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KIEval
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KIEval
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KIEval
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KIEval
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KIEval
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HellaSwag

5-shot
Acc.

KIEval
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KIEval
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KIEval
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KIEval
Coh.

KIEval
Con.

KIEval
Overall

C-Eval
GPT-3.5 LLaMA2 70B LLaMA2 13B LLaMA2 7B Mistral 7B Yi 6B MPT 7B

Figure 2: Detailed evaluation result using KIEval, including the overall KIEval score, and KIEval scores for aspects:
Accuracy, Logic, Relevance, Coherence and Conciseness. In comparison, we also provide dataset accuracies
(5-shot). Due to page limits and the large volume of experimental data, the complete results are put in Appendix J.

contextual understanding and response generation.
LLaMA2 70B showed competitive results, achiev-
ing only a marginal gap from GPT-3.5 on ARC-E,
ARC-C, HSwag and even surpasses GPT in MMLU
when measured by dataset accuracies, but we can
significantly observe a larger gap between these
two models with KIEval metrics in all datasets
which is also observed by MT-Bench results as re-
ported in Table 2. This suggests that traditional
benchmarks may underestimate the difference in
performance between LLMs as these benchmarks
only let models generate a short span of text to eval-
uate which focus on testing understanding ability.
Thus it is hard for these benchmarks to accurately
reflect performance gaps in generative tasks.

The results from different aspects visualized in
Figure 2 benefits us in evaluating model capabili-
ties more comprehensively. We observe that most
models exhibit relatively strong performance in
terms of relevance and could generate coherent
responses. Larger models generally perform bet-
ter in benchmarks, but it is notable that LLaMA2
70B does not perform well in generating concise
responses, compared to its smaller counterparts.
Although MPT performs weakly in accuracy, its
ability to generate concise responses deserves a

closer look at its instruction-tuning data.
One interesting finding is that Yi-6B performs

unexpectedly well in all benchmark dataset accu-
racies, especially with it surpasses GPT-3.5 and
all other models by a large margin of over 20%
in the C-Eval dataset while exhibiting a similar
performance of LLaMA2 70B in other datasets.
However, Yi-6B’s KIEval score is very similar to
LLaMA2 7B and in the range of other 7B models,
while it only performs marginally better in the Chi-
nese dataset C-Eval. This raises our concern over
potential data contamination in Yi-6B.

To better understand the correlation of KIEval
and static dataset-based benchmarks, we provide a
detailed analysis in Appendix C.

4.2 Resilience to Data Contamination
In this subsection, we show that existing static
dataset-based and LLM-based evaluation ap-
proaches are prone to data contamination while
KIEval is resilient to data contamination. Addi-
tionally, we test existing contamination detection
methods and point out their challenges.

Contamination on static dataset-based eval-
uation. We train two models on the test sets
to introduce contamination in the pre-training
(‘PT-Cheater’) and supervised fine-tuning (‘SFT-
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Table 3: Comparison on different data contamination scenarios on ARC-Challenge (Clark et al., 2018) dataset.
‘SFT-Cheater’ and ‘PT-Cheater’ denote leaking test-set labels during supervised fine-tuning phase and pre-training
phase. We report 5-shot accuracy on ARC-Challenge dataset and KIEval scores. We detect data contamination with
differences in average language modelling loss (Wei et al., 2023) and Min-K% Prob (Shi et al., 2023).

ARC-C Avg. LM Loss Min-K% KIEval
Acc.(5-shot) Ltrain Ltest ∆ AUC Acc. Log. Rel. Coh. Con. Overall

Normal (LLaMA 2 7B + SFT) 52.8 3.12 3.10 -0.02 0.53 61.7 62.1 84.4 69.2 70.6 66.3
SFT-Cheater 69.8 4.05 3.95 -0.09 0.54 52.8 52.3 72.8 60.2 57.7 56.1
PT-Cheater 76.8 3.88 2.02 -1.86 0.89 50.8 49.9 65.6 54.5 49.0 51.2

LLaMA 2 7B Chat 57.8 3.05 3.01 -0.04 0.55 75.3 75.9 90.1 80.2 74.0 77.9

Table 4: Contamination in MT-Bench (Zheng et al.,
2023) scores. We report 5-shot accuracy on ARC-
Challenge and KIEval results in comparison.

Model Acc. MT-Bench KIEval

Normal 52.35 3.96 62.60
+MT-Bench 52.25 5.75 57.46

Cheater’) phases using un-tuned LLaMA-2 7B as
the backbone4. For PT-Cheater, test set contents
are integrated into the pre-training set. Subse-
quently, the model undergoes fine-tuning with the
ShareGPT (Eccleston, 2023), a commonly used
instruction-tuning dataset, to develop chat function-
alities. Conversely, the SFT-Cheater replicates this
process but adapts the test data to the SFT format.
As a control, we also train the backbone solely
with ShareGPT (‘Normal’), devoid of contamina-
tion, ensuring uniform training conditions across
all models. From results in Table 3, it is clear
that the accuracies for benchmarks are significantly
boosted, by a large margin of over 45%, suggest-
ing a susceptibility to data contamination. How-
ever, when faced with KIEval, the cheater models
perform slightly worse than ‘Normal’ model, not
positively affected by data contamination. The av-
erage rounds of valid conversation are lower in the
cheater models, from the reasons specified by Fig-
ure 3, contaminated models tend to go off-topic of
the conversation, repetitively stick to the incorrect
knowledge making the conversation meaningless to
continue. We can infer from this result that training
models on test sets does not bring generalizable
domain knowledge, instead, only contributing to
mere memorization of knowledge from test sets.

Contamination on LLM-based evaluation.
We also find existing LLM-based evaluations vul-

4Training details including hyperparameters and hardware
settings can be found in Appendix F. We also release the
full training scripts on our GitHub repository for better repro-
ducibility.

nerable to data contamination, due to their reliance
on static templates. We train the fine-tuned model
(‘Normal’) with MT-Bench input templates and
GPT-4 outputs using only 80 samples and test it
against MT-Bench and KIEval. Table 4 reveals
that contamination training notably inflates the MT-
Bench score by 1.79, a surge over 45% compared
to the baseline, while ARC-Challenge accuracy re-
mains stable and KIEval score slightly decreased.

Challenges in Contamination Detection. We
evaluate the efficacy of current data contamination
detection strategies, notably Skywork (Wei et al.,
2023) and Min-K% Prob (Shi et al., 2023), which
identify training data leakage through loss met-
rics as introduced in Related Work. We sampled
200 instances each from the trainset and testset
of ARC-Challenge with contamination labels and
tried to classify each instance with Min-K% Prob.
We report AUC to measure its effectiveness. Ta-
ble 3 demonstrates their capability to detect leaked
data in the pre-training phase effectively, as the
difference of average loss is significantly higher
and Min-K% AUC reaches 0.89. However, both
methods fail to identify contamination during SFT,
with slight differences in loss values and Min-K%
Prob AUC near random. We hypothesize that this
may be due to the fine-tuning process only super-
vising the output sequence which is a short span
containing the answer. This enables easy recall of
the answer, without significantly impacting average
loss values or Min-K% Prob values. This discrep-
ancy underscores the ineffectiveness of loss-based
metrics in discerning data contamination during
SFT phase. Conversely, by leveraging KIEval, a
correlation between KIEval scores and dataset accu-
racies emerges, suggesting the potential of KIEval
in distinguishing between generalized knowledge
application and mere data regurgitation for contam-
ination detection.
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Figure 3: Statistics on reasons to trigger early stopping
given by the evaluator model.

Table 5: Pearson (r), Spearman (ρ), Kendall-Tau (τ )
correlation efficients of METEOR (Banerjee and Lavie,
2005), ROUGE (Lin, 2004), BERTScore (Zhang et al.,
2019), and MT-Bench (Zheng et al., 2023) with human
scores and their variance (σ2). We introduce the com-
pared baselines in Appendix A, (↑) indicates higher
values are better.

Metric r (↑) ρ (↑) τ (↑) σ2

METEOR 0.016 0.023 0.021 0.012
ROUGE-1 0.259 0.316 0.226 0.016
ROUGE-2 0.280 0.303 0.223 0.007
ROUGE-L 0.209 0.268 0.200 0.007
BERTScore 0.189 0.336 0.250 0.001
MT-Bench 0.520 0.494 0.405 9.360

Ours
Accuracy 0.761 0.727 0.653 2.010
Logic 0.768 0.735 0.661 1.842
Relevance 0.633 0.643 0.543 1.152
Coherence 0.750 0.740 0.644 1.365
Conciseness 0.611 0.604 0.504 0.833
Overall 0.814 0.789 0.721 1.512

4.3 Meta-Evaluation of KIEval

Meta-evaluation is essential for validating the prac-
tical utility of any evaluation framework. In this
section, we assess KIEval’s alignment with human
judgment and compare its performance against ex-
isting evaluation methods. Additionally, we con-
duct a cost analysis focusing on computational re-
sources and API usage in Appendix E to validate
KIEval’s cost-effectiveness and scalability.

Human Evaluation: To ascertain KIEval’s
alignment with human preferences and its com-
parative effectiveness against prior methods, we
collected a sample of multi-turn conversations gen-
erated by KIEval and compared the correlation be-
tween different evaluators and human-annotated
scores. Specifically, we sampled 100 sets of con-
versations from all 5 datasets and across 7 candi-
date models and converted the multi-turn conver-
sations to single-turn format to evaluate only one
round of interaction to align with our compared
baselines. Three human experts were asked to in-
dependently rate the responses of different models
on a scale from 1 to 4, and we cover human anno-
tation details in Appendix G. The Inter-Annotator

Agreement (IAA) was measured by averaging Co-
hen’s Kappa coefficients for each annotator pair,
yielding an average IAA of 0.624. This indicates
substantial agreement among the annotators, a sig-
nificant achievement for the complexity of the task
at hand. The average score for each instance was
then calculated and used as the human score for
that response.

Following the meta-evaluation in G-Eval (Liu
et al., 2023b), we computed Pearson, Spearman,
and Kendall-Tau correlation coefficients to gauge
the agreement between different evaluators’ scores
and human ratings. A detailed introduction of these
evaluated baselines is provided in Appendix A due
to page limitations.

As shown in Table 5, traditional reference-based
evaluators align poorly with human judgments in
open-ended conversations, due to their reliance on
limited reference texts which cannot encompass
the variety of valid responses. While the LLM-
based evaluator MT-Bench shows commendable
alignment with human preferences, its applicability
is somewhat limited by its design, which is tailored
to a predefined set of instructions and responses. In
contrast, KIEval demonstrates a robust correlation
with human preferences, underscoring its efficacy
in evaluating dynamically generated, open-ended
conversations.

Potential Bias: Employing LLMs for evaluation
could introduce additional biases into the evalua-
tion results. To mitigate bias and enhance objec-
tivity, we have designed a separation between the
’interactor’ and ’evaluator’ roles. By utilizing dif-
ferent LLMs as evaluators with a fixed interactor
LLM, we can assess the same conversation (since
the interactor and candidate models are fixed) mul-
tiple times with different evaluators. Results in
Appendix H indicate that while different evalua-
tor LLMs may have varying preferences for model
outputs, their overall results demonstrate a strong
correlation.

Ablation Study: We further examine the effect
of KIEval’s main components through an ablation
study, the experiments and results are presented in
Appendix D.

5 Conclusion

KIEval provides a dynamic evaluation and analy-
sis of LLMs across various domains, evaluating
generative abilities and domain knowledge through
structured conversations instead of relying on fixed
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templates or instructions, reducing the risk of data
contamination and enhancing the reliability of eval-
uations, while preserving alignment with human
preference. Overall, our findings suggest several
key insights:

• Static dataset-based benchmarks may not cap-
ture the full extent of performance disparities
among LLMs, such datasets could potentially
underestimate these differences.

• Training models on test splits of benchmark
datasets primarily improves recall of answers
rather than a genuine enhancement in knowl-
edge comprehension or problem-solving abili-
ties, underscoring the impact of data contami-
nation.

• Detecting data contamination, particularly for
the fine-tuning phase of LLMs, might be chal-
lenging for existing methods. We propose a
paradigm shift from only detecting exposure
to specific training texts towards evaluating
the models’ underlying rationale and depth of
knowledge comprehension.

We believe that KIEval will serve as a valuable
tool for researchers and practitioners alike, aiding
in the development of more robust, versatile, and
ethical AI systems.

6 Limitations

Our method, while insightful, operates under the
assumption that LLMs can accurately evaluate the
capabilities of less sophisticated models. However,
the reliability of LLMs as universal evaluators is
not without limitations, particularly when faced
with complex benchmarks or assessing more ad-
vanced models. For certain evaluation tasks, such
as mathematics problem-solving, coding, and fact-
checking, depending solely on LLM evaluators
may be insufficient. Furthermore, these evaluators
may introduce additional biases into the assessment
process. As these limitations can also be applica-
ble to other current LLM-based evaluators, future
research could explore a hybrid evaluation strat-
egy that combines task-specific methods with LLM
evaluators to achieve more nuanced and accurate
assessments.

Another limitation concerns the scope of our
work. Our focus is on evaluating instruction-tuned
generative models with conversational abilities,

excluding those designed solely for natural lan-
guage understanding (NLU) tasks without genera-
tive capabilities or base models lacking instruction-
following capabilities. We can assess base models
by instruction-tuning them using the exact same
datasets and settings, operating under the hypoth-
esis that employing identical data for training dif-
ferent models results in a fair comparison. Future
research should delve more deeply into the eval-
uation of base models, scrutinizing the impact of
instruction-tuning on their performance.
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A Baseline Evaluators

In our experimental framework, we compare
KIEval with prevalent evaluators in open-ended
dialogue evaluation, following Liu et al. (2023b),
alongside MT-Bench, which epitomizes the appli-
cation of Large Language Models (LLMs) in evalu-
ation processes. To compare reference-based meth-
ods with reference-free approaches and our method,
we use GPT-4 to generate references.

• METEOR (Banerjee and Lavie, 2005), a
reference-based evaluation metric, utilizes un-
igram matching between generated outputs and
reference texts crafted by humans to assess
performance across a variety of Natural Lan-
guage Generation (NLG) tasks, including ma-
chine translation and dialogue generation.

• ROUGE (Lin, 2004) comprises a suite of met-
rics for reference-based evaluation, facilitat-
ing the comparison of automatically generated
summaries or translations against one or more
human-crafted reference summaries or transla-
tions.

• BERTScore (Zhang et al., 2019), another
reference-based evaluation metric, employs con-
textual embeddings from BERT to measure co-
sine similarity between words in candidate and
reference sentences. Demonstrated to align well
with human judgment at both the sentence and
system levels, BERTScore calculates precision,
recall, and F1 scores, offering valuable insights
for various NLG tasks.

• MT-Bench (Zheng et al., 2023), a LLM-based,
reference-free evaluation approach, harnesses
cutting-edge LLMs to assess model outputs. It
features a series of open-ended questions de-
signed to test a model’s capabilities in engag-
ing in conversation and instruction-following
abilities. As MT-Bench is similar to AlpacaE-
val (Li et al., 2023b), PandaLM (Wang et al.,
2023c) and G-Eval (Liu et al., 2023b) but be-
ing a more popular option, we select MT-Bench
without compromising on the breadth of our eval-
uation. In our meta-evaluation experiment, we
use gpt-4-1106-preview as the evaluator
and use the single-answer grading mode of MT-
Bench.

B Datasets

We use the following datasets in our experiments,
for statistics and used splits, please refer to Table 6.

ARC-Easy and ARC-Challenge (Clark et al.,
2018): Both are subsets of the AI2 Reasoning
Challenge, a benchmark for assessing a model’s
reasoning and understanding in science questions.
ARC-Easy contains simpler questions, while ARC-
Challenge includes more complex ones.

HellaSwag (Zellers et al., 2019): challenges
models to complete realistic scenarios in text, test-
ing common sense and predictive abilities.

MMLU (Hendrycks et al., 2020): A compre-
hensive English examination composed of multiple-
choice questions encompassing a wide array of dis-
ciplines. This extensive test includes subjects rang-
ing from humanities and social sciences to hard
sciences, alongside other essential areas of knowl-
edge. It encompasses 57 distinct tasks, covering
fields such as elementary mathematics, US history,
computer science, law, and beyond.

C-Eval (Huang et al., 2023): A comprehen-
sive Chinese evaluation composed of 13948 multi-
choice questions spanning 52 diverse disciplines
and four difficulty levels.

C Correlation Analysis of KIEval and
Dataset Benchmarks

To further investigate the correlation between
dataset-based benchmarks and KIEval, we use re-
gression analysis as shown in Figure 4. We also
leverage the Pearson correlation coefficient to pro-
vide quantitive analysis in Table 7. The results
revealed a significant positive correlation between
KIEval scores and dataset-based benchmark accu-
racies. This correlation underscores KIEval’s align-
ment with traditional evaluation methods. However,
we also bring new insights that traditional bench-
marks do not offer: while dataset-based bench-
marks effectively assess LLM knowledge under
contamination-free conditions, their results are eas-
ily inflated in the presence of data contamination.
In contrast, KIEval exhibits a lower susceptibility
to these issues. Visual analysis offers additional
perspective by contrasting model performances as
per benchmark accuracies and KIEval scores. Mod-
els significantly above the regression line suggest
capabilities beyond those captured by traditional
benchmarks. In this scenario, traditional bench-
marks are not sufficiently challenging to effectively
differentiate the stronger models from others, nor
do they accurately represent the generative capa-
bilities of these models. It is evident that GPT-3.5
is included in this category. Conversely, models
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Table 6: Details of datasets in our experiments. We report 5-shot accuracy metric of ‘Used Splits’ split for each
dataset.

Datasets Splits Used Splits Split Size Language

ARC-Challenge train, validation, test test 1.17k English
ARC-Easy train, validation, test test 2.38k English
Hellaswag train, validation,test validation 10k English
MMLU auxiliary_train, test, validation, dev test 14k English
C-Eval val, test, dev val 1.35k Chinese

Table 7: Pearson correlation coefficient of KIEval scores
and dataset accuracy scores. Due to suspected data
contamination in Yi-6B, we report two sets of results
with and without Yi.

PCC r p r
Excl. Yi

p
Excl. Yi

Overall 0.664 1.37E-05 0.765 8.67E-07
ARC-E 0.892 6.97E-03 0.934 6.45E-03
ARC-C 0.839 1.83E-02 0.940 5.29E-03
MMLU 0.814 2.57E-02 0.876 2.21E-02

HellaSwag 0.686 8.85E-02 0.862 2.74E-02
C-Eval 0.427 3.40E-01 0.924 8.42E-03

Table 8: Ablation study of KIEval’s components. DW
and ES denote decaying weight in KIEval score and
early stopping mechanism. We report Pearson (r),
Spearman (ρ), Kendall-Tau (τ ) correlation efficients
with human scores and their variance (σ2). (↑) indicates
higher values are better.

Methods
r (↑) ρ (↑) τ (↑) σ2

DW ES

✓ ✓ 0.768 0.759 0.625 1.718
✗ ✓ 0.730 0.721 0.588 1.708
✓ ✗ 0.737 0.751 0.623 1.839
✗ ✗ 0.691 0.715 0.588 1.870

falling below the regression line, exhibiting high
benchmark accuracy but low conversation quality,
suggest limited real-world applicability, potentially
indicative of data contamination. Interestingly, the
visualization shows that not only does our simu-
lated SFT Cheater model fall into the outlier cat-
egory below the regression line, but Yi-6B also
exhibits similar behavior.

D Ablation Study of KIEval Components

This study assesses the impact of the decaying
weight scoring and the early stopping mechanism
of KIEval through an ablation analysis. Employ-
ing the same set of KIEval-generated conversa-
tions used in our meta-evaluation, we explore
four distinct configurations of the KIEval frame-
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Figure 4: Scatter plots of KIEval scores and traditional
benchmark scores by model and dataset. Each point
represents the performance of a model on a specific
dataset, measured by the KIEval score and accuracy
score (5-shot). Regression lines are plotted for each
dataset. Points significantly above the regression line in-
dicate the performance gap not captured by traditional
benchmarks but captured by KIEval, while points signif-
icantly below the regression line indicate potential data
contamination in traditional benchmarks.

work. Specifically, we investigate the influence
of the weighted scoring by replacing the decaying
weight with a constant value, effectively equating
the multi-round score to the mean of single-turn
scores. Additionally, we examine the consequences
of omitting the early stopping mechanism, thereby
allowing conversations to proceed unabated until
their conclusion. We then compare the correla-
tion coefficients between these variants and human
scores. As indicated by the data in Table 8, the
exclusion of either feature results in a notable de-
cline in performance, underscoring their respective
contributions to the model’s efficacy.
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Table 9: API usage estimation for KIEval and pairwise-
comparison based evaluation methods. Priced in USD,
according to openai’s GPT-4 pricing policy.

Method 1 Model 10 Models 100 Models

KIEval 27 279 2,796
Pairwise 16 720 79,200

Table 10: Average GPU budget for a single model eval-
uated on one dataset with KIEval. We report results for
LLaMA2 models with varying parameter sizes.

7B 13B 70B

GPU Hours 0.74 0.99 9.38

E Cost and Scalability

Assessing KIEval’s scalability requires a thorough
evaluation of overall costs. Our method employs
a strong LLM accessed via API, with expenses
based on input and output token lengths. Table 11
details the average token count per model evalua-
tion across diverse datasets. Additionally, the aver-
age GPU expenditure for single model evaluations
on NVIDIA A100 GPUs is provided in Table 10.
Financially, deploying GPT-4 in both interactor
and evaluator roles within KIEval incurs a cost of
around 27 USD for each model evaluation, com-
prising 1000 interaction rounds. Importantly, due
to our adoption of single-answer grading over pair-
wise comparison (Wang et al., 2023c; Zheng et al.,
2023), costs increase linearly rather than quadrati-
cally with the number of models evaluated. For a
comprehensive understanding of the cost implica-
tions at scale, we present a detailed estimation in
Table 9.

F Experiment Details

In this section, we detail the experimental setup
employed to facilitate the reproduction of our re-
sults. The entire codebase used in our experiments

Table 11: Average number of tokens consumed of eval-
uation on a single model across various datasets, over
200 samples with 5 rounds of interaction.

Interactor Evaluator

Prompt Completion Prompt Completion

Avg. 557k 28k 1546k 203k
ARC-E 554k 28k 1592k 208k
ARC-C 540k 27k 1553k 205k
MMLU 656k 30k 1731k 213k
HellaSwag 527k 29k 1488k 198k
C-Eval 505k 26k 1365k 189k

Table 12: We report Cohen’s Kappa (κ) for each pair
of annotators to measure Inter-Annotator Agreement
(IAA) between annotators.

Annotator Pair κ

A + B 0.650
A + C 0.580
B + C 0.642

has been made publicly available, ensuring trans-
parency and ease of verification for our findings.

Codebase and Dependencies: Our experiments
are done with LLaMA-Factory package5, a frame-
work designed to streamline the training of large
language models. We use Huggingface Trans-
formers (Wolf et al., 2019) library and the Deep-
speed (Rasley et al., 2020) Zero-3 optimizer (Ra-
jbhandari et al., 2021), forms the backbone of our
computational experiments.

Training Configuration: For the training pro-
cess, we have configured the learning rate to 2e-5,
employing a cosine learning rate scheduler. Our
hardware setup consists of 4 NVIDIA A100 GPUs,
and we’ve set per-device batch size to 1, coupled
with a gradient accumulation step of 4. We use
full-parameter training for 4 epochs in all our ex-
periments, including training models with data con-
tamination during pre-training and fine-tuning.

G Human Annotation Details

For human annotation in our work, all annota-
tors are authors of this paper who previously have
not accessed the outputs of models in our experi-
ments and volunteer to contribute. All three anno-
tators agree on how the data would be used. Since
the data to be annotated come from open-source
datasets and popular LLMs, ethical concerns are
not applicable. We provide guides for each annota-
tor and for each annotator, we give them a unique
URL to our annotation platform built with Gradio,
and give them instructions: ‘You are given some
conversations between a candidate model and a in-
teractor model. Please score the response of the
candidate model with integers from 1 to 4, fol-
lowing our scoring guide. Your score should be
definitive, and consider the response’s factual accu-
racy, logical structure, language conciseness, and
coherence.’

We measure the agreement of our annotators

5Available at https://github.com/hiyouga/
LLaMA-Factory/.

5982

https://github.com/hiyouga/LLaMA-Factory/
https://github.com/hiyouga/LLaMA-Factory/


Table 13: KIEval scores using Claude 3 Opus
(claude-3-opus-20240229) and GPT-4 Turbo
(gpt-4-turbo-preview-1106) as evaluators on
ARC-Challenge dataset.

Model Evaluator Accuracy Logic Relevance Coherence Conciseness Overall

GPT-3.5
GPT-4 94.6 94.7 98.5 96.1 97.3 95.5

Claude-3 98.6 98.8 99.8 99.4 99.0 98.7

LLaMA-2 70B
GPT-4 81.9 82.8 92.2 85.3 75.6 84.1

Claude-3 98.3 98.7 98.2 96.9 84.6 96.4

LLaMA-2 7B
GPT-4 70.6 71.6 90.4 77.9 71.7 74.4

Claude-3 90.9 91.8 98.0 95.0 85.2 91.0

Table 14: Pearson (r), Spearman (ρ), Kendall-
Tau (τ ) correlation efficients of KIEval scores
evaluated by claude-3-opus-20240229 and
gpt-4-turbo-preview-1106.

Metric Corr. Coeff. P-Value
Pearson r 0.822 2.87e-05
Spearman ρ 0.898 4.17e-07
Kendall τ 0.761 1.10e-05

by calculating Cohen’s Kappa as Inter-Annotator
Agreement, results can be found in Table 12. We
reach an average IAA for all pairs of human anno-
tators of 0.624, indicating a substantial agreement
among our annotators.

H Potential Bias

While KIEval provides a new evaluation method,
the reliance on strong LLMs as evaluators
could inadvertently propagate existing biases.
To study the bias introduced by the evalua-
tor LLMs, we utilize different LLMs as eval-
uators with a fixed interactor LLM. Specifi-
cally, we use gpt-4-turbo-preview-1106
and claude-3-opus-20240229 as evalua-
tors, with the same prompts and sampling hy-
perparameters. We report KIEval scores of
gpt-3.5-turbo, llama-2-70b-chat-hf
and llama-2-7b-chat-hf from different eval-
uator LLMs on ARC-Challenge dataset in Table 13.
We also report the correlation coefficients of the
results in Table 14.

These results indicate that although GPT-4 and
Claude 3 have different preference of models, their
overall results exhibit a strong correlation. Note
that we use the exact same prompt for GPT-4 and
Claude 3, and as Claude 3 works differently with
their system prompts, the scores from Claude 3
are generally higher but this does not affect the
effectiveness of our experiments.

I Use of AI Assistants

In this work, we use GitHub Copilot to assist cod-
ing, and GPT-4 to correct grammatical errors.

J Complete Experiment Results

We share the complete experiment results from all 5
datasets with 7 models, evaluated with KIEval and
benchmark accuracies in Table 15, 16, 17, 18, 19.

K Complete Prompt

The system prompts for interactor, candidate and
evaluator models are given in Figure 5.
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Table 15: KIEval Results on ARC-Easy.

ARC-E Accuracy Logic Relevance Coherence Conciseness Overall Rounds Acc. (5-shot)

GPT-3.5 97.1 97.4 99.3 97.9 97.9 97.6 4.97 92.7
LLaMA2 70B 90.3 90.3 94.6 91.3 79.6 90.7 4.85 92.3
LLaMA2 13B 84.5 84.3 93.2 87.7 85.8 86.2 4.70 81.9
LLaMA2 7B 77.1 77.4 89.7 82.2 73.6 78.9 4.49 73.6
Mistral 7B 78.5 78.2 91.4 83.5 79.9 80.8 4.64 83.5
Yi 6B 83.4 83.6 90.9 85.8 76.4 83.8 4.58 90.7
MPT 7B 63.9 64.1 84.9 71.5 81.8 68.4 4.34 53.3

Table 16: KIEval Results on ARC-Challenge.

ARC-C Accuracy Logic Relevance Coherence Conciseness Overall Rounds Acc. (5-shot)

GPT-3.5 94.6 94.7 98.5 96.1 97.3 95.5 4.94 82.3
LLaMA2 70B 81.9 82.8 92.2 85.3 75.6 84.1 4.66 80.4
LLaMA2 13B 75.4 75.9 91.3 82.3 82.6 78.6 4.56 65.7
LLaMA2 7B 70.6 71.6 90.4 77.9 71.7 74.4 4.44 55.7
Mistral 7B 75.9 75.8 90.0 81.4 79.1 78.5 4.46 67.5
Yi 6B 75.6 76.1 85.0 79.6 71.2 76.8 4.33 79.0
MPT 7B 60.2 61.4 83.6 69.5 81.1 65.5 4.33 43.4

Table 17: Summary of KIEval Results on MMLU

MMLU Accuracy Logic Relevance Coherence Conciseness Overall Rounds Acc(5-shot)

GPT-3.5 95.5 95.8 98.3 96.7 97.4 96.2 4.95 58.2
LLaMA2 70B 89.0 90.3 93.7 90.3 76.0 89.6 4.80 61.8
LLaMA2 13B 85.8 87.0 93.9 88.6 81.4 87.4 4.76 52.1
LLaMA2 7B 82.2 83.6 91.9 84.7 70.4 83.0 4.61 44.5
Mistral 7B 81.6 82.8 90.5 85.3 77.5 83.0 4.62 52.7
Yi 6B 84.7 86.5 91.8 87.4 76.5 86.5 4.58 61.9
MPT 7B 70.6 72.0 86.6 77.9 83.0 74.7 4.46 33.9

Table 18: KIEval Results on HellaSwag.

HellaSwag Accuracy Logic Relevance Coherence Conciseness Overall Rounds Acc. (5-shot)

GPT-3.5 85.6 85.6 93.9 90.1 93.1 88.2 4.82 76.6
LLaMA2 70B 76.6 79.5 88.2 82.0 78.9 80.1 4.41 74.4
LLaMA2 13B 72.6 75.9 88.7 83.0 85.2 78.5 4.66 59.3
LLaMA2 7B 70.8 73.3 87.3 79.9 80.2 76.4 4.54 39.8
Mistral 7B 65.6 67.1 83.8 75.6 75.2 70.3 4.34 54.4
Yi 6B 64.4 67.0 79.9 74.3 72.4 68.7 4.20 73.7
MPT 7B 50.0 51.7 74.3 62.5 74.4 57.3 4.10 27.3

Table 19: KIEval Results on C-Eval

C-Eval Accuracy Logic Relevance Coherence Conciseness Overall Rounds Acc. (5-shot)

GPT-3.5 79.8 80.6 94.7 87.3 92.0 83.3 4.72 50.8
LLaMA2 70B 57.6 58.3 80.1 66.5 64.1 61.0 3.94 42.0
LLaMA2 13B 48.4 49.8 79.3 61.5 62.9 54.4 3.74 37.8
LLaMA2 7B 44.9 45.1 73.8 55.8 55.9 49.3 3.62 33.4
Mistral 7B 47.3 47.8 73.3 58.0 59.5 52.2 3.61 39.3
Yi 6B 53.1 54.1 73.0 59.3 55.9 55.6 3.66 71.5
MPT 7B 39.5 40.2 72.7 51.5 64.0 44.9 3.52 26.2
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Candidate:
You are a helpful assistant that follows the instructions of the user. You must output in less than 200 words and your 
responses should be concise and accurate. 

Interactor:
As an expert interviewer, initiate a reflective dialogue by asking the user to describe the rationale behind their answer to 
the multiple-choice question. You must output in less than 200 words. Encourage them to be succinct and precise. Guide 
the conversation to uncover and address any misconceptions, prompting the user to critically evaluate their thinking 
process. Their answer is likely to be incorrect. Avoid prompting the user to merely explain their choice, this is very 
important. Instead, focus on probing questions that challenge their assumptions and lead them to a deeper 
understanding of the topic. The outputs from the user is very likely to be wrong, do not validate misinformation or 
incorrect logic; instead, use it as a point of assessment. Remember, you are not educating the user, be neutral and do 
not give comments since you are the interviewer instead of the evaluator, this is very important. Do not ask too many 
questions before the user responds. Always skip the greetings, or any other prompting words, ask questions directly. DO 
NOT say anything else.

Evaluator:
You are an objective evaluator in an interview. Your task is to evaluate a candidate's performance during a series of 
interactions with an interactor, both parties are AI models. The candidate is asked to solve a problem, and the interactor 
will ask questions accordingly. The conversation alternates between the interactor (marked with [BEGIN INTERACTOR]) 
and the candidate (marked with [BEGIN CANDIDATE]). After each candidate response, evaluate the candidate's 
performance in that round of interaction as well as in context, based on the following aspects independently, rating each 
on a scale from 1 (Poor) to 4 (Good):
Accuracy: Truthfulness and factual correctness of the candidate's response.
Logic: Logical structure and soundness of reasoning. Whether conclusions are well-supported and arguments are free 
from logical fallacies.
Relevance: How the response relates to the topic. Ensure responses are within the scope of the "assistant" role, 
avoiding unpermitted role shifts.
Coherence: How well the response integrates into the context. Consistency with previous statements and overall 
conversational flow.
Conciseness: Brevity and clarity of the response. Clear, to-the-point communication, free from extraneous elaboration or 
repetitive words.

Scoring Guide:
1 (Poor): Significant deficiencies or inaccuracies in the aspect.
2 (Below Average): Noticeable weaknesses, partially on target but lacking in several areas.
3 (Above Average): Solid and competent, mostly on target with only a few minor shortcomings.
4 (Good): Strong performance, fully meets and often surpasses expectations.

Evaluation Rules:
1. Evaluate each response consistently and objectively without bias, strictly adhering to scoring guide.
2. Score from 1 to 4 for each aspect independently, using only integers. Low score in one aspect should not influence 
another aspect. Write a brief comment before scoring in the JSON output structure. 
3. Write a overall comment and then give an overall score (same scoring guide). The overall comment should be brief 
and clear. Consider the performance throughout the interaction, not just in the latest round.
4. Use of `stop_conversation` Flag: Set this flag to true for early conversation termination in cases listed below. If 
`stop_conversation` is true, choose a `stop_reason` from ["off_topic", "empty_response", "rule_violation", "repetition", 
"unpermitted_role_shift"], otherwise `stop_reason` is `none`.
5. Format of Evaluation: Output in JSON format strictly following the template:{"accuracy": {"comment": "", "score": 0}, 
"logic": {"comment": "", "score": 0}, "relevance": {"comment": "", "score": 0}, "coherence": {"comment": "", "score": 0}, 
"conciseness": {"comment": "", "score": 0}, "overall_comment": "", "overall_score": 0, "stop_conversation": false, 
"stop_reason": "none"}

Figure 5: The full system prompt for interactor, candidate and evaluator models.
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