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Abstract

Subsampling is effective in Knowledge Graph
Embedding (KGE) for reducing overfitting
caused by the sparsity in Knowledge Graph
(KG) datasets. However, current subsam-
pling approaches consider only frequencies of
queries that consist of entities and their re-
lations. Thus, the existing subsampling po-
tentially underestimates the appearance prob-
abilities of infrequent queries even if the fre-
quencies of their entities or relations are high.
To address this problem, we propose Model-
based Subsampling (MBS) and Mixed Sub-
sampling (MIX) to estimate their appearance
probabilities through predictions of KGE mod-
els. Evaluation results on datasets FB15k-237,
WNI18RR, and YAGO3-10 showed that our pro-
posed subsampling methods actually improved
the KG completion performances for popular
KGE models, RotatE, TransE, HAKE, Com-
pIEx, and DistMult.

1 Introduction

A Knowledge Graph (KG) is a graph that contains
entities and their relations as links. KGs are im-
portant resources for various NLP tasks, such as
dialogue (Moon et al., 2019), question-answering
(Lukovnikov et al., 2017), and natural language
generation (Guan et al., 2019), etc. However, cov-
ering all relations of entities in a KG by humans
takes a lot of costs. Knowledge Graph Completion
(KGC) tries to solve this problem by automatically
completing lacking relations based on the observed
ones. Letting e; and e, be entities, and r; be their
relation, KGC models predict the existence of a
link (e;, 75, ex) by filling the ? in the possible links
(ei,7j,7) and (7, 7;, ex), where (e;, ;) and (75, ey;)
are called queries, and the 7 are the corresponding
answers.

Currently, Knowledge Graph Embedding (KGE)
is a dominant approach for KGC. KGE models
represent entities and their relations as continuous
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Figure 1: The averaged KGC performance (MRR) of
KGE models' with and without subsampling on FB15k-
237, WN18RR, and YAGO3-10.

vectors. Since the number of these vectors pro-
portionally increases to the number of links in a
KG, KGE commonly relies on Negative Sampling
(NS) to reduce the computational cost in training.
In NS, a KGE model learns a KG by discriminat-
ing between true links and false links created by
sampling links in the KG. While NS can reduce
the computational cost, it has the problem that the
sampled links also reflect the bias of the original
KG.

As a solution, Sun et al. (2019) introduce sub-
sampling (Mikolov et al., 2013) into NS for KGE.
In this usage, subsampling is a method of mitigat-
ing bias in a KG by discounting the appearance
frequencies of links with high-frequent queries
and reserving the appearance frequencies for links
with low-frequent queries. Figure 1 shows the ef-
fectiveness of using subsampling. From this fig-
ure, we can understand that KGE models cannot
perform well without subsampling on commonly
used datasets such as FB15k-237 (Toutanova and

'See Appendix A for the details.
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Figure 2: Frequencies of entities and relations included
in each query that appeared only once in training data
of FB15k-237, WN18RR, and YAGO3-10?.

Chen, 2015), WN18RR (Dettmers et al., 2018),
and YAGO3-10 (Dettmers et al., 2018). Further-
more, the improved MRR on FB15k-237, which
has more sparse relations than the other datasets,
indicates that subsampling actually works on the
sparse dataset.

However, the current subsampling approaches
in KGE (Sun et al., 2019; Kamigaito and Hayashi,
2022a) only consider the frequencies of queries.
Thus, these approaches potentially underestimate
the appearance probabilities of infrequent queries
when the frequencies of their entities or relations
are high. Figure 2 shows the frequencies of entities
and relations included in each query that appeared
only once in training data. From the statistics, we
can find that the current count-based subsampling
(CBS) does not effectively use frequencies of en-
tities and relations in infrequent queries, although
these have sufficient frequencies.

To deal with this problem, we propose Model-
based Subsampling (MBS) that can handle such
infrequent queries by estimating their appearance
probabilities through predictions from KGE mod-
els in subsampling. Since the observed frequency

"Due to the space limitation, it is difficult to plot all the
values in this graph. Thus, we filter the entities and relations
for every certain amount after they are sorted by frequency
in descending order. The filtering amounts for FB15k-237,
WNI18RR, and YAGO3-10 are 2,000, 1,778, and 4,444, re-
spectively. By this filtering, the number of plotted entities
and relations for FB15k-237, WN18RR, and YAGO3-10 are
reduced to 45, 44, and 45, respectively.

in training data does not restrict the estimated fre-
quencies of MBS different from CBS, we can ex-
pect the improvement of KGC performance using
MBS. In addition, we also propose Mixed Subsam-
pling (MIX), which uses the frequencies of both
CBS and MBS to boost their advantage by reducing
their disadvantages.

In our evaluation on FB15k-237, WNI18RR,
and YAGO3-10 datasets, we adopted our MBS
and MIX to the popularly used KGE models Ro-
tatE (Sun et al., 2019), TransE (Bordes et al., 2013),
HAKE (Zhang et al., 2019), ComplEx (Trouillon
et al., 2016), and DistMult (Yang et al., 2015). The
evaluation results showed that MBS and MIX im-
proved MRR, H@1, H@3, and H@10 from Count-
based Subsampling (CBS) in each setting>.

2 Subsampling in KGE

2.1 Problem Definitions and Notations

We denote a link of a KG in the triplet format
(h,r,t). h is the head entity, ¢ is the tail en-
tity, and r is the relation of the head and tail en-
tity. In a classic KG completion task, we input
the query (h,r,7) or (7,r,t), and output the pre-
dicted head or tail entity corresponding to 7 as
the answer. More formally, let us denote the in-
put query as x and its answer as y, hereafter. A
score function sy(z,y) predicts py(y|z), a proba-
bility for a given query x linked to an answer y
based on a model 6. In general, we train 6 by
predicting pg(y|x) on | D| number of links, where
D = {(xl,yl), ST (1’|D‘,y|D‘)} is a set of ob-
servables that follow pg(z, y).

2.2 Negative Sampling in KGE

Since calculating all possible y for given x is com-
putationally inefficient, NS loss is commonly used
for training KGE models. The NS loss in KGE,
lige(0) is represented as follows:

Ekge(e)
- _ |1D| Z [log(a(SQ(l’, y)+7))
(z,y)€D
+ 1 Z log(o(—sg(z,yi) — ’Y))]v (D

14
Yi~pn (Yi|z)

where o is a sigmoid function, p, (y;|x) is a noise
distribution describing negative samples, v is a

30ur code is available on https://github.com/
xincanfeng/ms_kge.
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Table 1: Currently proposed count-based subsampling
methods in KGE and their corresponding terms on A s
and B_ps.

number of negative samples per positive sample
(z,y), v is a margin term to adjust the value range
of the score function. p,,(y;|x) has a role of adjust-
ing the frequency of y; (Kamigaito and Hayashi,
2021).

2.3 Negative Sampling with Subsampling

Subsampling (Mikolov et al., 2013) is a method
to reduce the bias of training data by discounting
high-frequent instances. Kamigaito and Hayashi
(2022a) show a general formulation to cover cur-
rently proposed subsampling approaches in the NS
loss for KGE by altering two terms A and B.ps.
In that form, the NS loss in KGE with subsampling,
Leps(0) is represented as follows:

Ecbs(e)
S |;)| > [Ad,s log(o(se(z,y) + 7))
(z,y)€ED

1 1%
+ ; Z Bcbs IOg(O'(—Sg(iL‘, yZ) - 7)) )
Yir~pn (yi|z)

2

where A, adjusts the frequency of a true link
(z,y), and By, adjusts the query x to adjust the
frequency of a false link (z, y;).

Table 1 lists the currently proposed subsampling
approaches which are the original subsampling
for word2vec (Mikolov et al., 2013) in KGE of
Sun et al. (2019) (Base), frequency-based subsam-
pling of Kamigaito and Hayashi (2022a) (Freq),
and unique-based subsampling of Kamigaito and
Hayashi (2022a) (Uniq) (Kamigaito and Hayashi,
2022b). Here, # denotes frequency, #(x, y) repre-
sents the frequency of (z,y).

Since frequency for each link (z,y) is at most
one in KG, the previous approaches use the follow-

ing back-off approximation (Katz, 1987):

F#(hi,ri)+ #(rj,tr)
2 )

#(z,y) = 3)
where (z,y) corresponds to the link (h4,7j, %),
and (h;,r;) and (7;,t;) are the queries. Due to
their heavily relying on counted frequency infor-
mation of queries, we call the above conventional
subsampling method Count-based Subsamping
(CBS), hereafter.

3 Proposed Methods

As shown in Equation (3), CBS approximates the
frequency of a link #(z,y) by combining the
counted frequencies of entity-relation pairs. Thus,
CBS cannot estimate #(x,y) well when at least
one pair’s frequency is low in the approximation.
This kind of situation is caused by the sparse-
ness problem in the KG datasets. To deal with
this sparseness problem, we propose Model-based
Subsampling method (MBS) and Mixed Subsam-
pling method (MIX) as described in the following
subsections.

3.1 Model-based Subsampling (MBS)

To avoid the problem caused by low-frequent entity-
relation pairs, our MBS uses the estimated prob-
abilities from a trained model #’ to calculate fre-
quencies for each triplet and query. By using ¢’,
the NS loss in KGE with MBS is represented as
follows:

gmbs (07 9/)
1
Y

o2 [ A (6 Jog (o (5, ) + 7))

v

1
+ = 3 B0 loglo(=so(a, 1) )],
Yirepn (yilz)

“)

Here, corresponding to each method in Table 4,
Apmps(0') and Bi,ps(6') are further represented as
follows:

( (2, Y) s | P

— (Base)

Z(w’,y’)ED #(‘T” y/)mbs

(5 Y) s | D

Ambs 0') = e —a (Freq)

’ ( ) E(x/,y/)ED #(x/7y/)mbs

—a'|p
# L |/_ - (Uniq)
L Zx;anGD i mbs

)
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where « is a temperature term to adjust the distri-
bution on A,;5(6') and B,,ps(0'). The frequen-
cies #(x,y)mps and #x s, estimated by using
scoreg (x,y) are calculated as follows:

#(xay)mbs = \D|p9/($,y), (N

#J;mbs = ‘D| ZyieD Do’ (:Ua yl)a (8)
escoreel(x,y)

po(z,y) = ©)

VAYAN
Z(rﬁy’)eD escoreg (a'y')

Hereafter, we refer to a model pre-trained for MBS
as a sub-model. Different from the counted frequen-
cies in Eq. (3), scoreg (z,y) in Eq. (9) estimates
them by sub-model inference regardless of their
actual frequencies. Hence, we can expect MBS
to deal with the sparseness problem in CBS. How-
ever, the ability of MBS depends on the sub-model,
and we investigated the performance through our
evaluations (§4).

3.2 Mixed Subsampling (MIX)

As discussed in language modeling context (Neu-
big and Dyer, 2016), count-based and model-based
frequencies have different strengths and weak-
nesses. To boost the advantages of CBS and MBS
by mitigating their disadvantages, MIX uses a mix-
ture of the distribution as follows:

|: mw log( (S@(ﬂ?,y)+7))
eD

miaz(050)
1
= |7 Z

+ - Z Bmzx log ( 39(907%‘) - 7))]7
ywpn(yz\w)
(10)

where A, (6) is a mixture of A in Eq. (2) and
Apps(0) in Eq. (4), and Byy,;,.(0') is also a mixture
of Beps in Eq. (2) and By,p5(0') Eq. (4) as follows:

Amzx(‘gl) - )\Ambs(e/) + (1 - )‘)Acbs
Biniz(0") = ABps(0") + (1 — X) Beps

an
12)

Dataset #Train #Valid  #Test Ent Rel
FB15K-237 272,115 17,535 20,466 14,541 237
WNISRR 86,835 3,034 3,134 40,943 11
YAGO3-10 1,079,040 5,000 5,000 123,188 37

Table 2: Datasets statistics. #: Split in terms of number
of triples; Ent: Entities; Rel: Relations; Exa: Examples.

where A is a hyper-parameter to adjust the ratio of
MBS and CBS. Note that MIX can be interpreted
as a kind of multi-task learning®.

4 Evaluation and Analysis

4.1 Settings

Datasets We used the three commonly used
datasets, FB15k-237, WN18RR, and YAGO3-10,
for the evaluation. Table 2 shows the statistics for
each dataset. Unlike FB15k-237 and WN18RR,
the dataset of YAGO3-10 only includes entities
that have at least 10 relations and alleviates the
sparseness problem of KGs. Thus, we can inves-
tigate the effectiveness of MBS and MIX in the
sparseness problem by comparing performances on
these datasets.

Methods We compared five popular KGE mod-
els RotatE, TransE, HAKE, ComplEx, and Dist-
Mult with utilizing subsampling methods Base,
Freq, and Uniq based on the loss of CBS (§2.3)
and our MBS (§3.1) and MIX (§3.2). Additionally,
we conducted experiments with no subsampling
(None) to investigate the efficacy of the subsam-
pling method. In YAGO3-10, due to our limited
computational resources and the existence of tuned
hyper-parameters by Sun et al. (2019); Zhang et al.
(2019), we only used RotatE and HAKE for evalu-
ation.

Metrics We evaluated these methods using the
most conventional metrics in KGC, i.e., Mean Re-
ciprocal Rank (MRR), Hits@1 (H@1), Hits@3
(H@3), and Hits@10 (H@10). We reported the
average scores in three different runs by changing
their seeds> for each metric. We also reported the
standard deviations of the scores by the three runs.

Implementations and Hyper-parameters For
RotatE, TransE, ComplEx, and DistMult, we fol-
lowed the implementations and hyper-parameters

*See Appendix B for the details.

SWe fixed seed numbers for the three trials in the training
model and sub-model correspondingly. Note that the appear-
ance probabilities drawn in Figure 3 all use the same seed.
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FB15k-237

. MRR H@1 H@3 H@10 Submodeling
Model Subsampling
Mean SD Mean SD Mean SD Mean SD Sub-model «@ A
None 329 01 229 0.1 370 0.1 53.1 0.1

CBS 336 01 239 01 374 01 531 0.1

Base MBS 339 00 242 01 377 01 535 0.1 -
MIX 339 00 242 00 377 01 535 0.1 ComplEx None 05 g9

CBS 341 00 246 01 377 00 531 00

RotatE F
e MBS 343 00 248 0.1 380 01 536 0.1 ComplEx N ol
MIX 7345 00 249 01 7381 0.1 537 o1 ©“ompiEx RNome UL g7
CBS 339 00 244 01 376 01 530 02
Uniq  \igs 343 00 247 01 380 02 1537 0.1 ComplEx N ol
MIX 7345 01 1250 01 380 01 536 01 ~ompiEx XNone Ul 45
None 330 01 229 01 372 01 530 02
CBS 330 01 231 01 368 01 527 0.1
Base MBS 333 01 234 01 373 00 531 0.1 7
MIX 334 01 234 01 373 00 532 01 ComplEx None 05 g9
CBS 335 01 239 02 373 01 528 0.1
TransE E
¢ MBS 339 00 241 01 377 01 532 00 oo o ol -
MIX 341 01 f243 01 379 01 f534 00 otat ase Ol g7
CBS 336 0.1 240 01 373 01 527 0.1
Uniq MBS 338 01 239 01 377 01 532 0.1 RowE B ol
MIX 340 01 243 01 7379 01 1534 0.1 otat ase 0L g7
None 324 00 220 00 369 01 531 0.1
CBS 345 0.1 249 01 383 01 541 00
Base MBS 344 01 245 01 382 0.1 541 02 -
MIX 346 01 248 01 383 01 542 01 ComplEx None 10 g5
CBS 351 0.1 255 0.1 388 01 543 0.0
HAKE [
e MBS 352 0.1 257 01 390 0.1 544 0. ComblEx B 05
MIX 1354 00 1258 01 7392 01 545 01 COmMPEEX Base  Uo g5
CBS 352 0.1 256 02 389 01 545 0.1
Uniq MBS 353 01 256 00 389 01 545 0.1 RowE  Base 05
MIX 353 00 1258 01 389 0.1 T546 0.1 otat ase 05 g3
None 223 01 139 01 241 02 395 0.1
CBS 323 01 230 02 355 01 513 0.1
Base MBS 312 01 217 01 344 02 506 0.1 ComolEx N 0 -
MIX 324 01 228 01 358 01 Tfs21 o2 ©“ompiex RNome LU 45
CBS 327 01 236 01 360 01 512 0.1
ComplEx
Freq MBS 320 00 230 00 351 0.1 501 0.1 DMt B 05 -
MIX 1329 01 1237 01 f362 01 513 o2 DistMult Base U544
CBS 326 0.1 234 02 359 01 511 0.1
Uniq MBS 318 01 226 02 349 01 505 02 -
MIX 327 01 234 01 360 0.1 512 02 ComplEx Base 05 g
None 223 01 141 01 242 01 393 0.1
CBS 308 0.1 220 01 337 01 484 0.
Base MBS 311 02 218 01 341 02 496 02 ComblEx N o
MIX 1313 01 1223 01 343 01 f497 o1 SompiEx tone LU g7
DistMult CBS 299 0.1 212 01 328 01 475 00

Freq MBS 279 01 196 02 304 02 444 0.1 ) -
MIX 297 01 209 01 326 01 475 0.1 DistMult Base 05 g

CBS 292 00 204 01 319 00 467 0.1
Uniq MBS 279 01 193 00 303 01 452 0.1 -
MIX 291 00 203 0.1 318 0.1 466 0.1 ComplEx Base 05 g

Table 3: Results on FB15k-237. The bold scores are the best results for each subsampling type (e.g. Base, Freg, and
Unig.). 1 indicates the best scores for each model. SD denotes the standard deviation of the three trial. Sub-model,
«, and A denote the sub-model, temperature, and mixing ratio chosen by development data.
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WNI18RR

. MRR H@1 H@3 H@10 Submodeling
Model Subsampling
Mean SD Mean SD Mean SD Mean SD Sub-model « A
None 473 0.1 429 04 488 03 557 0.7
CBS 476 0.1 1433 02 493 03 561 05
Base  \igs 480 00 1433 02 496 02 1575 04 -
MIX 478 01 432 02 495 02 572 03 ComplEx None 10 g5
RotatE CBS 477 0.1 432 03 495 03 569 09
Freq MBS 479 01 432 02 496 02 574 04 ComplEx N 05
MIX 479 01 429 01 498 0.1 T's7.5 02 ©“Oomplx Nome Uo 43
CBS 477 01 431 01 496 02 569 04
Uniq  \ips 1480 01 432 02 1499 02 1575 02 -
MIX 478 01 430 0.1 497 03 572 05 ComplEx None 05 g5
None 25 00 17 00 401 01 525 02
CBS 223 01 13 01 401 02 530 00
Base MBS 237 01 25 01 412 02 531 0.1 -
MIX 236 01 24 01 414 01 532 02 ComplEx Base 20 g9
CBS 230 00 19 01 409 01 537 00
TransE Fre
4 MBS 250 01 42 01 424 02 541 00 ComolEx B o
MIX 1250 01 40 02 T426 01 Tf543 o1 COMPIEX Base 2D g9
CBS 232 01 22 01 409 02 536 02
Uniq MBS 239 01 33 01 408 0.1 542 0.1 -
MIX 239 01 33 00 411 02 542 02 ComplEx Base 10 g9
None 490 0.1 446 02 507 0.1 575 02
CBS 496 00 451 02 515 02 582 0.1
Base MBS 492 01 447 01 510 03 580 0.1 -
MIX 495 01 450 02 514 02 582 0.1 ComplEx None 05 g3
CBS 497 00 451 0.1 515 02 584 02
HAKE
49 MBS 1499 0.1 454 01 517 02 585 0.1 ComlEx N 05
MIX 7499 0.1 '454 01 517 02 584 03 COompiEX Nome Uo g9
CBS 497 0.1 452 02 516 02 1585 03
Unid  nvps 1499 00 454 01 's18 02 1585 0.1 DistMult | N 0s
MIX 499 01 1454 02 fs51.8 02 Tfs85 o DistMult None 054
None 450 0.1 409 0.1 466 02 535 02
CBS 469 0.1 426 0.1 487 02 553 02
Base MBS 473 02 434 01 491 0.1 555 04 -
MIX 473 02 434 01 491 0.1 555 04 ComplEx None 20 (7
CBS 473 02 430 02 492 02 561 02
ComplEx Fre
49 MBS 1485 0.1 t446 01 499 03 565 02 ComplEx N 05
MIX 484 02 444 0.1 7501 0.1 T'567 04 COmPEX Nome USgg9
CBS 475 02 431 02 494 0.1 561 02
Uniq MBS 484 0.1 443 01 500 02 565 0.1 -
MIX 484 0.1 442 02 500 02 566 02 ComplEx None 05 g9
None 425 01 383 01 436 00 512 0.1
CBS 439 0.1 393 01 454 0.1 533 02
Base MBS 440 0.1 400 0.1 449 02 524 04 -
MIX 446 01 405 01 457 03 537 02 ComplEx None 20 g7
] CBS 445 0.1 399 02 460 02 543 02
DistMult Fre
49 MBS 455 0.1 T41.2 02 466 02 546 0.1 ComolEx N 05
MIX 1455 01 T41.2 01 T467 03 fs47 o1 SOMPIEX Wone Uo g9
CBS 448 0.1 401 02 463 03 545 02
Uniq MBS 453 0.1 411 02 464 01 543 0.1 -
MIX 453 01 410 02 464 0.1 544 02 ComplEx None 05 g9

Table 4: Results on WN18RR. The notations are the same as the ones in Table 3.
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YAGO3-10

. MRR H@1 H@3 H@10 Submodeling
Model Subsampling
Mean SD Mean SD Mean SD Mean SD Sub-model o A
None 492 02 396 02 550 02 672 03
CBS 493 01 399 01 549 03 671 02
Base MBS 495 02 400 03 554 00 668 02 _
MIX 498 01 404 02 556 02 672 03 RotatE None 05 g7
CBS 496 0.1 402 0.1 552 01 673 0.1
RotatE Fre
9 MBS 501 02 T41.0 02 556 02 671 0.1 HAKE B 05
MIX 1502 02 1410 04 1558 0.1 675 02 ase U2 o5
CBS 498 02 403 02 554 0.1 '67.6 0.1
Uniq MBS 495 02 399 02 552 03 674 02 _
MIX 497 02 403 02 554 02 675 02 RotatE Base 05 g5
None 536 0.1 450 03 589 03 690 0.0
CBS 543 01 459 02 596 02 693 0.1
Base MBS 536 03 449 04 589 02 688 0.1 -
MIX 540 01 454 01 593 03 692 01 HAKE None 0.1 g5
CBS 545 03 461 03 598 05 694 03
HAKE [
¢ MBS 548 0.1 465 02 600 03 697 0.1 -
MIX 548 0.1 467 01 597 02 695 0.1 RotatE None 05 g
CBs fs51 01 f468 02 f60.1 03 700 02
Uniq MBS 548 01 465 02 600 03 697 0.1 -
MIX 549 0.1 466 01 600 02 699 02 RotatE None 05 g3

Table 5: Results on YAGO3-10. The notations are the same as the ones in Table 3.

reported by Sun et al. (2019). For HAKE, we in-
herited the setting of Zhang et al. (2019).

In our experiments, the performance of sub-
sampling is influenced by the selection of the
following hyper-parameters: (1) temperature «;
(2) A, the ratio of MBS against CBS. For our
proposed MBS subsampling, we chose « from
{2.0,1.0,0.5,0.1,0.05,0.01} based on validation
MRR. For our proposed MIX subsampling, we in-
herited the best o in MBS. Then, we chose the
mix ratio A from {0.1,0.3,0.5,0.7,0.9} based on
validation MRR.

In FB15k-237 and WN18RR, we chose the sub-
model from RotatE, TransE, HAKE, ComplEx, and
DistMult with the setting of Base and None based
on the validation MRR. In YAGO3-10, we also
chose the sub-model from RotatE and HAKE, sim-
ilar to FB15k-237 and WN18RR.

4.2 Results

Results Table 3, 4, and 5 show the KGC perfor-
mances on FB15k-237, WN18RR and YAGO3-10,
respectively. Note that the results of Wilcoxon
signed-rank test for performance differences be-
tween MBS/MIX and CBS show statistical signifi-
cance with p-values less than 0.01 in all cases when
MBS/MIX outperforms CBS.

As we can see, the models trained with MIX

or MBS achieved the best results in all models on
FB15k-237 and WN18RR. However, in YAGO3-
10, HAKE with Freq in CBS outperformed the
results of MBS and MIX. Considering that the pre-
process of YAGO3-10 filtered out entities with less
than 10 relations in the dataset, we can conclude
that MBS and MIX are effective on the sparse KGs
like that of FB15k-237 and WN18RR. These re-
sults are along with our expectation that MBS and
MIX can improve the completion performances in
sparse KGs as introduced in §1.

In individual comparison for each metric, CBS
sometimes outperformed MIX or MBS. This is be-
cause the estimated frequencies in MIX and MBS
rely on selected sub-models. From these results,
we can understand that MIX and MBS have the po-
tential to improve the KG completion performances
by carefully choosing their sub-model.

Analysis We analyze the remaining question, i.e.,
which sub-model to choose for MBS. Table 3, 4,
and 5 show the selected sub-models for each MBS
(See §4.1 in details), where ComplEx dominates
over other models in FB15k-237 and WN18RR.
To know the reason, we depict MBS frequencies
of queries that have the bottom 100 CBS frequen-
cies in Figure 3. In FB15k-237, we can see sev-
eral spikes of frequencies in TransE, RotatE, and
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Figure 3: Appearance probabilities (%) of queries in CBS and MBS that have the lowest 100 CBS frequencies for
each setting, sorted left to right in descending order by their CBS frequencies.

HAKE that do not exist in ComplEx. In WN18RR,
the peak frequencies of ComplEx with None are
larger and broader than that of other sub-models.
These results indicate that models in FB15k-237
and WN18RR, respectively, encountered problems
of an over and lack of smoothing, and MBS dealt
with this problem. Because sparseness is a prob-
lem when data is small, these are along with the
fact that FB15k-237 has larger training data than
WNI18RR. Thus, choosing a suitable sub-model for
a target dataset is important in MBS.

Discussion We discuss how sub-model and
hyper-parameter choices contribute to the improve-
ment of KGE performance apart from our method.
The choice of the sub-model and the « played sig-
nificant roles in the observed improvements be-

cause distributions from sub-model prediction de-
pend on each sub-model and each dataset. Since
we adopted the value of o used in the past state-
of-the-art method of Sun et al. (2019) and Zhang
et al. (2019), we believe that the performance gains
of MBS are not only caused by the values of «.
Similarly, keeping A constant in the MIX strategy
may lead to certain improvements depending on
used sub-models and datasets. However, as shown
in Appendix B, X has the role of adjusting the loss
of multi-task learning, and thus, it may be more
sensitive compared with a.

5 Related Work

Mikolov et al. (2013) originally propose the
NS loss to train their word embedding model,
word2vec. Trouillon et al. (2016) introduce the
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NS loss to KGE to reduce training time. Sun et al.
(2019) extend the NS loss for KGE by introduc-
ing a margin term, normalization of negative sam-
ples, and newly proposed their noise distribution.
Kamigaito and Hayashi (2021) claim the impor-
tance of dealing with the sparseness problem of
KGs through their theoretical analysis of the NS
loss in KGE. Furthermore, Kamigaito and Hayashi
(2022a) reveal that subsampling (Mikolov et al.,
2013) can alleviate the sparseness problem in the
NS for KGE.

Similar to these works, our work aims to inves-
tigate and extend the NS loss used in KGE to im-
prove KG performance.

6 Conclusion

In this paper, we propose new subsampling ap-
proaches, MBS and MIX, that can deal with the
problem of low-frequent entity-relation pairs in
CBS by estimating their frequencies using the sub-
model prediction. Evaluation results on FB15k-237
and WN18RR showed the improvement of KGC
performances by MBS and MIX. Furthermore, our
analysis also revealed that selecting an appropriate
sub-model for the target dataset is important for
improving KGC performances.

Limitations

Utilizing our model-based subsampling requires
pre-training for choosing a suitable sub-model, and
thus may require more than twice the computa-
tional budget. However, since we can use a small
model as a sub-model, like the use of ComplEx as
a sub-model for HAKE, there is a possibility that
the actual computational cost becomes less than
the doubled one.

For calculating CBS frequencies, we only use
the one with the arithmetic mean since we inher-
ited the conventional subsampling methods as our
baseline. Thus, we can consider various replace-
ments not covered by this paper for the operation.
However, even if we carefully choose the opera-
tion, CBS is essentially difficult to induce the ap-
propriate appearance probabilities of low-frequent
queries compared with our MBS, which can use
vector-space embedding.

Our experiments are carried out only on FB15k-
237, WN18RR, and YAGO3-10 datasets. Thus,
whether our method works for larger and noisier
data is to be verified.

Furthermore, although our method is generaliz-
able to deep learning models, our current work is
conducted purely on KGE models, and whether it
works for general deep learning models as well is
to be verified.
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A Note on Figure 1

To illustrate the results on FB15k-237 and WNI18RR datasets, we used TransE, RotatE, ComplEx,
DistMult, and HAKE as the KGE models. To plot that on the YAGO3-10 dataset, we used RotatE and
HAKE as the KGE models following the setting in §4.1. Regarding the use of subsampling, the MRR
scores of using subsampling refer to the result of Base subsampling in Table 1 with CBS frequencies,
whereas that without subsampling corresponds to the setting "None" §4.1.

B Interpretation of MIX Subsampling as Multi-task Learning

We can reformulate Eq. (10) as follows:

Emim(Q' ) (13)
Z [Amm log( (39($ y +7 Z Bmzz log ( 39(%%) _7>)]7 (14)
(:r,y)ED yz"‘l’n(?h‘x)
1 /
=15 2 [OAnas(8) + (1= X Aa) log(o (so ) + )
(:Jc,y)ED
+ - Z Ames (1 - )‘)Bcbs) log(a(—se(m, yz) - ’7)):| ) (15)

yszn(yz|$)

5 [ A (8 050 (50 (.9) + 7)) LS B0 log(o(~ so(, i) = 7).

(l’,y ED yszn(y2|l')
Z |:Acbs log 89 (1‘ y =+ 7 Z Bcbs log —Sp (.1‘, yZ) - ’7)):| ) (16)
,y ED yz"‘pn(yzkc)
Ao (6; 9 ) 4 (1 — A)lups(6) (17)

From Eq. (17), since £,,,.(0;6") is the mixed loss of the two loss functions £,,,;5(6; 0") and £.5(0), we
can understand that using MIX is multi-task learning of using both CBS and MBS.
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