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Abstract

Subsampling is effective in Knowledge Graph
Embedding (KGE) for reducing overfitting
caused by the sparsity in Knowledge Graph
(KG) datasets. However, current subsam-
pling approaches consider only frequencies of
queries that consist of entities and their re-
lations. Thus, the existing subsampling po-
tentially underestimates the appearance prob-
abilities of infrequent queries even if the fre-
quencies of their entities or relations are high.
To address this problem, we propose Model-
based Subsampling (MBS) and Mixed Sub-
sampling (MIX) to estimate their appearance
probabilities through predictions of KGE mod-
els. Evaluation results on datasets FB15k-237,
WN18RR, and YAGO3-10 showed that our pro-
posed subsampling methods actually improved
the KG completion performances for popular
KGE models, RotatE, TransE, HAKE, Com-
plEx, and DistMult.

1 Introduction

A Knowledge Graph (KG) is a graph that contains
entities and their relations as links. KGs are im-
portant resources for various NLP tasks, such as
dialogue (Moon et al., 2019), question-answering
(Lukovnikov et al., 2017), and natural language
generation (Guan et al., 2019), etc. However, cov-
ering all relations of entities in a KG by humans
takes a lot of costs. Knowledge Graph Completion
(KGC) tries to solve this problem by automatically
completing lacking relations based on the observed
ones. Letting ei and ek be entities, and rj be their
relation, KGC models predict the existence of a
link (ei, rj , ek) by filling the ? in the possible links
(ei, rj , ?) and (?, rj , ek), where (ei, rj) and (rj , ek)
are called queries, and the ? are the corresponding
answers.

Currently, Knowledge Graph Embedding (KGE)
is a dominant approach for KGC. KGE models
represent entities and their relations as continuous
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Figure 1: The averaged KGC performance (MRR) of
KGE models1with and without subsampling on FB15k-
237, WN18RR, and YAGO3-10.

vectors. Since the number of these vectors pro-
portionally increases to the number of links in a
KG, KGE commonly relies on Negative Sampling
(NS) to reduce the computational cost in training.
In NS, a KGE model learns a KG by discriminat-
ing between true links and false links created by
sampling links in the KG. While NS can reduce
the computational cost, it has the problem that the
sampled links also reflect the bias of the original
KG.

As a solution, Sun et al. (2019) introduce sub-
sampling (Mikolov et al., 2013) into NS for KGE.
In this usage, subsampling is a method of mitigat-
ing bias in a KG by discounting the appearance
frequencies of links with high-frequent queries
and reserving the appearance frequencies for links
with low-frequent queries. Figure 1 shows the ef-
fectiveness of using subsampling. From this fig-
ure, we can understand that KGE models cannot
perform well without subsampling on commonly
used datasets such as FB15k-237 (Toutanova and

1See Appendix A for the details.
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Figure 2: Frequencies of entities and relations included
in each query that appeared only once in training data
of FB15k-237, WN18RR, and YAGO3-102.

Chen, 2015), WN18RR (Dettmers et al., 2018),
and YAGO3-10 (Dettmers et al., 2018). Further-
more, the improved MRR on FB15k-237, which
has more sparse relations than the other datasets,
indicates that subsampling actually works on the
sparse dataset.

However, the current subsampling approaches
in KGE (Sun et al., 2019; Kamigaito and Hayashi,
2022a) only consider the frequencies of queries.
Thus, these approaches potentially underestimate
the appearance probabilities of infrequent queries
when the frequencies of their entities or relations
are high. Figure 2 shows the frequencies of entities
and relations included in each query that appeared
only once in training data. From the statistics, we
can find that the current count-based subsampling
(CBS) does not effectively use frequencies of en-
tities and relations in infrequent queries, although
these have sufficient frequencies.

To deal with this problem, we propose Model-
based Subsampling (MBS) that can handle such
infrequent queries by estimating their appearance
probabilities through predictions from KGE mod-
els in subsampling. Since the observed frequency

2Due to the space limitation, it is difficult to plot all the
values in this graph. Thus, we filter the entities and relations
for every certain amount after they are sorted by frequency
in descending order. The filtering amounts for FB15k-237,
WN18RR, and YAGO3-10 are 2,000, 1,778, and 4,444, re-
spectively. By this filtering, the number of plotted entities
and relations for FB15k-237, WN18RR, and YAGO3-10 are
reduced to 45, 44, and 45, respectively.

in training data does not restrict the estimated fre-
quencies of MBS different from CBS, we can ex-
pect the improvement of KGC performance using
MBS. In addition, we also propose Mixed Subsam-
pling (MIX), which uses the frequencies of both
CBS and MBS to boost their advantage by reducing
their disadvantages.

In our evaluation on FB15k-237, WN18RR,
and YAGO3-10 datasets, we adopted our MBS
and MIX to the popularly used KGE models Ro-
tatE (Sun et al., 2019), TransE (Bordes et al., 2013),
HAKE (Zhang et al., 2019), ComplEx (Trouillon
et al., 2016), and DistMult (Yang et al., 2015). The
evaluation results showed that MBS and MIX im-
proved MRR, H@1, H@3, and H@10 from Count-
based Subsampling (CBS) in each setting3.

2 Subsampling in KGE

2.1 Problem Definitions and Notations
We denote a link of a KG in the triplet format
(h, r, t). h is the head entity, t is the tail en-
tity, and r is the relation of the head and tail en-
tity. In a classic KG completion task, we input
the query (h, r, ?) or (?, r, t), and output the pre-
dicted head or tail entity corresponding to ? as
the answer. More formally, let us denote the in-
put query as x and its answer as y, hereafter. A
score function sθ(x, y) predicts pθ(y|x), a proba-
bility for a given query x linked to an answer y
based on a model θ. In general, we train θ by
predicting pθ(y|x) on |D| number of links, where
D = {(x1, y1), · · · , (x|D|, y|D|)} is a set of ob-
servables that follow pd(x, y).

2.2 Negative Sampling in KGE
Since calculating all possible y for given x is com-
putationally inefficient, NS loss is commonly used
for training KGE models. The NS loss in KGE,
ℓkge(θ) is represented as follows:

ℓkge(θ)

=− 1

|D|
∑

(x,y)∈D

[
log(σ(sθ(x, y) + γ))

+
1

ν

ν∑
yi∼pn(yi|x)

log(σ(−sθ(x, yi)− γ))
]
, (1)

where σ is a sigmoid function, pn(yi|x) is a noise
distribution describing negative samples, ν is a

3Our code is available on https://github.com/
xincanfeng/ms_kge.

https://github.com/xincanfeng/ms_kge
https://github.com/xincanfeng/ms_kge
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Method Acbs Bcbs

Base
1√

#(x,y)
|D|∑

(x′,y′)∈D
1√

#(x′,y′)

1√
#(x,y)

|D|∑
(x′,y′)∈D

1√
#(x′,y′)

Freq
1√

#(x,y)
|D|∑

(x′,y′)∈D
1√

#(x′,y′)

1√
#x

|D|∑
x′∈D

1√
#x′

Uniq
1√
#x

|D|∑
x′∈D

1√
#x′

1√
#x

|D|∑
x′∈D

1√
#x′

Table 1: Currently proposed count-based subsampling
methods in KGE and their corresponding terms on Acbs

and Bcbs.

number of negative samples per positive sample
(x, y), γ is a margin term to adjust the value range
of the score function. pn(yi|x) has a role of adjust-
ing the frequency of yi (Kamigaito and Hayashi,
2021).

2.3 Negative Sampling with Subsampling
Subsampling (Mikolov et al., 2013) is a method
to reduce the bias of training data by discounting
high-frequent instances. Kamigaito and Hayashi
(2022a) show a general formulation to cover cur-
rently proposed subsampling approaches in the NS
loss for KGE by altering two terms Acbs and Bcbs.
In that form, the NS loss in KGE with subsampling,
ℓcbs(θ) is represented as follows:

ℓcbs(θ)

=− 1

|D|
∑

(x,y)∈D

[
Acbs log(σ(sθ(x, y) + γ))

+
1

ν

ν∑
yi∼pn(yi|x)

Bcbs log(σ(−sθ(x, yi)− γ))
]
,

(2)

where Acbs adjusts the frequency of a true link
(x, y), and Bcbs adjusts the query x to adjust the
frequency of a false link (x, yi).

Table 1 lists the currently proposed subsampling
approaches which are the original subsampling
for word2vec (Mikolov et al., 2013) in KGE of
Sun et al. (2019) (Base), frequency-based subsam-
pling of Kamigaito and Hayashi (2022a) (Freq),
and unique-based subsampling of Kamigaito and
Hayashi (2022a) (Uniq) (Kamigaito and Hayashi,
2022b). Here, # denotes frequency, #(x, y) repre-
sents the frequency of (x, y).

Since frequency for each link (x, y) is at most
one in KG, the previous approaches use the follow-

ing back-off approximation (Katz, 1987):

#(x, y) ≈ #(hi, rj)+ #(rj , tk)

2
, (3)

where (x, y) corresponds to the link (hi, rj , tk),
and (hi, rj) and (rj , tk) are the queries. Due to
their heavily relying on counted frequency infor-
mation of queries, we call the above conventional
subsampling method Count-based Subsamping
(CBS), hereafter.

3 Proposed Methods

As shown in Equation (3), CBS approximates the
frequency of a link #(x, y) by combining the
counted frequencies of entity-relation pairs. Thus,
CBS cannot estimate #(x, y) well when at least
one pair’s frequency is low in the approximation.
This kind of situation is caused by the sparse-
ness problem in the KG datasets. To deal with
this sparseness problem, we propose Model-based
Subsampling method (MBS) and Mixed Subsam-
pling method (MIX) as described in the following
subsections.

3.1 Model-based Subsampling (MBS)
To avoid the problem caused by low-frequent entity-
relation pairs, our MBS uses the estimated prob-
abilities from a trained model θ′ to calculate fre-
quencies for each triplet and query. By using θ′,
the NS loss in KGE with MBS is represented as
follows:

ℓmbs(θ; θ
′)

=− 1

|D|
∑

(x,y)∈D

[
Ambs(θ

′) log(σ(sθ(x, y) + γ))

+
1

ν

ν∑
yi∼pn(yi|x)

Bmbs(θ
′) log(σ(−sθ(x, yi)− γ))

]
,

(4)

Here, corresponding to each method in Table 4,
Ambs(θ

′) and Bmbs(θ
′) are further represented as

follows:

Ambs(θ
′) =



#(x, y)−α
mbs|D|∑

(x′,y′)∈D #(x′, y′)−α
mbs

(Base)

#(x, y)−α
mbs|D|∑

(x′,y′)∈D #(x′, y′)−α
mbs

(Freq)

#x−α
mbs|D|∑

x′
mbs∈D

#x′−α
mbs

(Uniq)

(5)
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Bmbs(θ
′) =



#(x, y)−α
mbs|D|∑

(x′,y′)∈D #(x′, y′)−α
mbs

(Base)

#x−α
mbs|D|∑

x′
mbs∈D

#x′−α
mbs

(Freq)

#x−α
mbs|D|∑

x′
mbs∈D

#x′−α
mbs

(Uniq)

(6)

where α is a temperature term to adjust the distri-
bution on Ambs(θ

′) and Bmbs(θ
′). The frequen-

cies #(x, y)mbs and #xmbs, estimated by using
scoreθ′(x, y) are calculated as follows:

#(x, y)mbs = |D|pθ′(x, y), (7)

#xmbs = |D|
∑

yi∈D pθ′(x, yi), (8)

pθ′(x, y) =
escoreθ′ (x,y)∑

(x′,y′)∈D escoreθ′ (x
′,y′)

. (9)

Hereafter, we refer to a model pre-trained for MBS
as a sub-model. Different from the counted frequen-
cies in Eq. (3), scoreθ′(x, y) in Eq. (9) estimates
them by sub-model inference regardless of their
actual frequencies. Hence, we can expect MBS
to deal with the sparseness problem in CBS. How-
ever, the ability of MBS depends on the sub-model,
and we investigated the performance through our
evaluations (§4).

3.2 Mixed Subsampling (MIX)

As discussed in language modeling context (Neu-
big and Dyer, 2016), count-based and model-based
frequencies have different strengths and weak-
nesses. To boost the advantages of CBS and MBS
by mitigating their disadvantages, MIX uses a mix-
ture of the distribution as follows:

ℓmix(θ; θ
′)

=− 1

|D|
∑

(x,y)∈D

[
Amix(θ

′) log(σ(sθ(x, y) + γ))

+
1

ν

ν∑
yi∼pn(yi|x)

Bmix(θ
′) log(σ(−sθ(x, yi)− γ))

]
,

(10)

where Amix(θ
′) is a mixture of Acbs in Eq. (2) and

Ambs(θ
′) in Eq. (4), and Bmix(θ

′) is also a mixture
of Bcbs in Eq. (2) and Bmbs(θ

′) Eq. (4) as follows:

Amix(θ
′) = λAmbs(θ

′) + (1− λ)Acbs (11)

Bmix(θ
′) = λBmbs(θ

′) + (1− λ)Bcbs (12)

Dataset #Train #Valid #Test Ent Rel

FB15K-237 272,115 17,535 20,466 14,541 237
WN18RR 86,835 3,034 3,134 40,943 11
YAGO3-10 1,079,040 5,000 5,000 123,188 37

Table 2: Datasets statistics. #: Split in terms of number
of triples; Ent: Entities; Rel: Relations; Exa: Examples.

where λ is a hyper-parameter to adjust the ratio of
MBS and CBS. Note that MIX can be interpreted
as a kind of multi-task learning4.

4 Evaluation and Analysis

4.1 Settings
Datasets We used the three commonly used
datasets, FB15k-237, WN18RR, and YAGO3-10,
for the evaluation. Table 2 shows the statistics for
each dataset. Unlike FB15k-237 and WN18RR,
the dataset of YAGO3-10 only includes entities
that have at least 10 relations and alleviates the
sparseness problem of KGs. Thus, we can inves-
tigate the effectiveness of MBS and MIX in the
sparseness problem by comparing performances on
these datasets.

Methods We compared five popular KGE mod-
els RotatE, TransE, HAKE, ComplEx, and Dist-
Mult with utilizing subsampling methods Base,
Freq, and Uniq based on the loss of CBS (§2.3)
and our MBS (§3.1) and MIX (§3.2). Additionally,
we conducted experiments with no subsampling
(None) to investigate the efficacy of the subsam-
pling method. In YAGO3-10, due to our limited
computational resources and the existence of tuned
hyper-parameters by Sun et al. (2019); Zhang et al.
(2019), we only used RotatE and HAKE for evalu-
ation.

Metrics We evaluated these methods using the
most conventional metrics in KGC, i.e., Mean Re-
ciprocal Rank (MRR), Hits@1 (H@1), Hits@3
(H@3), and Hits@10 (H@10). We reported the
average scores in three different runs by changing
their seeds5 for each metric. We also reported the
standard deviations of the scores by the three runs.

Implementations and Hyper-parameters For
RotatE, TransE, ComplEx, and DistMult, we fol-
lowed the implementations and hyper-parameters

4See Appendix B for the details.
5We fixed seed numbers for the three trials in the training

model and sub-model correspondingly. Note that the appear-
ance probabilities drawn in Figure 3 all use the same seed.
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FB15k-237

Model Subsampling
MRR H@1 H@3 H@10 Submodeling

Mean SD Mean SD Mean SD Mean SD Sub-model α λ

RotatE

None 32.9 0.1 22.9 0.1 37.0 0.1 53.1 0.1

Base
CBS 33.6 0.1 23.9 0.1 37.4 0.1 53.1 0.1

MBS 33.9 0.0 24.2 0.1 37.7 0.1 53.5 0.1
ComplEx None 0.5

–
MIX 33.9 0.0 24.2 0.0 37.7 0.1 53.5 0.1 0.9

Freq
CBS 34.1 0.0 24.6 0.1 37.7 0.0 53.1 0.0

MBS 34.3 0.0 24.8 0.1 38.0 0.1 53.6 0.1
ComplEx None 0.1

–
MIX †34.5 0.0 24.9 0.1 †38.1 0.1 †53.7 0.1 0.7

Uniq
CBS 33.9 0.0 24.4 0.1 37.6 0.1 53.0 0.2

MBS 34.3 0.0 24.7 0.1 38.0 0.2 †53.7 0.1
ComplEx None 0.1

–
MIX †34.5 0.1 †25.0 0.1 38.0 0.1 53.6 0.1 0.5

TransE

None 33.0 0.1 22.9 0.1 37.2 0.1 53.0 0.2

Base
CBS 33.0 0.1 23.1 0.1 36.8 0.1 52.7 0.1

MBS 33.3 0.1 23.4 0.1 37.3 0.0 53.1 0.1
ComplEx None 0.5

–
MIX 33.4 0.1 23.4 0.1 37.3 0.0 53.2 0.1 0.9

Freq
CBS 33.5 0.1 23.9 0.2 37.3 0.1 52.8 0.1

MBS 33.9 0.0 24.1 0.1 37.7 0.1 53.2 0.0
RotatE Base 0.1

–
MIX †34.1 0.1 †24.3 0.1 †37.9 0.1 †53.4 0.0 0.7

Uniq
CBS 33.6 0.1 24.0 0.1 37.3 0.1 52.7 0.1

MBS 33.8 0.1 23.9 0.1 37.7 0.1 53.2 0.1
RotatE Base 0.1

–
MIX 34.0 0.1 †24.3 0.1 †37.9 0.1 †53.4 0.1 0.7

HAKE

None 32.4 0.0 22.0 0.0 36.9 0.1 53.1 0.1

Base
CBS 34.5 0.1 24.9 0.1 38.3 0.1 54.1 0.0

MBS 34.4 0.1 24.5 0.1 38.2 0.1 54.1 0.2
ComplEx None 1.0

–
MIX 34.6 0.1 24.8 0.1 38.3 0.1 54.2 0.1 0.5

Freq
CBS 35.1 0.1 25.5 0.1 38.8 0.1 54.3 0.0

MBS 35.2 0.1 25.7 0.1 39.0 0.1 54.4 0.1
ComplEx Base 0.5

–
MIX †35.4 0.0 †25.8 0.1 †39.2 0.1 54.5 0.1 0.5

Uniq
CBS 35.2 0.1 25.6 0.2 38.9 0.1 54.5 0.1

MBS 35.3 0.1 25.6 0.0 38.9 0.1 54.5 0.1
RotatE Base 0.5

–
MIX 35.3 0.0 †25.8 0.1 38.9 0.1 †54.6 0.1 0.3

ComplEx

None 22.3 0.1 13.9 0.1 24.1 0.2 39.5 0.1

Base
CBS 32.3 0.1 23.0 0.2 35.5 0.1 51.3 0.1

MBS 31.2 0.1 21.7 0.1 34.4 0.2 50.6 0.1
ComplEx None 1.0

–
MIX 32.4 0.1 22.8 0.1 35.8 0.1 †52.1 0.2 0.5

Freq
CBS 32.7 0.1 23.6 0.1 36.0 0.1 51.2 0.1

MBS 32.0 0.0 23.0 0.0 35.1 0.1 50.1 0.1
DistMult Base 0.5

–
MIX †32.9 0.1 †23.7 0.1 †36.2 0.1 51.3 0.2 0.1

Uniq
CBS 32.6 0.1 23.4 0.2 35.9 0.1 51.1 0.1

MBS 31.8 0.1 22.6 0.2 34.9 0.1 50.5 0.2
ComplEx Base 0.5

–
MIX 32.7 0.1 23.4 0.1 36.0 0.1 51.2 0.2 0.1

DistMult

None 22.3 0.1 14.1 0.1 24.2 0.1 39.3 0.1

Base
CBS 30.8 0.1 22.0 0.1 33.7 0.1 48.4 0.1

MBS 31.1 0.2 21.8 0.1 34.1 0.2 49.6 0.2
ComplEx None 1.0

–
MIX †31.3 0.1 †22.3 0.1 †34.3 0.1 †49.7 0.1 0.7

Freq
CBS 29.9 0.1 21.2 0.1 32.8 0.1 47.5 0.0

MBS 27.9 0.1 19.6 0.2 30.4 0.2 44.4 0.1
DistMult Base 0.5

–
MIX 29.7 0.1 20.9 0.1 32.6 0.1 47.5 0.1 0.1

Uniq
CBS 29.2 0.0 20.4 0.1 31.9 0.0 46.7 0.1

MBS 27.9 0.1 19.3 0.0 30.3 0.1 45.2 0.1
ComplEx Base 0.5

–
MIX 29.1 0.0 20.3 0.1 31.8 0.1 46.6 0.1 0.1

Table 3: Results on FB15k-237. The bold scores are the best results for each subsampling type (e.g. Base, Freq, and
Uniq.). † indicates the best scores for each model. SD denotes the standard deviation of the three trial. Sub-model,
α, and λ denote the sub-model, temperature, and mixing ratio chosen by development data.
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WN18RR

Model Subsampling
MRR H@1 H@3 H@10 Submodeling

Mean SD Mean SD Mean SD Mean SD Sub-model α λ

RotatE

None 47.3 0.1 42.9 0.4 48.8 0.3 55.7 0.7

Base
CBS 47.6 0.1 †43.3 0.2 49.3 0.3 56.1 0.5

MBS †48.0 0.0 †43.3 0.2 49.6 0.2 †57.5 0.4
ComplEx None 1.0

–
MIX 47.8 0.1 43.2 0.2 49.5 0.2 57.2 0.3 0.5

Freq
CBS 47.7 0.1 43.2 0.3 49.5 0.3 56.9 0.9

MBS 47.9 0.1 43.2 0.2 49.6 0.2 57.4 0.4
ComplEx None 0.5

–
MIX 47.9 0.1 42.9 0.1 49.8 0.1 †57.5 0.2 0.3

Uniq
CBS 47.7 0.1 43.1 0.1 49.6 0.2 56.9 0.4

MBS †48.0 0.1 43.2 0.2 †49.9 0.2 †57.5 0.2
ComplEx None 0.5

–
MIX 47.8 0.1 43.0 0.1 49.7 0.3 57.2 0.5 0.5

TransE

None 22.5 0.0 1.7 0.0 40.1 0.1 52.5 0.2

Base
CBS 22.3 0.1 1.3 0.1 40.1 0.2 53.0 0.0

MBS 23.7 0.1 2.5 0.1 41.2 0.2 53.1 0.1
ComplEx Base 2.0

–
MIX 23.6 0.1 2.4 0.1 41.4 0.1 53.2 0.2 0.9

Freq
CBS 23.0 0.0 1.9 0.1 40.9 0.1 53.7 0.0

MBS †25.0 0.1 †4.2 0.1 42.4 0.2 54.1 0.0
ComplEx Base 2.0

–
MIX †25.0 0.1 4.0 0.2 †42.6 0.1 †54.3 0.1 0.9

Uniq
CBS 23.2 0.1 2.2 0.1 40.9 0.2 53.6 0.2

MBS 23.9 0.1 3.3 0.1 40.8 0.1 54.2 0.1
ComplEx Base 1.0

–
MIX 23.9 0.1 3.3 0.0 41.1 0.2 54.2 0.2 0.9

HAKE

None 49.0 0.1 44.6 0.2 50.7 0.1 57.5 0.2

Base
CBS 49.6 0.0 45.1 0.2 51.5 0.2 58.2 0.1

MBS 49.2 0.1 44.7 0.1 51.0 0.3 58.0 0.1
ComplEx None 0.5

–
MIX 49.5 0.1 45.0 0.2 51.4 0.2 58.2 0.1 0.1

Freq
CBS 49.7 0.0 45.1 0.1 51.5 0.2 58.4 0.2

MBS †49.9 0.1 †45.4 0.1 51.7 0.2 †58.5 0.1
ComplEx None 0.5

–
MIX †49.9 0.1 †45.4 0.1 51.7 0.2 58.4 0.3 0.9

Uniq
CBS 49.7 0.1 45.2 0.2 51.6 0.2 †58.5 0.3

MBS †49.9 0.1 †45.4 0.1 †51.8 0.2 †58.5 0.1
DistMult None 0.5

–
MIX †49.9 0.1 †45.4 0.2 †51.8 0.2 †58.5 0.1 0.7

ComplEx

None 45.0 0.1 40.9 0.1 46.6 0.2 53.5 0.2

Base
CBS 46.9 0.1 42.6 0.1 48.7 0.2 55.3 0.2

MBS 47.3 0.2 43.4 0.1 49.1 0.1 55.5 0.4
ComplEx None 2.0

–
MIX 47.3 0.2 43.4 0.1 49.1 0.1 55.5 0.4 0.7

Freq
CBS 47.3 0.2 43.0 0.2 49.2 0.2 56.1 0.2

MBS †48.5 0.1 †44.6 0.1 49.9 0.3 56.5 0.2
ComplEx None 0.5

–
MIX 48.4 0.2 44.4 0.1 †50.1 0.1 †56.7 0.4 0.9

Uniq
CBS 47.5 0.2 43.1 0.2 49.4 0.1 56.1 0.2

MBS 48.4 0.1 44.3 0.1 50.0 0.2 56.5 0.1
ComplEx None 0.5

–
MIX 48.4 0.1 44.2 0.2 50.0 0.2 56.6 0.2 0.9

DistMult

None 42.5 0.1 38.3 0.1 43.6 0.0 51.2 0.1

Base
CBS 43.9 0.1 39.3 0.1 45.4 0.1 53.3 0.2

MBS 44.0 0.1 40.0 0.1 44.9 0.2 52.4 0.4
ComplEx None 2.0

–
MIX 44.6 0.1 40.5 0.1 45.7 0.3 53.7 0.2 0.7

Freq
CBS 44.5 0.1 39.9 0.2 46.0 0.2 54.3 0.2

MBS †45.5 0.1 †41.2 0.2 46.6 0.2 54.6 0.1
ComplEx None 0.5

–
MIX †45.5 0.1 †41.2 0.1 †46.7 0.3 †54.7 0.1 0.9

Uniq
CBS 44.8 0.1 40.1 0.2 46.3 0.3 54.5 0.2

MBS 45.3 0.1 41.1 0.2 46.4 0.1 54.3 0.1
ComplEx None 0.5

–
MIX 45.3 0.1 41.0 0.2 46.4 0.1 54.4 0.2 0.9

Table 4: Results on WN18RR. The notations are the same as the ones in Table 3.
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YAGO3-10

Model Subsampling
MRR H@1 H@3 H@10 Submodeling

Mean SD Mean SD Mean SD Mean SD Sub-model α λ

RotatE

None 49.2 0.2 39.6 0.2 55.0 0.2 67.2 0.3

Base
CBS 49.3 0.1 39.9 0.1 54.9 0.3 67.1 0.2

MBS 49.5 0.2 40.0 0.3 55.4 0.0 66.8 0.2
RotatE None 0.5

–
MIX 49.8 0.1 40.4 0.2 55.6 0.2 67.2 0.3 0.7

Freq
CBS 49.6 0.1 40.2 0.1 55.2 0.1 67.3 0.1

MBS 50.1 0.2 †41.0 0.2 55.6 0.2 67.1 0.1
HAKE Base 0.5

–
MIX †50.2 0.2 †41.0 0.4 †55.8 0.1 67.5 0.2 0.5

Uniq
CBS 49.8 0.2 40.3 0.2 55.4 0.1 †67.6 0.1

MBS 49.5 0.2 39.9 0.2 55.2 0.3 67.4 0.2
RotatE Base 0.5

–
MIX 49.7 0.2 40.3 0.2 55.4 0.2 67.5 0.2 0.5

HAKE

None 53.6 0.1 45.0 0.3 58.9 0.3 69.0 0.0

Base
CBS 54.3 0.1 45.9 0.2 59.6 0.2 69.3 0.1

MBS 53.6 0.3 44.9 0.4 58.9 0.2 68.8 0.1
HAKE None 0.1

–
MIX 54.0 0.1 45.4 0.1 59.3 0.3 69.2 0.1 0.5

Freq
CBS 54.5 0.3 46.1 0.3 59.8 0.5 69.4 0.3

MBS 54.8 0.1 46.5 0.2 60.0 0.3 69.7 0.1
RotatE None 0.5

–
MIX 54.8 0.1 46.7 0.1 59.7 0.2 69.5 0.1 0.1

Uniq
CBS †55.1 0.1 †46.8 0.2 †60.1 0.3 †70.0 0.2

MBS 54.8 0.1 46.5 0.2 60.0 0.3 69.7 0.1
RotatE None 0.5

–
MIX 54.9 0.1 46.6 0.1 60.0 0.2 69.9 0.2 0.3

Table 5: Results on YAGO3-10. The notations are the same as the ones in Table 3.

reported by Sun et al. (2019). For HAKE, we in-
herited the setting of Zhang et al. (2019).

In our experiments, the performance of sub-
sampling is influenced by the selection of the
following hyper-parameters: (1) temperature α;
(2) λ, the ratio of MBS against CBS. For our
proposed MBS subsampling, we chose α from
{2.0, 1.0, 0.5, 0.1, 0.05, 0.01} based on validation
MRR. For our proposed MIX subsampling, we in-
herited the best α in MBS. Then, we chose the
mix ratio λ from {0.1, 0.3, 0.5, 0.7, 0.9} based on
validation MRR.

In FB15k-237 and WN18RR, we chose the sub-
model from RotatE, TransE, HAKE, ComplEx, and
DistMult with the setting of Base and None based
on the validation MRR. In YAGO3-10, we also
chose the sub-model from RotatE and HAKE, sim-
ilar to FB15k-237 and WN18RR.

4.2 Results

Results Table 3, 4, and 5 show the KGC perfor-
mances on FB15k-237, WN18RR and YAGO3-10,
respectively. Note that the results of Wilcoxon
signed-rank test for performance differences be-
tween MBS/MIX and CBS show statistical signifi-
cance with p-values less than 0.01 in all cases when
MBS/MIX outperforms CBS.

As we can see, the models trained with MIX

or MBS achieved the best results in all models on
FB15k-237 and WN18RR. However, in YAGO3-
10, HAKE with Freq in CBS outperformed the
results of MBS and MIX. Considering that the pre-
process of YAGO3-10 filtered out entities with less
than 10 relations in the dataset, we can conclude
that MBS and MIX are effective on the sparse KGs
like that of FB15k-237 and WN18RR. These re-
sults are along with our expectation that MBS and
MIX can improve the completion performances in
sparse KGs as introduced in §1.

In individual comparison for each metric, CBS
sometimes outperformed MIX or MBS. This is be-
cause the estimated frequencies in MIX and MBS
rely on selected sub-models. From these results,
we can understand that MIX and MBS have the po-
tential to improve the KG completion performances
by carefully choosing their sub-model.

Analysis We analyze the remaining question, i.e.,
which sub-model to choose for MBS. Table 3, 4,
and 5 show the selected sub-models for each MBS
(See §4.1 in details), where ComplEx dominates
over other models in FB15k-237 and WN18RR.
To know the reason, we depict MBS frequencies
of queries that have the bottom 100 CBS frequen-
cies in Figure 3. In FB15k-237, we can see sev-
eral spikes of frequencies in TransE, RotatE, and



917

0

1

2

3

4

%      

1e 5 FB15k-237, RotatE, None

0

1

2

3

4

%      

1e 5 FB15k-237, RotatE, Base

0

1

2

3

4

%      

1e 5 FB15k-237, TransE, None

0

1

2

3

4

%      

1e 5 FB15k-237, TransE, Base

0

1

2

3

4

%      

1e 5
FB15k-237, ComplEx, None

0

1

2

3

4

%      

1e 5
FB15k-237, ComplEx, Base

0

1

2

3

4

%      

1e 5
FB15k-237, DistMult, None

0

1

2

3

4

%      

1e 5
FB15k-237, DistMult, Base

0

1

2

3

4

%      

1e 5 FB15k-237, HAKE, None

0

1

2

3

4

%      

1e 5 FB15k-237, HAKE, Base

0

1

2

3

4

%      

1e 5 WN18RR, HAKE, None

0

1

2

3

4

%      

1e 5 WN18RR, HAKE, Base

0

1

2

3

4

%      

1e 5 WN18RR, RotatE, None

0

1

2

3

4

%      

1e 5 WN18RR, RotatE, Base

0

1

2

3

4

%      

1e 5 WN18RR, TransE, None

0

1

2

3

4

%      

1e 5 WN18RR, TransE, Base

0

1

2

3

4

%      

1e 5 WN18RR, ComplEx, None

0

1

2

3

4

%      

1e 5 WN18RR, ComplEx, Base

0

1

2

3

4

%      

1e 5 WN18RR, DistMult, None

0

1

2

3

4

%      

1e 5 WN18RR, DistMult, Base

0

1

2

3

4

%      

1e 5 YAGO3-10, RotatE, None

0

1

2

3

4

%      

1e 5 YAGO3-10, RotatE, Base

0

1

2

3

4

%      

1e 5 YAGO3-10, HAKE, None

0

1

2

3

4

%      

1e 5 YAGO3-10, HAKE, Base

Figure 3: Appearance probabilities (%) of queries in CBS and MBS that have the lowest 100 CBS frequencies for
each setting, sorted left to right in descending order by their CBS frequencies.

HAKE that do not exist in ComplEx. In WN18RR,
the peak frequencies of ComplEx with None are
larger and broader than that of other sub-models.
These results indicate that models in FB15k-237
and WN18RR, respectively, encountered problems
of an over and lack of smoothing, and MBS dealt
with this problem. Because sparseness is a prob-
lem when data is small, these are along with the
fact that FB15k-237 has larger training data than
WN18RR. Thus, choosing a suitable sub-model for
a target dataset is important in MBS.

Discussion We discuss how sub-model and
hyper-parameter choices contribute to the improve-
ment of KGE performance apart from our method.
The choice of the sub-model and the α played sig-
nificant roles in the observed improvements be-

cause distributions from sub-model prediction de-
pend on each sub-model and each dataset. Since
we adopted the value of α used in the past state-
of-the-art method of Sun et al. (2019) and Zhang
et al. (2019), we believe that the performance gains
of MBS are not only caused by the values of α.
Similarly, keeping λ constant in the MIX strategy
may lead to certain improvements depending on
used sub-models and datasets. However, as shown
in Appendix B, λ has the role of adjusting the loss
of multi-task learning, and thus, it may be more
sensitive compared with α.

5 Related Work

Mikolov et al. (2013) originally propose the
NS loss to train their word embedding model,
word2vec. Trouillon et al. (2016) introduce the
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NS loss to KGE to reduce training time. Sun et al.
(2019) extend the NS loss for KGE by introduc-
ing a margin term, normalization of negative sam-
ples, and newly proposed their noise distribution.
Kamigaito and Hayashi (2021) claim the impor-
tance of dealing with the sparseness problem of
KGs through their theoretical analysis of the NS
loss in KGE. Furthermore, Kamigaito and Hayashi
(2022a) reveal that subsampling (Mikolov et al.,
2013) can alleviate the sparseness problem in the
NS for KGE.

Similar to these works, our work aims to inves-
tigate and extend the NS loss used in KGE to im-
prove KG performance.

6 Conclusion

In this paper, we propose new subsampling ap-
proaches, MBS and MIX, that can deal with the
problem of low-frequent entity-relation pairs in
CBS by estimating their frequencies using the sub-
model prediction. Evaluation results on FB15k-237
and WN18RR showed the improvement of KGC
performances by MBS and MIX. Furthermore, our
analysis also revealed that selecting an appropriate
sub-model for the target dataset is important for
improving KGC performances.

Limitations

Utilizing our model-based subsampling requires
pre-training for choosing a suitable sub-model, and
thus may require more than twice the computa-
tional budget. However, since we can use a small
model as a sub-model, like the use of ComplEx as
a sub-model for HAKE, there is a possibility that
the actual computational cost becomes less than
the doubled one.

For calculating CBS frequencies, we only use
the one with the arithmetic mean since we inher-
ited the conventional subsampling methods as our
baseline. Thus, we can consider various replace-
ments not covered by this paper for the operation.
However, even if we carefully choose the opera-
tion, CBS is essentially difficult to induce the ap-
propriate appearance probabilities of low-frequent
queries compared with our MBS, which can use
vector-space embedding.

Our experiments are carried out only on FB15k-
237, WN18RR, and YAGO3-10 datasets. Thus,
whether our method works for larger and noisier
data is to be verified.

Furthermore, although our method is generaliz-
able to deep learning models, our current work is
conducted purely on KGE models, and whether it
works for general deep learning models as well is
to be verified.
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A Note on Figure 1

To illustrate the results on FB15k-237 and WN18RR datasets, we used TransE, RotatE, ComplEx,
DistMult, and HAKE as the KGE models. To plot that on the YAGO3-10 dataset, we used RotatE and
HAKE as the KGE models following the setting in §4.1. Regarding the use of subsampling, the MRR
scores of using subsampling refer to the result of Base subsampling in Table 1 with CBS frequencies,
whereas that without subsampling corresponds to the setting "None" §4.1.

B Interpretation of MIX Subsampling as Multi-task Learning

We can reformulate Eq. (10) as follows:

ℓmix(θ; θ
′) (13)

=− 1

|D|
∑

(x,y)∈D

[
Amix(θ

′) log(σ(sθ(x, y) + γ)) +
1

ν

ν∑
yi∼pn(yi|x)

Bmix(θ
′) log(σ(−sθ(x, yi)− γ))

]
, (14)

=− 1

|D|
∑

(x,y)∈D

[
(λAmbs(θ

′) + (1− λ)Acbs) log(σ(sθ(x, y) + γ))

+
1

ν

ν∑
yi∼pn(yi|x)

(λBmbs(θ
′) + (1− λ)Bcbs) log(σ(−sθ(x, yi)− γ))

]
, (15)

=− λ

|D|
∑

(x,y)∈D

[
Ambs(θ

′) log(σ(sθ(x, y) + γ)) +
1

ν

ν∑
yi∼pn(yi|x)

Bmbs(θ
′) log(σ(−sθ(x, yi)− γ))

]
,

− 1− λ

|D|
∑

(x,y)∈D

[
Acbs log(σ(sθ(x, y) + γ)) +

1

ν

ν∑
yi∼pn(yi|x)

Bcbs log(σ(−sθ(x, yi)− γ))
]
, (16)

=λℓmbs(θ; θ
′) + (1− λ)ℓcbs(θ) (17)

From Eq. (17), since ℓmix(θ; θ
′) is the mixed loss of the two loss functions ℓmbs(θ; θ

′) and ℓcbs(θ), we
can understand that using MIX is multi-task learning of using both CBS and MBS.


