DetectLLM: Leveraging Log-Rank Information
for Zero-Shot Detection of Machine-Generated Text

Jinyan Su'?, Terry Yue Zhuo?, Di Wang®, Preslav Nakov'
!Mohamed bin Zayed University of Artificial Intelligence, > Cornell Unversity
3Monash University and CSIRO’s Data61
4King Abdullah University of Science and Technology

{Jinyan.Su,

preslav.nakov}@mbzuai.ac.ae

terry.zhuo@monash.edu, di.wang@kaust.edu.sa

Abstract

With the rapid progress of Large language mod-
els (LLMs) and the huge amount of text they
generate, it becomes impractical to manually
distinguish whether a text is machine-generated.
The growing use of LLMs in social media
and education, prompts us to develop methods
to detect machine-generated text, preventing
malicious use such as plagiarism, misinforma-
tion, and propaganda. In this paper, we intro-
duce two novel zero-shot methods for detecting
machine-generated text by leveraging the Log-
Rank information. One is called DetectLLM-
LRR, which is fast and efficient, and the other
is called DetectLLM-NPR, which is more ac-
curate, but slower due to the need for perturba-
tions. Our experiments on three datasets and
seven language models show that our proposed
methods improve over the state of the art by
3.9 and 1.75 AUROC points absolute. More-
over, DetectLLM-NPR needs fewer perturba-
tions than previous work to achieve the same
level of performance, which makes it more
practical for real-world use. We also investi-
gate the efficiency-performance trade-off based
on users’ preference for these two measures
and provide intuition for using them in prac-
tice effectively. We release the data and the
code of both methods in https://github.
com/mbzuai-nlp/DetectLLM.

1 Introduction

Large language models (LLMs) have made rapid
advancements in recent years, and are now able
to generate text with significantly improved diver-
sity, fluency, and quality. Models such as Chat-
GPT (OpenAl, 2022), GPT-3 (Brown et al., 2020),
LLaMa (Touvron et al., 2023) and BLOOM (Scao
et al., 2022) demonstrate exceptional performance
in answering questions (Robinson et al., 2022),
writing stories (Fan et al., 2018; Yuan et al., 2022)
and thus facilitating daily life and improving work
efficiency. However, LLMs can also be misused
for generating plagiarized text, misinformation,

and propaganda, which can lead to negative conse-
quences (Zhuo et al., 2023). For instance, students
might use LLMs to write assignments (Rosenblatt,
2023), making fair evaluation difficult for teach-
ers, and in the long run, undermining the integrity
of the entire education system. Malicious actors
might generate fake news articles to spread misin-
formation and propaganda or to manipulate pub-
lic opinion, which is dangerous, especially when
it comes to politics (Floridi and Chiriatti, 2020;
Stokel-Walker, 2022).

With the proliferation of LLMs and the increas-
ing amount of texts they produce, it is challeng-
ing for humans to accurately identify machine-
generated texts (Gehrmann et al., 2019). More-
over, it is unrealistic to hire humans to manually
identify machine-generated text at scale due to the
prohibitively high costs and the efficiency require-
ments in real-time applications, e.g., in social me-
dia. Thus, it is essential to develop tools and strate-
gies to automatically identify machine-generated
text and to mitigate the potential negative impact
of LLMs.

The problem of distinguishing machine-
generated from human-written text is commonly
formulated as a binary task (Jawahar et al., 2020).
Most previous work has focused on the black-box
scenario, where the detector has access to the
output of the LLMs only and cannot make use of
its internals. Such methods lack flexibility since
they need to be retrained from scratch to be able
to recognize the output of a new LLM (Mitchell
et al., 2023). Given the speed at which new LLMs
are developed, black-box methods are becoming
more and more expensive and impractical. In cases
when the access to the LLM is via an API only,
one possibility is for the LLM owner to record
all content it has generated, or to watermark all
texts it has generated (Kirchenbauer et al., 2023;
Zhao et al., 2023). However, such solutions are not
feasible for third parties.

12395

Findings of the Association for Computational Linguistics: EMNLP 2023, pages 12395-12412
December 6-10, 2023 ©2023 Association for Computational Linguistics

https://github.com/mbzuai-nlp/DetectLLM
https://github.com/mbzuai-nlp/DetectLLM

We therefore consider a white-box setting, where
the detector has full access to the LLMs. We
focus on zero-shot methods, where we use the
LLM without additional training. Generally speak-
ing, zero-shot methods use the source LLM to ex-
tract statistics such as the average per-token log
probability or the average rank of each token in
the ranked list of possible choices to make a pre-
diction by comparing it to a threshold (Solaiman
et al., 2019; Ippolito et al., 2019; Gehrmann et al.,
2019; Mitchell et al., 2023). Based on whether the
queried statistics are only about the target texts, we
can roughly categorize them as perturbation-free
and perturbation-based. Perturbation-free methods
only query LLMs about the statistics on the tar-
get text x, while perturbation-based methods such
as Mitchell et al. (2023) queries also the statistics
of additional perturbed texts, which achieves bet-
ter performance but is 50-100 times more costly
than perturbation-free methods. Thus, there ex-
ists a trade-off between performance and efficiency
among zero-shot methods.

To mitigate the gap of these two categories and
design zero-shot methods with better performance-
efficiency balance, we should either improve the
accuracy of perturbation-free methods or reduce
their cost. Thus, we propose two novel zero-shot
methods, one perturbation-free, but more accurate
than previous methods, and one perturbation-based
method, but with better efficiency.

In the perturbation-free method we proposed,
we apply Log-Likelihood Log-Rank ratio (LRR),
which enhances Log-Likelihood information with
Log-Rank information as the discerning feature
that achieves better performance than existing
perturbation-free methods and can even surpass
perturbation-based methods on some LLMs. For
the perturbation-based method, we use Normalized
perturbed log rank (NPR), which is based on the
intuition that machine-generated texts are more sen-
sitive to minor rewrites (or small perturbations).
Compared to existing perturbation-based methods
such as DetectGPT (Mitchell et al., 2023), this ap-
proach takes less time and computational resources
and is more efficient. We denote these two meth-
ods DetectLLM-LRR and DetectLLM-NPR respec-
tively. Our contributions are as follows:

* We propose two novel zero-shot approaches
based on Log-Rank statistics, which improve
over the state of the art. On average, these
methods improved upon the previous best

LRR Count NPR
MG © HG|

Count

MG © HG

2.55 1.20

2.29 1.12/%%

1.05

2.03) @it 3':}«»; RGN Y
e % v, e g L
TN T e

1.76 0.97 3 ¢

0 100 200 3000 5 0 100 200 3000 25

Figure 1: Distribution of LRR and NPR visualized on
300 human-written texts (HG) from the WritingPrompts
dataset (Fan et al., 2018) as well as 300 texts generated
with GPT-2-x1 (MG) by prompting it with the first 30
tokens from human-written texts.

zero-shot methods by 3.9 and 1.75 AUROC
points absolute.

* We investigate the efficacy of existing zero-
shot methods and explore their limits as the
size of the LLMs increases from 1.5 to 20
billion.

* We conduct comprehensive experiments to
better understand the efficiency-performance
trade-offs in zero-shot methods, thereby pro-
viding interesting insights on how to choose
among different categories of zero-shot meth-
ods based on users’ preference for perfor-
mance or efficiency.

2 Related Work

The detection of machine-generated text is com-
monly formulated as a classification task (Jawahar
et al., 2020; Fagni et al., 2021; Bakhtin et al., 2019;
Sadasivan et al., 2023; Wang et al., 2023). One way
of solving it is to use supervised learning, where
a classification model is trained on a dataset con-
taining both machine-generated and human-written
texts. For example, GPT-2 Detector (Solaiman
et al., 2019) fine-tunes ROBERTa (Liu et al., 2019)
on the output of GPT-2, while the ChatGPT Detec-
tor (Guo et al., 2023) fine-tunes RoOBERTa on the
HC3 (Guo et al., 2023) dataset. However, models
trained explicitly to detect machine-generated texts
may overfit their training distribution of the do-
mains (Bakhtin et al., 2019; Uchendu et al., 2020).

Another stream of work attempts to distinguish
machine-generated from human-written texts based
on statistical irregularities in the entropy (Lavergne
et al., 2008), perplexity (Beresneva, 2016) or in
the n-gram frequencies (Badaskar et al., 2008).
Gehrmann et al. (2019) introduced hand-crafted
statistical features to assist humans in detecting-
machine generated texts. Moreover, (Solaiman
et al., 2019) noted the efficacy of simple zero-shot

12396

XSum SQUAD
— |86
L

92
/ 9 -
84 P /
/ 92 / —+—DetectGPT|
88 ! 821/ / NPR(ours)

1020 50 100 1020 50 100 1020 50 100
#(Perturbations) #(Perturbations) #(Perturbations)

WritingP

—

performance(%)
©
S

Figure 2: Comparison of DetectGPT to NPR averaged
across six models (in terms of AUROC). (The full results
are given in Figure 6 in the Appendix).

methods for detecting machine-generated text by
evaluating the per-token log probability of texts and
using thresholding. Mitchell et al. (2023) observed
that machine-generated texts tend to lie in the local
curvature of the log probability and proposed De-
tectGPT, whose prominent performance can only
be guaranteed by the large size of the perturbation
function and by a large number of perturbations,
and thus costs more computational resources.
Other work explored watermarking, which im-
prints specific patterns of the LLM-output text
that can be detected by an algorithm while be-
ing imperceptible to humans. Grinbaum and Ado-
maitis (2022) and Abdelnabi and Fritz (2021) wa-
termarked machine-generated text using syntax tree
manipulation, while Kirchenbauer et al. (2023) re-
quired access to the LLM’s logits at each time step.

3 Improved Zero-Shot Approaches by
Leveraging Log-Rank Information

In this section, we introduce the Log-Likelihood
Log-Rank Ratio (LRR) and the Normalized
Perturbed log-Rank (NPR). LRR combines Log-
Rank and Log-Likelihood as they provide comple-
mentary information about the text. NPR uses the
idea that the Log-Rank of machine-generated texts
should be more sensitive to smaller perturbations.

3.1 Log-Likelihood Log-Rank Ratio (LRR)
We define the Log-Likelihood Log-Rank Ratio as

Zz 110gp9(l‘l’56<1)
%Zi:l log rg(zi|r<;)
22:1 10gpg(l’2|l’<l)
le‘le log rg(zi|x<;)

LRR =

where rg(z;|x<;) > 1 is the rank of token z; con-
ditioned on the previous tokens.

The Log-Likelihood in the numerator represents
the absolute confidence for the correct token, while
the Log-Rank in the denominator accounts for

the relative confidence, which reveals complemen-
tary information about the texts. As illustrated
in Figure 1, LRR is generally larger for machine-
generated text, which can be used for distinguish-
ing machine-generated from human-written text.
One plausible reason might be that for machine-
generated text, the Log-Rank is more discernible
than the Log-Likelihood, so LRR illustrates this
pattern for machine-generated text. In Sections 4
and 6, we experimentally show that LRR is a bet-
ter discriminator than either the Log-Likelihood or
the Log-Rank. We call the zero-shot method using
LRR as a detection feature as DetectLLM-LRR,
and use the abbreviation LRR in the rest of the

paper.

3.2 Normalized Log-Rank Perturbation
(NPR)

We define the normalized perturbed Log-Rank as

% 2221 log g (ip)

NPR =
log g ()

9

where small perturbations are applied on the target
text x to produce the perturbed text z,,. Here, a per-
turbation means minor rewrites, such as replacing
some of the words. We call the zero-shot method
using NPR as a detection feature DetectLLM-NPR,
and use the abbreviation NPR in the rest of the
paper.

The motivation for NPR is that machine-
generated and human-written texts are both neg-
atively affected by small perturbations, i.e., the
Log-Rank score will increase after perturbations,
but the machine-generated text is more suscepti-
ble to perturbations and thus increase more on
Log-Rank score after perturbation, which suggests
higher NPR score for machine-generated texts. As
shown in Figure 1, NPR can be a discernible signal
for distinguishing machine-generated from human-
written text. DetectGPT (Mitchell et al., 2023) uses
a similar idea, but experimentally, we find NPR to
be more efficient and to perform better. Details and
comparisons are given in Section 4.

4 Experimental Setup

In this section, we conduct comprehensive exper-
iments to evaluate the performance of LRR and
NPR in comparison to several methods previously
proposed in the literature. We experiment with
LLM sizes varying from 1.5B to 20B parameters,
probing the boundary of zero-shot methods when

12397

LLMs continue to grow in size. We further study
the impact of the perturbation function, the number
of perturbations (especially for NPR and Detect-
GPT), the decoding strategy, and the temperature.

Data Following (Mitchell et al., 2023), we use
three datasets: XSum (Narayan et al., 2018),
SQuAD (Rajpurkar et al., 2016), WritingPrompts
(Fan et al.,, 2018), containing news articles,
Wikipedia paragraphs and prompted stories, re-
spectively, as human-written texts and we pro-
duce machine-generated texts using LLMs. These
datasets are chosen to represent the areas where
LLMs could have a negative impact. For each ex-
periment, we evaluate 300 machine-generated and
human-written texts pairs by prompting the LLMs
with the first 30 tokens of the human-written text.
We release the code for this.

Evaluation Measure Following previous work
(Mitchell et al., 2023; He et al., 2023; Krishna et al.,
2023), we use the area under the receiver operating
characteristic curve (AUROC), which is the proba-
bility that a classifier correctly ranks the machine-
generated example higher than human-written ex-
ample. Since for zero-shot methods, detection rates
are heavily dependent on the threshold when us-
ing discriminative statistics, AUROC is commonly
used to measure zero-shot detector performance,
which considers the range of all possible thresholds
(Krishna et al., 2023).

4.1 Methods

Zero-Shot Methods We compare the following:

* log p(z): the idea is that a passage with a high

average log probability is more likely to have
been generated by the target LLM;

* Rank: the idea is that a passage with a higher
average rank is more likely to have been gen-
erated by the target LLM;

* Log-Rank: passage with a higher average ob-
served Log-Rank is more likely to have been
generated by the target LLM;

e Entropy: machine-generated text has higher
entropy;

¢ DetectGPT: machine-generated text has more
negative log probability curvature.

More detail and exact definitions of these meth-
ods can be found in Appendix A.

These zero-shot baselines, along with our newly
proposed LRR and NPR, can be categorized as

* Perturbation-free: logp(xz), Rank, Log-
Rank, Entropy, LRR. They only query the

LLM for statistics about the target text x.

* Perturbation Based: DetectGPT and NPR.
These methods query the LLM not only for the
target text x, but also for perturbed versions
thereof 71, -, Zp.

As perturbation-based methods perform better

(but are also more time-consuming), for fair com-
parison, we compare them within their own group.

Supervised Methods We also experiment with
two supervised detectors: RoBERTa-base and
RoBERTa-large. As these are not central to our
narrative, we put the results in Appendix B.

Experimental Details For the perturbation-
based methods (DetectGPT and NPR), we use T5-
3B for perturbation and we perturb the input text 50
times for all the experiments, unless specified oth-
erwise. For all zero-shot methods, we use sampling
with a temperature of 1, unless specified otherwise.
More detail are given in Appendix A.

5 Evaluation Results

5.1 Zero-Shot Results

Table 1 shows a comparison of the five base-
line zero-shot approaches to our proposed LRR
and NPR, grouped as perturbation-based and
perturbation-free. We can see that for the
perturbation-based methods, NPR consistently out-
performs DetectGPT on all datasets and LL.Ms, ex-
cept for one case, with an average improvement of
0.90, 2.03, 2.32 AUROC points absolute on XSum,
SQuAD, and WritingPrompts, respectively, (using
the same perturbation function and the same num-
ber of perturbations). For the experiments among
perturbation-free methods, on average, our method
achieves the best performance and improves by
2.15, 8.27, 1.28 AUROC points absolute over the
second-best perturbation-free method (i.e., Log-
Rank) on XSum, SQuAD, and WritingPrompts,
respectively. Moreover, we find that in some cases,
LRR can even perform better than perturbation-
based methods, e.g., on SQuAD, LRR outperforms
DetectGPT by 4.23 AUROC point absolute and
outperforms NPR by 2.20 AUROC points.

5.2 Comparing DetectGPT to NPR

Equipped with large perturbation functions and
an adequate amount of perturbations, perturbation-
based methods generally outperform perturbation-
free ones, e.g., using T5-3b as the perturbation func-
tion and perturb 50 times as in Table 1. However, in

12398

Dataset Perturbation Method GPT-2-x1 Neo-2.7 OPT-2.7 GPT-j OPT-13 Llama-13 NeoX Avg.

log p 89.16 87.69 86.98 83.10 83.90 56.89 78.16 80.84

Rank 79.79 77.87 76.07 76.28 74.10 48.81 72.44 72.19

w/o Log-Rank 91.75 90.79 89.18 86.42 85.88 6133 81.44 83.83

XSum Entropy 56.78 55.14 5034 55.51 5098 69.43 60.84 57.00
LRR (ours) 93.47 92.24 83.70 88.68 83.79 71.07 83.89 85.98

W/ DetectGPT 98.80 99.11 96.02 95.88 92.65 73.55 93.58 92.80

NPR (ours) 99.40 99.46 97.09 95.76 94.63 75.51 94.08 93.70

log p 90.72 84.18 87.84 7820 80.65 4291 68.78 76.18

Rank 83.46 79.77 81.85 79.46 77.47 5444 73.10 75.65

w/o Log-Rank 94.33 89.52 9176 83.37 85.05 48.28 73.88 80.88

SQuAD Entropy 57.97 5848 5329 5826 57.14 69.71 59.97 59.26
LRR (ours) 97.42 95.74 9589 91.59 91.36 68.78 83.31 89.15

W/ DetectGPT 98.52 9586 9691 88.66 90.60 47.03 76.84 84.92

NPR (ours) 99.40 97.56 98.39 91.88 93.04 48.67 79.73 86.95

log p 96.71 95.63 95.05 9443 9253 83.54 93.27 93.02

Rank 87.62 8279 83.89 83.21 8352 77.64 81.64 82.90

w/o Log-Rank 98.02 97.15 9632 96.06 94.34 88.11 95.14 95.02
WritingP Entropy 36.45 34.07 3975 3693 4249 47.64 37.89 39.32
LRR (ours) 98.34 98.02 96.45 96.97 95.09 92.66 96.56 96.30

W/ DetectGPT 99.30 98.71 9833 95.52 96.46 83.01 92.94 94.90

NPR (ours) 99.78 99.59 98.87 98.07 98.14 89.39 96.72 97.22

Table 1: Zero-shot experiments. Comparison of the proposed LRR and NPR to other zero-shot methods in terms
of AUROC. For fair comparison, we show in bold the best results, both with and without perturbations.

w/o Perturbation w/ Perturbation

Decoding Dataset logp Rank Log-Rank Entropy LRR (ours) DetectGPT ~ NPR (ours)
XSum 81.64 70.68 85.19 55.47 89.25 91.34 92.93
top-k SQuAD 76.31 74.31 81.28 57.96 90.61 82.42 84.99
WritingP ~ 93.80 82.15 95.72 37.26 97.10 93.89 96.33
XSum 86.94 70.86 88.65 53.89 88.29 92.74 93.42
top-p SQuAD 82.07 7503 85.49 55.86 91.09 83.98 86.19
WritingP 96.51 8248 97.44 33.92 97.25 94.20 96.55

Table 2: Decoding strategy analysis. Shown are the AUROC scores for methods with top-k (k = 40) and top-p
(p = 0.96) sampling averaged across four LLMs: Neo-2.7, OPT-2.7, GPT-j, Llama-13.

practice, due to time and resource constraints, not
all users can afford these models and large amounts
of perturbations. Thus, it is important to investi-
gate how NPR and DetectGPT behave with smaller
perturbation function size and fewer perturbations.

Different Number of Perturbations. Figure 2
shows the averaged performance of DetectGPT and
NPR with varying number of perturbations. We
can see that NPR consistently performs better than
DetectGPT when using the same number of pertur-
bations. In other words, NPR can achieve a compa-
rable or better performance but with significantly
fewer perturbations. For example, in SQuAD and
WritingPrompts dataset, NPR achieves 85 points
and 95 points using approximately 10 perturba-
tions while DetectGPT requires around 100 per-
turbations, which highlights the effectiveness and
efficiency of NPR. More complete results for each
dataset and model can be found in Figure 6 and
Figure 7 of Appendix C.

Different Perturbation Functions. In Table 3,
we compare NPR to DetectGPT using a smaller
perturbation model T5-large, and the result is av-
eraged over 6 LLMs and 3 datasets. We found

that replacing T5-3b with smaller models harms
the performance of both NPR and DetectGPT, and
the performance degradation can’t be mitigated by
increasing the number of perturbations. For both
NPR and DetectGPT, the average performance of
100 perturbations with T5-large is still worse than
10 perturbations with T5-3b (emphasized with the
grey box in Table 3). Moreover, one can observe
that, NPR is less affected by the reduced pertur-
bation function size: when replacing T5-3b to T5-
large, the performance degradation averaged over
10, 20, 50, 100 perturbations for NPR is 4.40 points,
much smaller compared to that of 8.06 points for
DetectGPT. The complete results on 6 LLMs and 3
datasets can be found in Figure 8 of Appendix C.

5.3 Different Decoding Strategy and
Temperature

Alternative Decoding Strategies. In line with
prior work (Pagnoni et al., 2022), we experimented
with top-k sampling (Fan et al., 2018) and top-p
sampling (Holtzman et al., 2019). Top-k sampling
generates from top-k most likely words according
to the LLM. Top-p sampling (nucleus sampling)
samples from the set of words that collectively ac-

12399

Perturbation Dataset # (Perturbations)
Function ataset g 20 50 100
T5-large 86.69 88.00 83.74 = 88.94

NPR (ours) T5-3b 91.39 9235 93.04 9320
Diff 4.70 4.35 4.30 4.26
TS5-large 77.94 81.12 8390 = 84.54

DetectGPT T5-3b 86.70 89.57 91.38 92.10
Diff 8.76 8.45 7.48 7.56

Table 3: Perturbation analysis. Comparing DetectGPT
to NPR using different perturbations (AUROC scores).

count for a total mass probability p. The results
(averaged across 4 LLMs) are shown in Table 2,
and complete results can be found in Table 9 of
Appendix D. We find that, although almost all the
zero-shot methods perform better when using top-
k and top-p sampling than temperature sampling,
Log-Rank and Log-Likelihood methods are more
in favour of top-p sampling, while LRR is stable
in both top-p and top-k sampling. For top-k de-
coding, LRR improves 4.06, 9.33, and 1.38 points
over the second-best zero-shot method baseline on
three datasets, respectively. LRR performance also
improves when using top-p decoding strategy, but
due to the unstable performance surge of the Log-
Rank method, LRR become slightly behind the
Log-Rank method, with a minor difference of 0.36
and 0.19 points on the XSum and WritingPrompts
datasets, respectively. For perturbation-based meth-
ods, their behaviour is consistent with previous
results, where NPR outperforms DetectGPT for
both top-p and top-k sampling strategies.

Different Temperature. Temperature controls
the degree of randomness of the generation process.
Increasing the temperature leads to more random-
ness and creativity while reducing it leads to more
conservation and less novelty. In practice, people
adjust the temperature for their specific purposes.
For example, students might set a high tempera-
ture to encourage more original and diverse output
when writing a creative essay, whereas fake news
producers might set lower temperatures to generate
seemingly convincing news articles for their decep-
tive purposes. Based on our experiments in Table
4, we found that Log-Likelihood (log p), Log-Rank
and LRR is highly sensitive to the temperature and
can get even better results than perturbation-based
methods when the temperature is relatively low.
In addition, the performance improvement of the
Rank method with the increased temperature is neg-
ligible compared to Log-Likelihood, Log-Rank and
LRR, while the performance of the entropy method
seems to be positively correlated to the tempera-
ture. We conjure that the abnormal behaviour of

the Entropy method might be because of the as-
sumption that “machine-generated text has higher
entropy" (Mitchell et al., 2023), which, from our
experiments, doesn’t stand for high temperature.
As for the perturbation-based method, the impact
of temperature is not as clear as a perturbation-free
method. But in general, the results suggest the
temperature has only minor effects on DetectGPT
while it improves the performance of NPR. Another
observation is that the perturbation-free method per-
forms better than the perturbation-based method in
low temperatures, for example, if the temperature
is smaller than 0.95, perturbation-based methods
get better detection accuracy while being efficient.

6 Analysis of the Efficiency

Though in Table 1, perturbation-based methods ap-
pear to be significantly better than perturbation-free
methods, it is important to note that their superior
performances can only be achieved with large per-
turbation functions and multiple number of per-
turbations, which leads to intensive demand for
computational resources and longer computational
time. Thus, while performance is an important fac-
tor, it is crucial to consider the efficiency of these
zero-shot methods as well.

6.1 Computational Cost Analysis

To get an idea of how costly different zero-shot
methods are to achieve their performance in Table
1, we estimated the computational time (per sam-
ple) for each zero-shot method in Table 5. The
time is estimated over the average of 10 samples.
For perturbation-based methods, since the time de-
pends on the perturbation function and the number
of perturbations, we used T5-3b as the perturba-
tion function and use 50 perturbations since this
is the setting used for the main results in Table 1,
we want to provide an idea of how much more it
costs for perturbation based method to achieve ex-
ceptional performance in Table 1. We observed
that the computational time of Log-Likelihood,
Rank, Log-Rank and Entropy are almost the same,
while LRR runs approximately 2 times longer than
these methods since it requests both the Log-Rank
and Log-Likelihood statistics. For perturbation-
based methods, the running time is at least 50 times
longer compared to Log-Likelihood, Rank, Log-
Rank, and Entropy method, since they calculate
the Log-Likelihood or Log-Rank for not only the
target text but also perturbed samples.

12400

w/o Perturbation

w/ Perturbation

Temperature log p Rank Log-Rank Entropy = LRR (ours) DetectGPT NPR (ours)
0.5 98.72 71.87 99.29 25.90 99.23 86.14 95.76
0.7 97.01 76.98 98.05 38.28 98.84 90.28 95.61
0.9 90.04 75.82 92.28 47.14 94.50 90.33 92.89
0.95 86.15 7543 88.88 50.42 92.04 89.97 91.98
1 81.48 74.85 84.81 5237 89.15 89.02 90.86

Table 4: Temperature experiments. Results of using different temperatures (AUROC scores).

Perturbation Method GPT-2-x]1Neo-2.7 OPT-2.7 GPT-j OPT-13 Llama-13 NeoX

log p 0.06 0.09 0.10 0.04 0.07 0.07 0.60

Rank 0.07 0.10 0.09 0.04 0.05 0.07 0.60

w/o Log-Rank 0.06 0.09 0.10 0.04 0.05 0.06 0.60
Entropy 0.06 0.09 0.09 0.04 0.05 0.06 0.60

LRR (ours) 0.12 0.19 0.18 0.08 0.10 0.14 1.20

W/ DetectGPT 8.07 9.60 9.80 7.03 798 8.14 35.56
NPR (ours) 8.15 9.69 990 7.12 7.83 798 35.67

Table 5: Computational time (seconds) for different zero-shot methods on different LLMs (averaged over 10 reruns).

tp(s)

tm(s)

T5-3b T5-large T5-base T5-small [GPT-2-xI Neo-2.7 OPT-2.7 GPT-j OPT-13 Llama-13 NeoX

0.10 0.08 0.04 0.03 | 006

0.09

0.10 0.04 0.07 0.07 0.60

Table 6: Computation time. Estimated computation time for one perturbation (¢,) and for calculating the target

statistics on the text (¢,,,): shown in seconds.

Composition of the Computational Time. In
general, for perturbation-free zero-shot methods,
the computational time only depends on the size
of LLM and the complexity of statistics. LRR
is twice as complex as simple statistics such as
Log-Rank and Log-Likelihood, so it takes approxi-
mately twice as long to compute. As for LLM size,
intuitively, larger models usually take more time to
compute, which can also be observed in Table 5.
The additional computational time of perturbation-
based methods comes from two folds: (1) The total
time for perturbation, which depends on the pertur-
bation function we use and the number of perturba-
tions. (2) The total time for calculating statistics of
the perturbed texts, which depends on the number
of perturbations, the size of LLM and the complex-
ity of statistics. To reduce the computational time
of the perturbation-based method, we could either
choose a smaller size of the perturbation function
or reduce the number of perturbations.

Formula for Estimating the Computational
Time. Let ¢, be the time of perturbing 1 sam-
ple, t,,, be the time of calculating simple statistics
(such as Log-Likelihood) of one sample for a par-
ticular LLM and n be the number of perturbations.
The computational time for Log-Likelihood, rank,
Log-Rank, and entropy is approximately %,,, the
estimated time for LRR is 2 - ¢,,, while the es-
timated computational time for the perturbation-
based method is -t + (n+1) - £,,. The estimated

values of t,, and t,,, are illustrated in Table 6, which
can help us estimate the total running time (in sec-
onds) of different zero-shot methods.

6.2 Balancing Efficiency and Performance

In this subsection, we provide additional experi-
ments on LRR (the best perturbation-free method)
and NPR (the best perturbation-based method,
more time-consuming than LRR but also rather sat-
isfactory performance) to provide users with some
intuition on setting parameters of NPR and choos-
ing among between these two methods according
to user’s preference of efficiency and performance.

First, we study the perturbation function used
for NPR. Different from Section 5.2, where the
focus is to illustrate the advanced performance of
NPR compared with DetectGPT, here, we mainly
focus on the efficiency performance trade-off per-
spective and provide some intuition on choosing
perturbation functions.

T5-small and T5-base are not good candidates
for perturbation functions. T5-small and T5-
base are 2 or 3 times faster than larger models such
as T5-large (as shown in Table 6), one might won-
der if it is possible to trade the saved time with more
perturbations for a better performance? We give a
negative answer to this. We observe in Figure 3 that
using T5-base and T5-small performs worse than
LRR even with 50 to 100 perturbations, which sug-
gests that LRR can be at least 50 to 100 times faster

12401

P /./ 86 65
92 ‘ el K23 R —
82 o—"
xsum |/ 88 |4 84 // —| 82 /
86 / / .
90 82 80 80 | o|
1020 50 100 1020 50 100 1020 50 100 1020 50 100 1020 50 100 1020 50 100
(W Fmmmmmmm =] (| e Fremmmmmem| e N
%0 20 85 82
94 - 60
SQUAD /..——._/ -
o .| 88 —
92 — S . _— 50
A “ 80 | smzm— . >
85 80 L S —
1020 50 100 1020 50 100 1020 50 100 1020 50 100 1020 50 100 1020 50 100
I e I e T el B i RfF-mommmme] Freosmsoee=
96
80
95 . 94 90
WritingP —— o — —
/ /. 92 7 88 ./ 75
% / S — Jr— .
92 | 7 90

1020 50 100
#(Perturbations)

1020 50 100 1020 50 100
#(Perturbations) #(Perturbations)

—+— NPR(with T5-base)

Figure 3:

GPT2-xI

Comparing LRR and NPR when T5-small and T5-

1020 50 100
#(Perturbations)

NPR(with T5-small)

1020 50 100
#(Perturbations)

== LRR

1020 50 100
#(Perturbations)

base are used for perturbation in NPR (AUROC scores).

95

90

85

95

90 |/

85

2 4 6 8101214161820

98
WritingP
96

94

 pp—————————
Pl
o~
/'

/

2 4 6 8101214161820
#(Perturbations)

2 4 6 8101214161820 2 4 6 8101214161820
#(Perturbations) #(Perturbations)

—e— NPR(with T5-3b)

NPR(with T5-large)

2 4 6 8101214161820
#(Perturbations)

2 4 6 8101214161820
#(Perturbations)

== LRR

2 4 6 8101214161820
#(Perturbations)

Figure 4: Comparing LRR and NPR using T5-3b and T5-large for perturbation in NPR (AUROC scores).

while outperforming perturbation based methods.
So, if the user can only afford TS5-small or T5-base
as a perturbation function, they should choose LRR
with no hesitation since it achieves both better effi-
ciency and better performance.

Cost-Effectiveness on More Perturbations and
Larger Perturbation Function. In Figure 4, we
illustrate the effectiveness of LRR compared to
NPR with T5-large and T5-3b as perturbation func-
tion respectively, from which, we find that (1) T5-
3b has a higher performance upper limits compared
with T5-large. So, if resources are allowed (enough
memory and adequate perturbation time), t5-3b
would be a better choice, especially for users who
prioritize performance. (2) To achieve the same
performance as LRR, generally, we only need less
than 10 perturbations using T5-3b as the perturba-
tion function. This estimate could help us choose
whether to use NPR or LRR on the validation set:
setting the number of perturbations to be 10, if
LRR outperforms NPR, we would suggest using
LRR, otherwise, NPR would be a better option. (3)
To achieve the same performance, using T5-large
takes more than 2 times perturbations than using

T5-3b, while the perturbation time using T5-3b
is less than twice the time using T5-large, so us-
ing large perturbation functions such as T5-3b is
much more efficient than using smaller ones such
as T5-large. The only concern is the memory.

In summary, we suggest using the larger per-
turbation functions if memory permits, which is
more cost-effective: and less time-consuming for
the same performance and has a high-performance
upper limit. Moreover, setting the number of per-
turbations to 10 would be a good threshold on the
validation set to decide whether to use NPR or
LRR.

7 Conclusion

In this paper, we proposed two simple but effective
zero-shot machine-generated text detection meth-
ods by leveraging the Log-Rank information. The
methods we proposed —LRR and NPR—, achieve
state-of-the-art performance within their respective
category. In addition, we explored different settings
such as decoding strategy and temperatures, as well
as different perturbation functions and number of
perturbations to better understand the advantages

12402

and the disadvantages of different zero-shot meth-
ods. Then, we analyzed the computational costs
of these methods, and we provided guidance on
balancing efficiency and performance.

Limitations

One of the limitations of zero-shot methods is the
white box assumption that we can have some statis-
tics about the source model. This induces two
problems: for closed-source models (such as GPT-
3), these statistics might not have been provided.
Moreover, in practice, the detector might have to
run the model locally to get the statistics for the
purpose of detection, which requires that the de-
tector have enough resources to use the LLLM for
inference. Based on the limitations of zero-shot
methods, we consider weakly supervised learning
(Ratner et al., 2017) as an important direction for
future work. Though many papers in detecting
machine-generated text assume knowing the source
LLM where the text is generated from, in realis-
tic, the source LLM might be unknown, so it is
worth combining weak supervised learning as well
as weak supervision sources (other LLMs at hand
that might not be the target LLM) to weakly train
a classifier. With the flexibility of the weak super-
vision sources, the limitations of our work could
possibly be addressed: (1) Since the weak supervi-
sion sources do not have to be from the same target
model, there is no need to assume that the target
LLM is known. (2) Since the weak supervision
sources are classifiers, we could only use statis-
tics that are within reach, or even statistics from
other open-source LLMs. (3) The weak supervi-
sion sources can be from smaller LLMs, rather
than the target LLM, this relaxes the requirement
for running an extremely large LLM locally.

In addition, our conclusions hugely rely on our
English-centric experiments. It is worth noting that
the detection of machine-generation text in other
languages is also important, especially for low-
source languages. We encourage future studies on
the investigation of zero-shot detection in multi-
lingual settings.

Ethics and Broader Impact

Although our paper focuses on the malicious use
of LLMs such as spreading misinformation and
propaganda, or dishonesty in the education system,
it’s necessary to recognize that LLMs also have a
wide range of potential benefits, and we would like

to point out that most of the people apply LLMs
for good conducts such as improving their work
efficiency.

Moreover, even though our detectors achieve
high AUC scores, it should be recognized that ev-
ery machine-generated text detector, including ours,
has its limitations and can make mistakes, we can’t
guarantee 100% accuracy for every sample. As
such, when deciding whether a text, such as a stu-
dent’s essay, is written by a human or machine,
our results are for reference only and should not
be used as concrete evidence for punishment. For
ethical concerns, our detector should only assist hu-
mans to make decisions, rather than directly make
decisions for users, thus, we recommend users take
these results as one of many pieces in a holistic
assessment of texts.

References

Sahar Abdelnabi and Mario Fritz. 2021. Adversarial wa-
termarking transformer: Towards tracing text prove-
nance with data hiding. In 2021 IEEE Symposium on
Security and Privacy (SP), pages 121-140. IEEE.

Sameer Badaskar, Sachin Agarwal, and Shilpa Arora.
2008. Identifying real or fake articles: Towards bet-
ter language modeling. In Proceedings of the Third
International Joint Conference on Natural Language
Processing: Volume-II.

Anton Bakhtin, Sam Gross, Myle Ott, Yuntian
Deng, Marc’Aurelio Ranzato, and Arthur Szlam.
2019. Real or fake? learning to discriminate ma-
chine from human generated text. arXiv preprint
arXiv:1906.03351.

Daria Beresneva. 2016. Computer-generated text detec-
tion using machine learning: A systematic review. In
Natural Language Processing and Information Sys-
tems: 21st International Conference on Applications
of Natural Language to Information Systems, NLDB
2016, Salford, UK, June 22-24, 2016, Proceedings
21, pages 421-426. Springer.

Sid Black, Stella Biderman, Eric Hallahan, Quentin An-
thony, Leo Gao, Laurence Golding, Horace He, Con-
nor Leahy, Kyle McDonell, Jason Phang, Michael
Pieler, USVSN Sai Prashanth, Shivanshu Purohit,
Laria Reynolds, Jonathan Tow, Ben Wang, and
Samuel Weinbach. 2022. Gpt-neox-20b: An open-
source autoregressive language model.

Sid Black, Gao Leo, Phil Wang, Connor Leahy,
and Stella Biderman. 2021. GPT-Neo: Large
Scale Autoregressive Language Modeling with Mesh-
Tensorflow. If you use this software, please cite it
using these metadata.

12403

https://doi.org/10.48550/ARXIV.2204.06745
https://doi.org/10.48550/ARXIV.2204.06745
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Tiziano Fagni, Fabrizio Falchi, Margherita Gambini, An-
tonio Martella, and Maurizio Tesconi. 2021. Tweep-
fake: About detecting deepfake tweets. Plos one,
16(5):e0251415.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018.
Hierarchical neural story generation. arXiv preprint
arXiv:1805.04833.

Luciano Floridi and Massimo Chiriatti. 2020. Gpt-3:
Its nature, scope, limits, and consequences. Minds
and Machines, 30:681-694.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho-
race He, Anish Thite, Noa Nabeshima, et al. 2020.
The pile: An 800gb dataset of diverse text for lan-
guage modeling. arXiv preprint arXiv:2101.00027.

Sebastian Gehrmann, Hendrik Strobelt, and Alexan-
der M Rush. 2019. Gltr: Statistical detection
and visualization of generated text. arXiv preprint
arXiv:1906.04043.

Alexei Grinbaum and Laurynas Adomaitis. 2022. The
ethical need for watermarks in machine-generated
language. arXiv preprint arXiv:2209.03118.

Biyang Guo, Xin Zhang, Ziyuan Wang, Minqi Jiang,
Jinran Nie, Yuxuan Ding, Jianwei Yue, and Yupeng
Wau. 2023. How close is chatgpt to human experts?
comparison corpus, evaluation, and detection. arXiv
preprint arXiv:2301.07597.

Xinlei He, Xinyue Shen, Zeyuan Chen, Michael Backes,
and Yang Zhang. 2023. Mgtbench: Benchmarking
machine-generated text detection. arXiv preprint
arXiv:2303.14822.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2019. The curious case of neural text
degeneration. arXiv preprint arXiv:1904.09751.

Daphne Ippolito, Daniel Duckworth, Chris Callison-
Burch, and Douglas Eck. 2019. Automatic detection
of generated text is easiest when humans are fooled.
arXiv preprint arXiv:1911.00650.

Ganesh Jawahar, Muhammad Abdul-Mageed, and
Laks VS Lakshmanan. 2020. Automatic detection
of machine generated text: A critical survey. arXiv
preprint arXiv:2011.01314.

John Kirchenbauer, Jonas Geiping, Yuxin Wen,
Jonathan Katz, Ian Miers, and Tom Goldstein. 2023.
A watermark for large language models. arXiv
preprint arXiv:2301.10226.

Kalpesh Krishna, Yixiao Song, Marzena Karpinska,
John Wieting, and Mohit Iyyer. 2023. Paraphras-
ing evades detectors of ai-generated text, but re-
trieval is an effective defense. arXiv preprint
arXiv:2303.13408.

Thomas Lavergne, Tanguy Urvoy, and Francois Yvon.
2008. Detecting fake content with relative entropy
scoring. PAN, 8:27-31.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Eric Mitchell, Yoonho Lee, Alexander Khazatsky,
Christopher D Manning, and Chelsea Finn. 2023.
Detectgpt: Zero-shot machine-generated text detec-

tion using probability curvature. arXiv preprint
arXiv:2301.11305.

Shashi Narayan, Shay B Cohen, and Mirella Lap-
ata. 2018. Don’t give me the details, just the
summary! topic-aware convolutional neural net-
works for extreme summarization. arXiv preprint
arXiv:1808.08745.

OpenAl. 2022. gpt: Optimizing language mod-
els for dialogue. http://web.archive.org/web/
20230109000707/https://openai.com/ blog/chatgp?/.

Artidoro Pagnoni, Martin Graciarena, and Yulia
Tsvetkov. 2022. Threat scenarios and best practices
to detect neural fake news. In Proceedings of the
29th International Conference on Computational Lin-
guistics, pages 1233-1249.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Alexander Ratner, Stephen H Bach, Henry Ehrenberg,
Jason Fries, Sen Wu, and Christopher Ré. 2017.
Snorkel: Rapid training data creation with weak su-
pervision. In Proceedings of the VLDB Endowment.
International Conference on Very Large Data Bases,
volume 11, page 269. NIH Public Access.

Joshua Robinson, Christopher Michael Rytting, and
David Wingate. 2022. Leveraging large language
models for multiple choice question answering.
arXiv preprint arXiv:2210.12353.

Kalhan Rosenblatt. 2023. Chatgpt passes mba exam
given by a wharton professor. Retrieved Jan,
25:2023.

12404

Vinu Sankar Sadasivan, Aounon Kumar, Sriram Bala-
subramanian, Wenxiao Wang, and Soheil Feizi. 2023.
Can ai-generated text be reliably detected? arXiv
preprint arXiv:2303.11156.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ili¢, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, Francois Yvon,
Matthias Gallé, et al. 2022. Bloom: A 176b-
parameter open-access multilingual language model.
arXiv preprint arXiv:2211.05100.

Irene Solaiman, Miles Brundage, Jack Clark, Amanda
Askell, Ariel Herbert-Voss, Jeff Wu, Alec Rad-
ford, Gretchen Krueger, Jong Wook Kim, Sarah
Kreps, et al. 2019. Release strategies and the so-
cial impacts of language models. arXiv preprint
arXiv:1908.09203.

Chris Stokel-Walker. 2022. Ai bot chatgpt writes smart
essays-should academics worry? Nature.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Adaku Uchendu, Thai Le, Kai Shu, and Dongwon Lee.
2020. Authorship attribution for neural text gener-
ation. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 8384—8395.

Ben Wang and Aran Komatsuzaki. 2021. GPT-
J-6B: A 6 Billion Parameter Autoregressive
Language Model. https://github.com/
kingoflolz/mesh-transformer-jax.

Yuxia Wang, Jonibek Mansurov, Petar Ivanov, Jinyan
Su, Artem Shelmanov, Akim Tsvigun, Chenxi
Whitehouse, Osama Mohammed Afzal, Tarek Mah-
moud, Alham Fikri Aji, et al. 2023. M4: Multi-
generator, multi-domain, and multi-lingual black-box
machine-generated text detection. arXiv preprint
arXiv:2305.14902.

Ann Yuan, Andy Coenen, Emily Reif, and Daphne Ip-
polito. 2022. Wordcraft: story writing with large
language models. In 27th International Conference
on Intelligent User Interfaces, pages 841-852.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022. Opt: Open pre-
trained transformer language models.

Xuandong Zhao, Yu-Xiang Wang, and Lei Li. 2023.
Protecting language generation models via invisible
watermarking. arXiv preprint arXiv:2302.03162.

Terry Yue Zhuo, Yujin Huang, Chunyang Chen, and
Zhenchang Xing. 2023. Red teaming chatgpt via
jailbreaking: Bias, robustness, reliability and toxicity.
arXiv preprint arXiv:2301.12867, pages 12-2.

12405

https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/2205.01068

A Experimental Details and Baselines

Details on Baselines. We mainly compare the proposed methods with zero-shot methods, which utilize
the source model itself to extract distinguishable statistic features, including:

* Log-Likelihood (log p) (Solaiman et al., 2019): This approach evaluates the average token-wise log
probability of the text and classifies text with higher Log-Likelihood to be machine-generated.

* Rank (Gehrmann et al., 2019): This approach evaluates the average rank of each token of the text
and classifies text with a smaller average rank to be machine-generated.

* Log-Rank (Mitchell et al., 2023): Instead of using the Rank score directly, this approach evaluates
the average Log-Rank of each token of the text and classifies text with a smaller average Log-Rank
to be machine-generated.

* Entropy (Gehrmann et al., 2019): This approach is inspired by the hypothesis that machine-generated
texts are more likely to have over-confident (thus low entropy) predictive distributions. In practice,
(Mitchell et al., 2023) discovered that entropy is positively correlated with passage fakeness, therefore,
following their convention, we use high average entropy as a signal of machine-generated text.

e DetectGPT (Mitchell et al., 2023): DetectGPT is based on the hypothesis that when applying
small perturbations to a passage x and produce the perturbed text Z, the quantity log py(x) —
log pp() is relatively larger for machine-generated samples than human written one. In practice, the
performance of this approach depends heavily on the external perturbation function and the number
of perturbations.

Details on LLMs used. We used 7 LLMs ranging from 1.5B parameters to 20B parameters in our main
experiments.

e GPT-2-xI (Radford et al., 2019) is the 1.5B parameter version of GPT-2 trained on a dataset of 8
million web pages called WebText (Radford et al., 2019), whose objective is to predict the next word
given previous words within the text. GPT-2-x1 surpasses many other language models trained on
specific domains (such as books, news, Wikipedia) without using domain-specific training datasets.

* GPT-Neo-2.7B (Black et al., 2021) was trained as an autoregressive language model on Pile (Gao
et al., 2020) dataset with EleutherAI’s replication of the GPT-3 architecture.

* OPT-2.7B and OPT-13B are two models among a collection of decoder-only pre-trained transformers
introduced in (Zhang et al., 2022), with the performance roughly matching GPT-3 of the same size.

* GPT-j-6B (Wang and Komatsuzaki, 2021), which was also trained on Pile (Gao et al., 2020), exhibits
zero-shot performance roughly comparable to GPT-3 of comparable size. In addition, the performance
gap from GPT-3 of similar size is closer than the GPT-Neo models.

* Llama-13b is the 13B parameter model from Llama models (Touvron et al., 2023): a collection of
models ranging from 7B to 65B parameters trained with publicly available datasets. Llama-13B
outperforms GPT-3 (175B) on most benchmarks, and all the models are released to the research
community.

* NeoX-20B (Black et al., 2022) is a 20B autoregressive model trained on Pile, whose weights have
been released openly to the public.

Experimental Details. For small models such as GPT-2-x1, Neo-2.7, OPT-2.7, GPT-j, we use 1 NVIDIA
A100 GPU (with total memory 40G) in our experiments; for larger models such as OPT-13b and Llama-13,
we use 3 A100 GPUs (total memory 120 G) while using 4 A100 GPUs (total memory 160 G) for the
largest model NeoX-20.

12406

GPT-2-x] Neo-2.7 OPT-2.7 GPT-j OPT-13 Llama-13 NeoX Avg.
RoBERTa-base 97.57 96.82 9486 90.37 88.62 79.18 88.96 90.91
RoBERTa-large 99.74 99.73 98.37 97.58 93.85 85.93 95.13 95.76

RoBERTa-base 97.65 9442 9256 87.57 88.96 76.98 84.37 88.93
RoBERTa-large 99.01 98.30 96.53 93.31 91.62 82.59 88.37 92.82

RoBERTa-base 96.88 9523 89.57 93.26 86.18 83.49 88.92 90.50
RoBERTa-large 98.75 98.80 9498 97.11 88.75 88.32 93.72 94.35

XSum

SQuAD

WritingP

Table 7: Complete results for the supervised methods (AUROC score).

top-k top-p
Neo-2.7 OPT-2.7 GPT-j Llama-13 Neo-2.7 OPT-2.7 GPT-j Llama-13
RoBERTa-base 96.48 94.15 9272 8247 9830 97.30 96.71 85.84

XSum RoBERTa-large 99.74 98.06 98.29 87.33 99.84 98.97 98.82 89.35
SQUAD RoBERTa-base 93.55 93.27 87.60 76.79 96.34 97.65 92.26 84.05
u RoBERTa-large 98.35 96.88 93.97 82.42 98.21 98.39 95.09 86.46
- RoBERTa-base 97.27 90.14 93.86 83.24 98.33 94.09 96.55 88.78
WritingP

RoBERTa-large 99.34 96.34 97.12 87.05 99.68 96.06 97.94 89.59

Table 8: Complete results for the supervised methods using top-k (k = 40) and top-p (p = 0.96) sampling across
four models (AUROC scores).

B Supervised Methods

Main results for supervised methods. Comparing Table 1 with Table 7, we found that, on average, our
best zero shot method (either LRR on SQuAD dataset or NPR on XSum and WritingPrompts dataset) can
exceed supervised model fine-tuned on RoBERTa-base. For the larger model RoBERTa-large, only on
writing dataset, perturbation-based method DetectGPT and NPR outperform RoBERTa-large model, by a
margin of 0.55% and 2.87% respectively.

Supervised Method with Different Decoding Strategy. We experimented the 4 models used in zero-
shot methods with top-p and top-k decoding strategy for the supervised method and found that using
top-p decoding strategy performs better than using top-k. (See Table 8). Compared to zero-shot methods,
the best zero-shot method NPR can outperform the RoOBERTa-base model while being comparable to the
RoBERTa-large model.

Supervised Method with Different Temperature. Supervised methods also perform better with
lower temperature, but zero-shot methods such as Log-Rank and Log-Likelihood methods might exceed
supervised methods in low temperature. Moreover, we found that the performance gap of ROBERTa-base
and RoBERTa-large would be narrowed with lower temperature. The results are illustrated in Figure 5.

C Comparing NPR and DetectGPT

Different Number of Perturbations. The results for models smaller than or equal to 13B parameters are
shown in Figure 6. For the NeoX-20b model, we don’t have enough computation resources to perform 100
perturbations, so we show it separately in Figure 7 with 1, 10, 20, and 50 perturbations. For XSum dataset,
NPR and DetectGPT almost coverages with 100 perturbations, but for the SQuAD and WritingPrompts
dataset, NPR still outperforms DetectGPT even with 100 perturbations. For the SQuAD dataset with the
Llama-13b model, DetectGPT exhibits abnormality while NPR maintains stably improved performance as
the number of perturbations increases. In addition, in nearly all the datasets and models, NPR outperforms
DetectGPT except GPT-j on the XSum dataset, demonstrating the effectiveness of NPR compared to
DetectGPT.

Using T5-large as Perturbation Function. We illustrate the performance of NPR and DetectGPT
in Figure 8 with different combinations of dataset and LLMs using T5-large as a perturbation function.
Compared to T5-3b illustrated in Figure 6, the superiority of NPR over DetectGPT becomes more distinct
with T5-large being the perturbation function, where in almost all the LLMs, datasets and different
numbers of perturbations (except with Llama-13b on SQuAD), NPR outperforms DetectGPT by a large
margin. In addition, we could also observe that NPR achieves comparable or even better results with only

12407

XSum SQuUAD WritingP

5 095 [l 095 ot
2 09 0817 0.9 9730 0.9 97,06
o
" o) o e s
70 75 80 85 90 95 100 70 75 80 85 90 95 100 70 75 80 85 90 95 100
OPT'267957 98.32 0.95 1 97.73 0.95 1 95.84
W 95.78 : 95.32 : 91.97
% 0.91 97,55 0.91 5727 0.91 0aie
% 071 58,54 0.7 9959 0.71 95.68
" o) s e s
70 75 80 85 90 95 100 70 75 80 85 90 95 100 70 75 80 85 90 95 100
OPT'103957 94.85 0.951 94.43 0.951 91.14
o ' 90.11 ' 92.32 : 88.68
3
o3 5 o3 B
70 75 80 85 90 95 100 70 75 80 85 90 95 100 70 75 80 85 90 95 100
sl 095 |82
2 09 ate 0.91 8335 0.9 832
%‘ 0.7] 9501 0.7 93.05 0.71 57,02
" os 97,08 0.5 o407 0.5 95.07
70 75 80 85 90 95 100 70 75 80 85 90 95 100 70 75 80 85 90 95 100
perfromance(%) perfromance(%) perfromance(%)
roberta-base roberta-large

Figure 5: Comparing supervised methods with different temperature (AUROC score).

10 perturbations to that of DetectGPT with 100 perturbations, which indicates that NPR is more efficient
and can achieve a similar level of performance with significantly fewer perturbations.

D Alternative Sampling Strategies and Temperature

Different Sampling Strategy. In Table 9, we illustrate the complete results with different zero-shot
methods with four LLMs using top-p and top-%k sampling. For perturbation-based methods, even with
different sampling strategies, NPR provides a clearer signal for machine-generated text detection than
DetectGPT. Moreover, we find that although LRR is more stable than Log-Rank and Log-Likelihood
methods: when replacing temperature sampling to top-p and top-k sampling, all the above-mentioned
three zero-shot methods’ performance improves, however, LRR improves approximately the same for
both top-k and top-p sampling while the other two is more in favour of top-p sampling.

Different Temperature. Here, we investigate how the temperature used for machine-generated texts
affects the detection accuracy of different zero-shot methods. From Figure 9, we find that all the
perturbation-free zero-shot methods improved their performance with the decreasing temperature. In
particular, for the Log-Rank and Log-Likelihood method, the performance can become extremely high

12408

GPT2-xI Neo-2.7 06 OPT-2.7 GPT+j OPT-13 Llama-13
90

(%) . — S —]
E— ps o| 70 /
/ g / — | o2 / — .
94 /
XSum 967 981" o - i / /
88{ 5 .
2 / sa—/
94
90+
. 96
1020 50 100 1020 50 100 1020 50 100 1020 50 100 1020 50 100 1020 50 100
(%) 96

f *| 96 o g5 . .
99 L /./ |85 L L

SQuAD | / 94 o / / 88 ./ 48]
j 9 f 821 \
974 92 85 474 —
/ / / e

1020 50 100 1020 50 100 1020 50 100 1020 50 100 1020 50 100 1020 50 100
(%) — 80
J 98
o/ 99 ./0 97 o ./0 ./o
WritingP?8 | 2y _~ L
98 o F % -
f s =—e—DetectGPT ’ 751 7
981 / 97 / 96 NPR(ours) / /
¢ ¢ . 904¢ 944¢ <
1020 50 100 1020 50 100 1020 50 100 1020 50 100 1020 50 100 1020 50 100
#(Perturbations) #(Perturbations) #(Perturbations) #(Perturbations) #(Perturbations) #(Perturbations)

Figure 6: Comparing DetectGPT and NPR (AUROC score).

XSum SQUAD WritingP
/' 701
§ 80 e . —
3 / ./ 94 [/ 7~
c o / H
©
g 75 65 p
£ 801" [——DetectGPT
o NPR(ours)
d d ’
1 10 20 50 1 10 20 50 1 10 20 50
#(Perturbations) #(Perturbations) #(Perturbations)

Figure 7: Comparing DetectGPT and NPR on NeoX-20b (AUROC score).

when the temperature drops, even exceeding NPR and achieving approximately 100 points detection
accuracy. For example, in Neo-2.7 and OPT-13 with temperature 0.5, log p method and Log-Rank method
achieve an accuracy of 100 points on WritingPrompts dataset, this prevalent performance can be observed
notably in smaller models with relatively high temperature (such as GPT-2-x1 and Neo-2.7 with high
temperature such as 0.7) or in large models with relatively lower temperature such as OPT-13 with
temperature 0.5 as we demonstrated in Figure 9. Though we omit the entropy method because it gets
an accuracy worse than random guessing, one of the observations from our experiments is that using
the assumption “machine-generated text has higher entropy" suggested in (Mitchell et al., 2023), the
performance of the entropy method improves with the increasing temperature with absolute accuracy
smaller than 50 points, which suggests that for low temperature, we should use the assumption “machine-
generated text has lower entropy" for detection machine-generated text. In general, the Entropy method
performs worse than random and is not an implementable detection method.

For perturbation-based methods (Figure 10), while DetectGPT does not exhibit a clear trend with
respect to temperature, the performance of NPR improves with the decreasing temperature most of the
time. However, this trend is not as clear as the Log-Rank and Log-Likelihood methods, especially when
the temperature becomes too low. This behaviour suggests that the perturbation-based method is more
suitable for high temperatures, while the perturbation-free method is more suitable for low temperature.

12409

GPT2-xI Neo-2.7 OPT-2.7 GPT-j OPT-13 Llama-13

(%)
N | 85 82 60
90+ — | 02 —_ R |8
XSum — / / e N
. . 80 / —_—
88 | /' / / ’ 58
{ 9014 8014 804 75 ./ ot
1020 50 100 1020 50 100 1020 50 100 1020 50 100 1020 50 100 1020 50 100
(%) O
85
92 o—"] 85 *| 751 .
SQUAD / 88 N) /./ _—| 80 ./.
F L.
./ ; ./ ,/ ~.
75 43
=1/ / / / T~
d J 4 7044 K o
80
1020 50 100 1020 50 100 1020 50 100 1020 50 100 1020 50 100 1020 50 100
(%) 95 70
961 o 90 .| 5] —e—DetectGPT
e od 1 0"
WritingP /,/ /.___. / — 90 N . NPR(ours)
94 1 S
65
/ F 881 / °/ o/ /' °
o1/ / wl/ w1/ /
d d 4 4 4 o
1020 50 100 1020 50 100 1020 50 100 1020 50 100 1020 50 100 1020 50 100
#(Perturbations) #(Perturbations) #(Perturbations) #(Perturbations) #(Perturbations) #(Perturbations)

Figure 8: Comparing DetectGPT and NPR using t5-large (AUROC score).

top-k top-p
Dataset Perturbation Method Neo-2.7 OPT-2.7 GPT-j Llama-13 Neo-2.7 OPT-2.7 GPT-j Llama-13
log p 91.27 90.19 8595 59.14 9552 9327 91.13 67.86
Rank 7879 7675 7725 49.94 78.58 76.89 77.18 50.77
w/lo Log-Rank 9420 9230 89.18 65.09 96.71 9393 9253 71.44
XSum Entropy 53.07 4780 53.23 67.76 49.05 4641 5216 67.94

LRR (ours) 95.50 92.35 91.14 77.99 95.64 90.68 91.14 75.72
DetectGPT 98.94 96.63 96.56 73.22 98.82 9772 96.58 77.82

v NPR (ours) 99.61 98.23 96.41 77.48 99.27 9840 97.35 78.67

log p 87.85 91.00 8132 45.06 9120 9424 86.69 56.16

Rank 80.10 82.14 79.81 55.21 80.56 8240 80.28 56.89

wlo Log-Rank 92.58 9440 86.94 51.21 9448 96.37 90.44 60.66

SQuAD Entropy 54.62 50.83 56.89 69.52 5451 50.01 55.67 63.26
LRR (ours) 97.79 97.58 94.55 72.52 9748 98.11 94.38 74.38

W DetectGPT 97.04 9753 87.59 4752 9750 9748 88.90 52.06

NPR (ours) 98.56 99.35 91.21 50.83 98.32 99.18 92.99 54.28

log p 96.62 9599 95.67 86.93 98.16 98.10 97.11 92.68

Rank 82.67 8396 8349 7849 82.89 8445 83.55 79.01

wlo Log-Rank 97.90 9723 97.20 90.57 98.73 98.60 97.89 94.56
WritingP Entropy 3237 3822 34.37 44.09 27.08 36.77 32.82 39.03
LRR (ours) 98.58 97.97 98.06 93.80 98.46 9797 97.76 94.79

W/ DetectGPT 99.05 98.65 96.05 81.83 98.80 98.62 96.67 82.70

NPR (ours) 99.58 9946 98.27 87.99 99.36 99.04 97.85 89.96

Table 9: Complete result for the zero-shot methods using top-k and top-p sampling across four models (AUROC
score).

12410

XSum SQuUAD WritingP

Neo-2.7
0.95 0.95 0.95
(O]
£ 09 0.9 0.9
2
(O]
g.
807 0.7 0.7
0.5 0.5 0.5
40 50 60 70 80 90 100 40 50 60 70 80 90 100 40 50 60 70 80 90 100
OPT-2.7
0.95 0.95 0.95
(O]
£ 0.9 0.9 0.9
©
Q
£
807 0.7 0.7
0.5 0.5 0.5
40 50 60 70 80 90 100 40 50 60 70 80 90 100 40 50 60 70 80 90 100
OPT-13
0.95 0.95 0.95
()
£ 09 0.9 0.9
©
(O]
g
807 0.7 0.7
0.5 0.5 0.5
40 50 60 70 80 90 100 40 50 60 70 80 90 100 40 50 60 70 80 90 100
Llama-13
0.95 0.95 0.95
(O]
£ 09 0.9 0.9
©
Q
g
8 07 0.7 0.7
0.5 0.5 0.5

40 50 60 70 80 90 100 40 50 60 70 80 90 100 40 50 60 70 80 90 100
perfromance(%) perfromance(%) perfromance(%)
I logp B Rank I |og Rank I | RR(ours)

Figure 9: Comparison of perturbation-free methadsiusing different temperatures (AUROC score).

XSum SQuUAD WritingP

Neo-2.7
0.95 0.95 0.95
o
2 09 0.9 0.9
g
g 07 0.7 0.7
@
0.5 0.5 0.5
40 50 60 70 80 90 100 40 50 60 70 80 90 100 40 50 60 70 80 90 100
OPT-2.7
0.95 0.95 0.95
o
2 009 0.9 0.9
g
g o7 0.7 0.7
@
0.5 0.5 0.5
40 50 60 70 80 90 100 40 50 60 70 80 90 100 40 50 60 70 80 90 100
OPT-13
0.95 0.95 0.95
o
2 09 0.9 0.9
g
g 07 0.7 0.7
@
0.5 0.5 0.5
40 50 60 70 80 90 100 40 50 60 70 80 90 100 40 50 60 70 80 90 100
Llama-13
0.95 0.95 0.95
g
35
2 09 0.9 0.9
3
g 07 0.7 0.7
@
0.5 0.5 0.5

40 50 60 70 80 90 100 40 50 60 70 80 90 100 40 50 60 70 80 90 100
perfromance(%) perfromance(%) perfromance(%)
Bl DetectGPT B NRP(ours)

Figure 10: Comparison of perturbation methods using different temperature (AUROC score).

12412

