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Abstract

Efficiency is a key property to foster inclusive-
ness and reduce environmental costs, especially
in an era of LLMs. In this work, we pro-
vide a comprehensive evaluation of efficiency
for MT evaluation metrics. Our approach in-
volves replacing computation-intensive trans-
formers with lighter alternatives and employing
linear and quadratic approximations for align-
ment algorithms on top of LLM representations.
We evaluate six (reference-free and reference-
based) metrics across three MT datasets and
examine 16 lightweight transformers. In ad-
dition, we look into the training efficiency of
metrics like COMET by utilizing adapters. Our
results indicate that (a) TinyBERT provides
the optimal balance between quality and effi-
ciency, (b) CPU speed-ups are more substantial
than those on GPU; (c) WMD approximations
yield no efficiency gains while reducing qual-
ity and (d) adapters enhance training efficiency
(regarding backward pass speed and memory
requirements) as well as, in some cases, met-
ric quality. These findings can help to strike a
balance between evaluation speed and quality,
which is essential for effective NLG systems.
Furthermore, our research contributes to the
ongoing efforts to optimize NLG evaluation
metrics with minimal impact on performance.
To our knowledge, ours is the most comprehen-
sive analysis of different aspects of efficiency
for MT metrics conducted so far.

1 Introduction

Evaluation is crucial to progress in fields such as
NLP and machine learning, as it is used to iden-
tify and assess the most promising, state-of-the-
art approaches. It is particularly challenging for
Natural Language Generation (NLG) systems as
text generation is open-ended: multiple outputs,
with very different surface-level realizations, can
be equally correct (Celikyilmaz et al., 2020). This
insight makes classical lexical overlap metrics such
as BLEU (Papineni et al., 2002) or ROUGE (Lin,

Figure 1: The COMET metric with pfeiffer adapter
configuration. Parameters of red blocks remain frozen
during training, while parameters of green blocks are
optimized.

2004) unsuitable as high-quality evaluation met-
rics. Consequently, there has been a recent surge
of interest (Freitag et al., 2022) in developing
evaluation metrics based on pretrained large lan-
guage models (LLMs), which can better cope with
lexical variation, thus yielding metrics that cor-
relate much better with human assessments of
quality. Notable examples are MoverScore (Zhao
et al., 2019), BERTScore (Zhang et al., 2020), and
BARTScore (Yuan et al., 2021).

However, basing evaluation metrics on large
transformers (and thus boosting the quality of the
metrics) also has downsides: for example, the as-
sociated computational burden (i) may promote
inequality among researchers, hindering diversity,
as not everyone has access to expensive compute
resources1 and (ii) incurs high environmental costs,
one of the most critical issues of our time (Strubell
et al., 2019). (iii) Inefficient metrics – which are
in addition non-transparent (Leiter et al., 2022)
– may also prevent high-quality metrics from be-
ing deployed by the community, a potential reason
why older, lower-quality but faster metrics such as

1E.g., Kamal Eddine et al. (2022) mention that they cannot
run variants of BERTScore on a 12GB GPU and the situation
would even be worse for more disadvantaged scholars around
the world.
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BLEU are still popular (Marie et al., 2021).
To better illustrate the issue, let us consider a typ-

ical setup for evaluating machine translation (MT)
systems (e.g., the setup of WMT shared tasks). In
such a case, one may, for example, have 30k seg-
ments to evaluate per language pair, 5 different
language pairs, and 50 assessed MT systems. If
one uses the BERTScore (Zhang et al., 2020) met-
ric with the author-suggested RoBERTa-Large (Liu
et al., 2020) encoder, then it would take 71 hours to
completely evaluate all the MT systems on a single
Nvidia A100 GPU (given that users do have access
to GPUs), producing around 8kg CO2-eq of carbon
footprint. If access to the GPU is restricted, one
could run the metric on a CPU, but it would take
more than 950 hours to do a full evaluation, pro-
ducing 5.4kg CO2-eq of carbon footprint. While in
the case of a shared task/challenge, the evaluation
of model outputs is usually not frequent, there are
some cases where evaluation is done constantly,
such as hyperparameter search and neural architec-
ture search.

Apart from evaluating MT systems, evaluation
metrics have a variety of possible use cases that
would greatly benefit from the computationally ef-
ficient solutions: a) metrics can be used as reward
functions in Reinforcement Learning pipelines; b)
some metrics can be used in the filtering of massive,
web-crawled parallel corpora; c) they can be used
in an online setting for real-time re-ranking of MT
systems outputs.

Thus, developing light-weight high-quality eval-
uation metrics for NLG is imperative, which we
explore in depth in this work. We focus on MT as a
prime instance of NLG, which also yields a diverse
set of scenarios for efficiency, including training
efficiency and the efficiency of multilingual mod-
els. Nonetheless, we believe that our insights hold
more generally.

Our paper about Efficient Evaluation (EffEval)
presents the following main contributions:
• We provide a comprehensive analysis of induc-
ing efficient, high-quality evaluation metrics based
on three principles: (i) replacing a computation-
heavy transformer in the metrics by much smaller
ones, obtained e.g. via pruning or distillation;
(ii) replacing costly alignment techniques (Word
Mover Distance; WMD) on top of transformers
with cheaper approximations; (iii) implementing
parameter-efficient training with adapters.
• Our analysis comprises three MT datasets, six

evaluation metrics, and 16 light-weight transform-
ers as replacements for the original transformers.
• Based on our large-scale analysis, we find that:
(a) for each metric, there is often at least one ef-
ficient transformer which leads to higher quality
and higher efficiency at the same time, but on av-
erage, there is a drop in quality when employing
more efficient models; (b) for example, for “se-
mantic similarity” metrics like BERTScore, we
find that the distilled transformer TinyBERT (Jiao
et al., 2020) has the best performance-quality trade-
off — on average, it retains 97% of the original
quality while being 5x faster at inference time; (c)
speedups differ substantially on CPU vs. GPU; (d)
WMD approximations yield no efficiency gains in
our experiments (as WMD itself is less costly than
embedding computation), but have adverse effects
on quality in 2 out of 3 datasets.
• Furthermore, we investigate training efficiency –
a crucial aspect of recent MT metrics which lever-
age more and more supervision signals (Rei et al.,
2020), despite criticisms (Belouadi and Eger, 2023)
– by examining the performance of the popular
COMET (Rei et al., 2020, 2022a) and COMET-
INHO (Rei et al., 2022b) trainable metrics when uti-
lizing adapters (Houlsby et al., 2019). Our findings
indicate that adapters contribute to an increased
backward pass speed by 37%-102% and a 26%-
32% reduction in memory usage, depending on the
model variant. Along with gains on training perfor-
mance, adapter-enabled models have outperformed
the fully-trainable ones, while being trained on the
same amount of data.
Our code is available at https://github.
com/NL2G/effeval.

2 Related work

Our work connects to (1) transformer-based evalua-
tion metrics and to (2) efficiency. Here, we provide
only a brief overview of the related papers. Ap-
pendix A contains additional related work.

Evaluation metrics: Recent transformer-
based metrics utilize BERT-based models like
BERTScore (Zhang et al., 2020) and Mover-
Score (Zhao et al., 2019). Extensions include
BARTScore (Yuan et al., 2021), which reads off
probability estimates as metric scores directly from
text generation systems, and MENLI (Chen and
Eger, 2023), which uses probabilities from mod-
els fine-tuned on Natural Language Inference task.
These metrics are reference-based (comparing the

79

https://github.com/NL2G/effeval
https://github.com/NL2G/effeval


MT output to a human reference), like BERTScore
and MoverScore, or reference-free (comparing
the MT output to the source text), like XMover-
Score (Zhao et al., 2020) and SentSim (Song et al.,
2021), and some are trained (fine-tuned on human
scores) like COMET (Rei et al., 2020) while others
are untrained, like BERTScore. Trained metrics
typically show higher correlations with human as-
sessments, but require more resources and, thus are
more costly. Transversal approaches by Fu et al.
(2023); Liu et al. (2023) use LLM predictions.

Efficiency: Techniques like knowledge distil-
lation (Hinton et al., 2015; Ganesh et al., 2021),
dynamic inference acceleration (Sun et al., 2019;
Xin et al., 2020; Zhu, 2021), and adapters (Pfeiffer
et al., 2020a; Houlsby et al., 2019) seek to im-
prove model efficiency. Knowledge distillation
involves a smaller student model learning from
a larger teacher, e.g., DistilBERT (Sanh et al.,
2019) and TinyBERT (Jiao et al., 2020). Ka-
mal Eddine et al. (2022) distill an efficient eval-
uation metric called FrugalScore from the teachers
BERTScore/MoverScore. Dynamic inference ac-
celeration adds early exit ramps based on represen-
tation changes in encoder layers. Adapters freeze
pre-trained transformers and train intermediate lay-
ers, which can reduce memory usage and improve
training speed with varying complexity (Pfeiffer
et al., 2020b; He et al., 2022; Liu et al., 2022).

3 Approach

For optimizing the metrics, we explore three ap-
proaches: (i) We replace transformers with smaller
and more efficient variants in §3.1 and (ii) we accel-
erate token matching by calculating Word Centroid
Distance (WCD) and Relaxed Word Mover’s Dis-
tance (RWMD) instead of more computationally
complex WMD for MoverScore and XMoverScore
in §3.2. Finally, (iii) we explore the impact of using
adapters on training efficiency and metric quality
for COMET and COMETINHO.

3.1 Replacing transformer models

Similarity-based metrics like BERTScore (Zhang
et al., 2020), (X)MoverScore (Zhao et al., 2019,
2020), BaryScore (Colombo et al., 2021) and
SentSim (Song et al., 2021) are not dependent on
specific models for calculating token representa-
tions. These metrics can leverage any model that
generates contextualized vector representations for
the input text tokens. By default, the authors of

BERTScore suggest using RoBERTa-Large (Liu
et al., 2020), which is computationally expensive.
To investigate the impact of utilizing more efficient
transformer models, we replace default encoders
with pruned, distilled, and dynamically accelerated
ones:

Distillation: We use DistilBERT (Sanh
et al., 2019) and TinyBERT (Jiao et al., 2020)
for reference-based semantic similarity metrics
BERTScore, MoverScore and BaryScore; dBART
(Shleifer and Rush, 2020) for reference-based
BARTScore; multilingual DistilMBERT (Sanh
et al., 2019) and XtremeDistil (Mukherjee and
Hassan Awadallah, 2020) for reference-free seman-
tic similarity metrics XMoverScore and SentSim;
DistilGPT-2 (von Platen, 2022) for XMoverScore
and mMiniLM (Wang et al., 2021) for XMover-
Score and SentSim. Pruning: We also examine the
performance of one of the miniature BERT mod-
els, BERTTINY, introduced in (Turc et al., 2020),
with BERTScore, MoverScore and BaryScore. Dy-
namic Inference Acceleration: For BERTScore,
MoverScore, and BaryScore, we build a version
using DeeBERT’s early exiting (Xin et al., 2020).

3.2 Improving Token Matching Efficiency

Our second approach for building more efficient
metrics involves enhancing the token matching
speed in metrics, specifically focusing on WMD
in MoverScore (Zhao et al., 2019, 2020; Colombo
et al., 2021), a popular approach for token match-
ing in evaluation metrics. Proposed by Kusner et al.
(2015), WMD is a specialized version of EMD
(Rubner et al., 1998) applied to word embeddings.
It computes the minimal cost of transforming one
document’s words into another’s while solving a
constrained optimization problem with two con-
straints. However, WMD has a high computational
cost due to its cubic inference complexity.

WCD Rubner et al. (1998) propose a linear
complexity loose lower bound of WMD which
Kusner et al. (2015) call Word Centroid Distance
(WCD). To calculate the distance between docu-
ments, WCD first calculates their centroids, i.e. the
center or average of their word vectors. Then the
Euclidean distance between the centroids of these
documents is calculated:

WCD(x, y) =

√√√√√ 1

|x|

|x|∑

i=1

E(xi)−
1

|y|

|y|∑

j=1

E(yj)

(1)
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In Eq. (1), x and y are two documents compared
and E is an embedding function.

RWMD Kusner et al. (2015) also propose the
much tighter RWMD, which removes one of the
two constraints in the WMD optimization problem.
Given the distance of every word in the first docu-
ment to every word in the other document, RWMD
can be calculated with a quadratic complexity.

3.3 Adapters

COMET We incorporate adapters into the training
pipeline of the COMET metric to enhance training
efficiency by replacing the backbone model from
the default pre-trained transformer with its adapter-
enabled version.

COMETINHO Furthermore, we apply the same
approach to a distillation process described in Rei
et al. (2022b). The training procedure for COMET-
INHO involves creating a large pseudo-labeled
dataset with the help of larger COMET models
and training a smaller version based on the smaller
MiniLM (Wang et al., 2020) pre-trained model
(instead of XLM-Roberta-Large (Conneau et al.,
2020)) and a smaller estimator layer.

Due to limited hardware resources, we reduce
the total training data for COMETINHO. Never-
theless, our goal is not to exactly replicate these
models but to investigate whether training metrics
can be efficiently obtained without substantial qual-
ity loss.

4 Experimental Setup

Following related work, we measure the success of
our optimized metrics based on the time needed to
calculate them, the memory used, and the storage
needed to save the program or related data.

4.1 Evaluation Protocol (disk space, inference
time, quality)

For untrained metrics, we assess efficiency by
measuring runtime, memory usage, and model size
and compare these with Pearson’s r as a quality
measure of the metric (correlation with human as-
sessments).

For the trainable COMET metric, we evaluate
forward pass and backward pass speeds in tokens
per second and memory usage as MB per token.
Using relative measures allows us to conduct exper-
iments more efficiently and receive results on the
same scale, regardless of batch size and distributed
training configuration. The metric’s quality is as-

sessed using Kendall τ as a correlation with human
evaluations. We choose Kendall τ to make our re-
sults more comparable to similar publications for
trained metrics such as Rei et al. (2022b).

4.2 Untrained metrics
Runtime To calculate the execution/inference
time, we measure the timestamp immediately be-
fore starting inference and immediately after end-
ing, then report the difference.

Since the computing speed of a system depends
on factors such as hardware and especially the
scheduling of tasks by the operating system, run-
times vary from one run to the next, even when all
internal variables stay the same. To reduce this vari-
ation, we run every experiment at least three times
and average the measured runtimes. For compara-
bility between different metrics, we set the batch
size of each metric to 1. We also present an ab-
lation study on the impact of different batch sizes
in Appendix D. It shows that while the ranking of
the models in terms of efficiency might differ with
higher batch sizes, our main claim (see below: that
TinyBERT provides the best tradeoff between met-
ric quality and efficiency) still holds. For compara-
bility between datasets, we divide the total runtime
of a metric by the number of segments.

Memory usage, parameters, and disk space
During inference, we measure the peak memory us-
age of the program. Since the metrics use the trans-
formers library built on PyTorch, we use PyTorch’s
memory_stats array to get the peak usage. We
further list the number of parameters in a model
and the size needed to save it on a hard drive.

Data We use datasets from WMT15, WMT16,
and WMT21, all published by the annual Machine
Translation conference WMT. The organizers pro-
vide source texts, machine translations, and human
references. The texts are from various categories,
but we only use the ones from newstest. The or-
ganizers also publish human assessments, which
we correlate with our metrics’ output as a qual-
ity measure. For WMT15 and WMT16, the hu-
man scores are Direct Assessment (DA) (Stano-
jević et al., 2015; Bojar et al., 2016), while for
WMT21, they follow the MQM framework (Lom-
mel et al., 2014).

WMT15 provides scored data in 5 language pairs
(4 of which are to-English) with 500 segments each,
in a total of 2000 segments. WMT16 provides
scored data in 7 language pairs (6 of which are
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to-English) with 560 segments each, in a total of
3360 segments.

For WMT21, scored data is available for three
language pairs (en-de, en-ru and zh-en). For the
only to-English language pair of those, WMT pro-
vides scores for 650 segments, per system. To
speed up analysis, we reduce the data to the outputs
of only five MT systems (DIDI-NLP, Facebook-AI,
MiSS, NiuTrans and SMU), in total 3250 segments.
Appendix B provides an overview of language pairs
and the number of segments available.

Hardware To get results that are less dependent
on our hardware, we consider two different setups:
(i) Virtual Machine on a personal computer: The
first setup is a virtual machine on a personal com-
puter. The VM has an Intel Core i5-10310U CPU
(4 cores, 1.70GHz) and 10 GiB RAM. This setup
does not have a GPU that can be used for calcu-
lations. (ii) Compute Cluster: The second setup
is the Compute Cluster of a TU Darmstadt Depart-
ment of Computer Science. For our experiments,
we chose an Intel Xeon Gold 5218R CPU (20 cores
each, 2.10GHz), with a main memory of 64GiB,
8 Nvidia A100 GPUs with 40GB memory each,
and runs CentOS Linux 7 as OS. Using the Slurm
Workload Manager (version 20.02.2), we limited
the usable CPU cores to 4 and GPUs to 1 during
our experiments.

For each experiment, we report the runtime on
the CPU (as an average of setup 1 and setup 2) and
on the GPU (only from setup 2).

4.3 Trainable metrics

Measuring Training Efficiency To evaluate the
impact of different adapter configurations on train-
ing efficiency, we measure both model pass speed
and memory usage.

The forward pass speed is assessed by recording
timestamps immediately before and after the model
forward passes, including the computation of the
loss function. The backward pass speed is mea-
sured by recording timestamps immediately before
and after executing backward pass on the model.
The difference between these two timestamps is
divided by the total number of tokens in the cur-
rent minibatch to obtain a normalized speed value.
For memory usage measurement, we employ Py-
Torch memory measurement utilities. Prior to the
training step, we reset the current memory usage
peak and record the new peak immediately after the
step. The final memory usage value is obtained by

dividing the memory usage peak by the total num-
ber of tokens in the current minibatch. Although
our primary focus in this section is on training ef-
ficiency, since inference is covered in another part
of the paper, readers can still gain insights into the
dynamics of inference efficiency through the mea-
sured forward pass speed. This metric provides a
useful indicator of the model’s performance during
the inference stage.

Adapter Configurations We examine the fol-
lowing adapter configurations and a reference run
without adapters.
• pfeiffer (Pfeiffer et al., 2020b): A bottleneck
adapter layer is placed only after the feedforward
block in each transformer layer. The bottleneck
consists of down-projection and up-projection with
non-linearity in between and an additional residual
connection:

h←−Wup × (Wdown × h) + r

Here, Wdown corresponds to a down-projection
weight matrix and Wup to an up-projection, re-
spectively, and h is an output of the transformer
block and r is a residual connection. See Figure 1
for the architecture of the COMET-like model with
pfeiffer adapters applied.
• houlsby (Houlsby et al., 2019): This configu-
ration places the same bottleneck adapter layer
both after multi-head attention and the feedforward
layer.
• parallel (He et al., 2022): This configuration
uses a bottleneck adapter placed in parallel to the
transformer layer.
• compacter (Karimi Mahabadi et al., 2021): Sim-
ilar to the bottleneck adapter layer, but instead of
linear multiplications, it uses parametrized hyper-
complex multiplication layers (PHM).
• (IA)3 (Liu et al., 2022): This configuration in-
troduces trainable vectors lW into different parts
of the transformer model in a way that augments
every matrix-multiplication layer with elementwise
multiplication:

h←− lW ⊙ (W × x)

Here, x is an output of a transformer block.

Data For training COMET-based models, we
use Direct Assessment (DA) data for the news do-
main from the WMT2020 (Barrault et al., 2020)
shared task training dataset. In total, it consists of
230,756 segments, covering 14 language pairs. For
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COMETINHO, we follow the approach of Rei et al.
(2022b) and use the data provided by them. We
take 10M segments out of the original 45M dataset
and compute pseudo-scores using the latest avail-
able COMET-22 model2. We train those models in
a reference-based setting. Model inputs consist of
the source text, its reference translation as well as
a hypothesis (which is a machine translation). The
model is optimized to predict a score in a range
between 0 and 1, where 1 means that the machine
translation of the source text is perfect.

We evaluate the metric’s quality using
WMT21 (Akhbardeh et al., 2021) newstest
datasets, which consists of 27141 segments: 9750
for zh-en, 8959 for en-de and 8432 for en-ru.

Hardware All training-efficiency-related exper-
iments were conducted on Bielefeld’s University
Compute Cluster. Each node uses an AMD EPYC
7713 64-core Processor, 4 x Nvidia A40, and 512
GB RAM.

5 Results

We structure this section as follows: We report
results for untrained (1) reference-based met-
rics (§5.1), (2) reference-free multilingual metrics
(§5.2), (3) consider WMD approximations for un-
trained MoverScore (§5.3) and then (4) we investi-
gate the impact of adapters on training efficiency
and metric quality for COMET and COMETINHO
trained metrics. Due to space constraints, we rele-
gate details to the appendix C and only list the key
results as a summary in the main part.

5.1 Reference-Based Metrics

We first consider the “semantic similarity” met-
rics MoverScore, BERTScore, and BaryScore, then
consider BARTScore, which is based on text gen-
eration and uses different transformer types and
corresponding efficient variants.

5.1.1 BERTScore, MoverScore, BaryScore
BERTScore, MoverScore, and BaryScore use
monolingual BERT-based transformers for em-
bedding references and hypotheses. We replace
the embedding model with one pruned model,
two distilled models, and an early exiting model.
The list of the covered models is as follows:
RoBERTaLARGE — a baseline, the default model
for BERTScore; BERTBASE — the default model

2https://huggingface.co/Unbabel/
wmt22-comet-da

for MoverScore and BaryScore; BERTTINY, Distil-
BERT, TinyBERT and DeeBERTMNLI. For detailed
experimental setup and results, please refer to Ap-
pendix §C.1.

Key results We visualize the runtime of the infer-
ence on a CPU and the quality achieved by the met-
rics in Figure 2. The fastest model for BERTScore,
MoverScore, and BaryScore is BERTTINY, with
up to 41x speedup; however, its quality decreases
substantially. TinyBERT achieves a better speedup-
quality ratio, with up to 27x speedup while main-
taining reasonable quality. Memory measurements
are lower for efficient models, with BERTTINY us-
ing 61x and TinyBERT using 18x less memory
than the baseline on BERTScore. DistilBERT has
a lower speedup, but the quality drop is less com-
pared to TinyBERT. DeeBERT performs similarly
to BERTBASE in quality and efficiency. Further,
we observe that speedups — no matter on which
metric, model, or dataset — are usually not as big
on GPU as on CPU, see in Figure 4 in Appendix C.

5.1.2 BARTScore
BARTScore originally uses BARTLARGE fine-tuned
on CNNDM and Parabank2 (Yuan et al., 2021). Op-
timizations of BART were researched by Shleifer
and Rush (2020). The models with the best results
from them use a Shrink and Fine-Tune approach
and were also trained on CNNDM. Apart from
the original models, we test BARTBASE and sev-
eral distilled versions — dBART-6-6, dBART-12-3,
dBART-12-6-t and dBART-12-9-m. Please refer to
Appendix §C.2 for detailed setup and results.

Key result BARTBASE is the fastest and most
memory-efficient model but has a substantialqual-
ity decline. The distilled version of the BART
model, dBART-6-6, achieves a higher correlation
compared to our baseline, BARTLARGE, with 1.8x
speedup and 1.7x memory efficiency, making it a
better choice for quality and efficiency.

5.2 Reference-Free Metrics

XMoverScore (Zhao et al., 2020) and
SentSim (Song et al., 2021) are reference-
less metrics,3 i.e., they compare hypotheses
directly to source texts. Therefore, both of them
use a multilingual embedding model since the
source and hypothesis are in different languages in

3When running SentSim, we use the implementation from
Belouadi and Eger (2023) since it is better structured and
integrates better with our evaluation framework.
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Figure 2: CPU runtime / correlation plot of BERTScore, MoverScore, BaryScore

MT. Zhao et al. (2020) realign multilingual embed-
ding spaces on parallel sentences using fast-align
(Dyer et al., 2013). We use WikiMatrix (Schwenk
et al., 2021), instead, to train remappings because
it contains more languages. We use the original
remappings from Zhao et al. (2020) for the
baseline. We report Pearson’s r with (remap)
and without remapping (direct). XMoverScore
further uses a language model for calculating the
perplexity of the hypothesis. We also replace this
model with a lighter one and measure the efficiency
and quality changes. Besides a word level model,
SentSim calculates the cosine distance of sentence
embeddings (Reimers and Gurevych, 2019, 2020)
of the source and hypothesis sentence. We replace
this sentence embedding model with a lighter one.
We test 4 models from the ‘sentence-transformers’
model repository: A (XLM-Roberta) — a baseline,
B (DistilUSE), C (MiniLM), and D (MPNet). For
details on the experiment, see Appendix §C.3.

Key results Both mMiniLMs outperform their
baselines in quality and efficiency for XMover-
Score and SentSim metrics. mMiniLM12 achieves
a 0.032 higher correlation than the baseline on
XMoverScore (+8.4%). Replacing the language
model in XMoverScore with DistilGPT-2 results
in a 20% memory reduction and an 8.4% drop in
correlation. For SentSim with sentence embedding
models, Model C (MiniLM) shows the best combi-
nation of efficiency and quality. It achieves a 1.5x
faster speed on the CPU, uses 1.4x less memory,
and only occupies 43% of the disk space compared
to baseline Model A (XLM-R). Quality drop, in
this case, is 7.8%.

5.3 WMD

We replace WMD in MoverScore and XMover-
Score with more efficient variants to speed up run-
time. We implement the two variants WCD and
RWMD, which have linear and quadratic complex-
ities respectively. See Appendix §C.4 for more
details.

Key Results WMD’s efficient variants (RWMD
and WCD) perform worse in quality for XMover-
Score but see an increased quality for Mover-
Score when using RWMD on WMT21. Their run-
time speedup is not substantial due to the time-
consuming embedding calculation.

5.4 Trainable metrics

Config Mem.↓ Fwd.↑ Bwd.↑ τ ↑
pfeiffer 4.88 5123 4808 0.273
parallel 4.97 5128 4525 0.289
houlsby 4.87 4607 4036 0.273
compacter 4.80 3649 3049 0.269
(IA)3 5.76 5195 4712 0.268

no adapters 7.32 6247 2238 0.275

reference - - - 0.290

Table 1: Training efficiency of COMET models. Mem.
is the median memory usage in MB per token, Fwd.
and Bwd. are median values of forward pass and back-
ward pass speed respectively, in tokens per second. τ is
the average Kendall τ across languages in the test set.
reference is the result of applying the latest available
COMET-22 model (Unbabel/wmt22-comet-da) through
official implementation, both released under Apache 2.0
License

For both COMET and COMETINHO, we evalu-
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Config Mem.↓ Fwd.↑ Bwd.↑ τ ↑
pfeiffer 0.770 25499 25774 0.252
parallel 0.741 26109 26113 0.252
houlsby 0.769 23746 21678 0.252
compacter 0.776 18382 15671 0.243
(IA)3 0.997 27075 24804 0.248

no adapters 1.012 31836 18941 0.243

reference - - - 0.241

Table 2: Training efficiency of COMETINHO models.
Mem. is the median memory usage in MB per token,
Fwd. and Bwd. are median values of forward pass
and backward pass speed respectively, in tokens per
second. τ is the average Kendall τ across languages in
the test set. reference is the result of applying the dis-
tilled COMET model eamt22-cometinho-da 4 through
the official implementation.

ate all 5 adapter configurations (pfeiffer, parallel,
houlsby, compacter, (IA)3) + 1 control configura-
tion without adapters. Each configuration is tested
three times with different random seeds to mini-
mize the impact of random fluctuations. Our total
computational budget for these experiments is ap-
prox. 888 GPU-hours: 222 hours of compute time
× 4 A40 GPUs used in parallel.

Results for COMET are presented in Table 1. We
observe that adapters can improve metric quality
compared to standard training, with the parallel
configuration showing a higher average Kendall
τ correlation and almost matching the reference
model on 1/4 training data. Although adapters have
a slower forward pass speed, increased backward
pass speed compensates for it. Lightweight adapter
configurations (pfeiffer and parallel) have higher
backward pass speeds than heavyweight compacter,
and these adapters also do not show reduced metric
quality compared to them.However, the model with
the compacter adapter has the smallest memory
footprint of 4.80 MB per token.

For COMETINHO, similar patterns are observed
(Table 2). The parallel adapters offer the best met-
ric quality and training efficiency, with a 34% mem-
ory reduction and 3.7% higher Kendall τ correla-
tion. This model surpasses the reference model
with only 22% training data.

6 Analysis & Discussion

We conduct a deeper analysis on reference-based
semantic-similarity metrics BERTScore, Mover-
Score and BaryScore, all of which use the same ef-
ficient encoder architectures (we remove RoBERTa-

Model Quality Runtime
(CPU)

BERTBASE 1.00 1.00
BERTTINY 0.88 8.95
DistilBERT 0.99 1.63
TinyBERT 0.97 5.42

DeeBERTMNLI 0.96 1.06

Table 3: Quality-inference values.

Large from the analysis, as it has only been used
with BERTScore). We compute results individu-
ally across the three metrics and the three WMT
datasets (then report individual results or averages).

Which speedups are obtained? Table 3 shows
the absolute speedups of encoders and their rela-
tive performance deterioration relative to BERT.
On a CPU, TinyBERT is 5.4x faster at interference
while retaining 97% of the quality of the original
metric, which yields the best tradeoff of quality
and inference time. BERTTINY yields almost 9x
faster inference but at the cost of 12 points of per-
formance deterioration.

To illustrate in absolute values, BERTScore with
RoBERTa-Large model takes, on average in a GPU
environment, 34ms per segment across all three
datasets. The same BERTScore with TinyBERT
takes 15ms per segment. Considering the practical
examples made in the introduction (30k segments
× 5 language pairs × 50 MT systems), the refer-
ence BERTScore would take, as we stated before,
approx. 71 hours for a full pass, producing 8kg
CO2-eq of carbon footprint. Our suggested alterna-
tive, TinyBERT, would take more than twice as lit-
tle, 31 hours, producing 3.62kg CO2-eq. In a CPU
environment, the difference becomes even more
striking. The reference metric with RoBERTa-
Large would take more than 950 hours for a single
full pass, while TinyBERT would complete in just
under 45 hours. The carbon footprint is 5.4kg CO2-
eq for RoBERTa-Large and 0.26kg CO2-eq for the
TinyBERT-based metric (while maintaining 97%
of the reference model’s quality).

For those calculations, we assume that a GPU
environment (Nvidia A100) has a power draw of
300W under full load, while a CPU environment
has a power draw of 15W. However, the small
size of TinyBERT would allow practitioners to use
lower-tier GPUs, including some mobile GPUs in
laptops, which are much more energy-efficient. For
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carbon footprint, we take the US 2021 power grid
carbon intensity5 as a reference point.

How stable are the results? We correlate
the stability of (normalized) results using Pear-
son correlation over vectors corresponding to
(a) metrics and (b) datasets. Concerning met-
rics, we observe high Pearson correlations from
0.72 (MoverScore-BaryScore, Quality) to 0.99
(MoverScore-BERTScore, inference time). This
means that the LMs perform similarly (in terms
of quality, inference time, or both) for each metric.
Across datasets, the correlation is high for WMT15-
WMT16 (0.91-0.99 for quality, runtime, and av-
erage) but considerably lower between WMT21
and the other two (0.20-0.96). This is mainly be-
cause quality is not stable: for example, DeeBERT
performs badly for WMT21, but quite well for
WMT15 and WMT16. We note, however, that
the score ranges for WMT21 are low anyway, and
DeeBERT absolutely does not perform much lower
than the other encoders here.

Which adapters are better? For both COMET
and COMETINHO, the ‘parallel’ adapter config-
uration consistently outperforms others, achiev-
ing high Kendall τ correlation values (0.289 for
COMET, 0.254 for COMETINHO) and balanc-
ing forward and backward pass speeds. COMET-
INHO’s ‘parallel’ configuration also exhibits a 34%
reduction in memory usage and a remarkable back-
ward pass speed.

Though it remains unclear why adapter-trained
models surpass standard models in terms of qual-
ity, training curves are often close and sometimes
overlapping. The parallel adapter model achieves
higher Kendall τ values despite reduced train-
able parameters, which aligns with recent findings
in Nouriborji et al. (2023).

Our experiments utilize reference model hyper-
parameters, except for batch size and learning rate.
Thus, further hyperparameter optimization might
produce even higher correlations with human as-
sessments.

7 Conclusion

We have investigated efficient evaluation metrics
for natural language generation, particularly MT,
in monolingual reference-based and multilingual
reference-free versions via three approaches: (i)

5https://www.eia.gov/tools/faqs/faq.
php?id=74&t=11

replacing transformers in metrics by efficient vari-
ants, (ii) replacing alignment models in metrics
(precisely: Word Mover Distance) with efficient ap-
proximations, (iii) training COMET and COMET-
INHO metrics in a parameter-efficient way with
adapters. We have explored multiple types of effi-
cient transformers, finding that TinyBERT shows
the best quality-efficiency tradeoff for semantic
similarity-based metrics: on average, it retains 97%
quality while being more than 5x faster at inference
time and having considerably fewer parameters and
lower memory consumption. In several cases, we
have also identified faster models that yield higher
quality at the same time. Finally, we found that
efficient alignments on top of transformers do not
result in efficiency gains but have adverse effects
on quality in 2 out of the 3 datasets we examined.

Our experiments further demonstrate that the
‘parallel’ adapter configuration consistently out-
performs others in efficiency and metric quality
for both COMET and COMETINHO. The adapter-
trained models achieve faster results, using less
memory, and requiring a smaller portion of the ref-
erence model’s training data, with COMET-sized
adapter models being around 30% faster to fully
train (3h30m vs. 5h4m). These findings indicate
that adapter-based training offers a promising ap-
proach for natural language generation tasks, pro-
viding optimal memory usage, computational effi-
ciency, and alignment with human assessment.

In future work, we want to combine efficiency
with other highly desirable properties of evaluation
metrics such as robustness (Vu et al., 2022; Chen
and Eger, 2023; Rony et al., 2022) and explainabil-
ity (Kaster et al., 2021; Sai et al., 2021; Fomicheva
et al., 2021; Leiter et al., 2022) to induce metrics
that jointly satisfy these criteria.
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8 Limitations

In this section, we acknowledge several limitations
of our research. First, with respect to WMD Ap-
proximations, we observe a surprisingly big drop
in quality, on 2 out of 3 datasets, compared to
the exact version. Thus, we cannot rule out that
we made a mistake in the implementation. Never-
theless, our overarching conclusions remain valid
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since the performance improvements achieved by
the WMD approximations are negligible in com-
parison to the time spent calculating the contextu-
alized embeddings. Second, the experiments re-
lated to training efficiency with adapters reported
in this paper focus primarily on the model’s perfor-
mance on the WMT2021 newstest test set, which
includes predominantly high-resource language
pairs. Consequently, the results obtained in this
study may not necessarily extend to other datasets
or lower-resource language pairs. Lastly, the ex-
periments with trained metrics were conducted
using default adapter configurations and original
hyperparameters from respective papers, includ-
ing those of COMET and COMETINHO. A more
comprehensive hyperparameter search could po-
tentially improve metric quality and training ef-
ficiency even further. In particular, our models
demonstrate superior performance compared to ref-
erence COMET and COMETINHO, albeit being
trained on smaller datasets, suggesting that either
the COMET’s & COMETINHO’s hyperparameter
configurations might not be the best one or that they
were over-trained with more data than needed.
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A Related Work

Evaluation metrics Recent years have seen a surge
of interest in transformer-based evaluation metrics
as these promise higher quality (as measured in
correlation with human assessments). Among the
first LLM based metrics are BERTScore (Zhang
et al., 2020) and MoverScore (Zhao et al., 2019)
which model evaluation as a semantic similar-
ity task using contextualized BERT representa-
tions. Extensions include BARTScore (Yuan et al.,
2021), which reads off probability estimates as
metric scores directly from text generation sys-
tems, and MENLI (Chen and Eger, 2023), which
builds on the paradigm of natural language in-
ference and targets metric robustness. A distinc-
tion of evaluation metrics is whether they use
human references (in reference-based metrics)
or do not use them (in reference-free metrics),
where the latter are less costly. In this work, we
consider XMoverScore (Zhao et al., 2020) and
SentSim (Song et al., 2021) as reference-free met-
rics and BARTScore, BERTScore, MoverScore and
BaryScore (Colombo et al., 2021) as reference-
based metrics. In MT, the challenge for reference-
free metrics is cross-lingual representation spaces,
for which there are also different efficient trans-
former variants. Another distinction of metrics
is whether they are trained or untrained. Train-
able/trained metrics such as COMET (Rei et al.,
2022a), which are particularly popular in the MT
community, address the task of NLG evaluation
by directly fine-tuning models on human-sourced
annotation scores. COMET is trained on direct
assessment scores given by human annotators to
translations produced by various MT systems. As
a result, COMET outperforms untrained metrics in
terms of correlation with human assessment. How-
ever, the training process can be expensive due to
increased model and data size.6

Efficiency is a core issue of modern deep learn-
ing systems, which have become bigger and big-
ger in a quest for better performance, leading to
environmental concerns and increasing inequal-
ity/exclusion. There are many approaches for ob-
taining more efficient models, especially in the con-

6A different approach to a text evaluation is presented in
the recent papers of Fu et al. (2023); Liu et al. (2023), which
form a novel class of LLM based metrics. Those metrics rely
on LLM predictions to assess different aspects of the text,
with GPTScore (Fu et al., 2023) relying on token probabilities,
while GPTEval (Liu et al., 2023) uses Chain-of-Thought to
prompt the model to generate scores.

text of computation-heavy transformers.

Knowledge Distillation involves (i) a student
with pruned layers, embedding size or attention
heads or even with layers replaced by alternative
simpler network architectures and (ii) a teacher
usually of the same architecture, but larger. Then
the student is trained with outputs from the teacher
(Hinton et al., 2015; Ganesh et al., 2021). While
data for traditional training often is scarce, in
knowledge distillation, the teacher generates new
data for training the student (Hinton et al., 2015).
Knowledge distillation thus usually leads to a bet-
ter quality for the student model than traditional
training because it benefits from the knowledge of
the larger model. For example, DistilBERT (Sanh
et al., 2019) consists of only 6 layers, which is half
the amount of BERTBASE, but with reported small
reductions of model quality. TinyBERT (Jiao et al.,
2020) introduces an improved method for knowl-
edge distillation in which the student is trained with
outputs (as DistilBERT does) and intermediate re-
sults.

Kamal Eddine et al. (2022) apply knowledge dis-
tillation to induce an evaluation metric which they
call FrugalScore. They employ knowledge distilla-
tion on a set of pre-trained miniature BERT models,
which were fine-tuned using a synthetic dataset cre-
ated with full-size models employing BERTScore
and MoverScore metrics. In contrast to their ap-
proach, we much more comprehensively analyze
efficiency in evaluation metrics. Especially we con-
sider more datasets and metrics, explore different
evaluation environments (CPU-only and GPU), and
improve training efficiency through adapters.

Dynamic Inference Acceleration: Sun et al.
(2019); Xin et al. (2020); Zhu (2021) compare in-
termediate results after each encoder layer, after
which they add an early exit ramp. If the change
of the representation from one layer to the next is
lower than a threshold, they assume later layers
will improve even less and skip them by taking the
early exit ramp. The final output for that sample
will then be the representation from that layer.

Adapters is an approach that addresses the
problem of training-time efficiency for fine-tuning
transformer models. Popularized by Pfeiffer et al.
(2020a); Houlsby et al. (2019) in the NLP com-
munity, adapters propose to freeze all parameters
of the pre-trained transformer model and instead
train adapters — small intermediate layers added
into the model graph. This reduces required mem-
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ory usage because the gradients are computed only
for a small number of parameters, though it is
still required to keep the original model in mem-
ory, and can also lead to improvements in training
speed. There are multiple ways to apply an adapter
to the model. Simpler adapters (Houlsby et al.,
2019; Pfeiffer et al., 2020b; He et al., 2022) offer a
straightforward architecture with minimal modifi-
cations, focusing on training time and memory effi-
ciency, while more complex ones (Hu et al., 2021;
Karimi Mahabadi et al., 2021; Liu et al., 2022) pro-
vide the potential for better performance improve-
ments at the cost of increased architecture complex-
ity and resource consumption. For instance, the re-
cently introduced (IA)3 (Liu et al., 2022) adapter
architecture is specifically designed to maximize
fine-tuned accuracy after a few training steps. An-
other example is the method called UniPELT (Mao
et al., 2022), which combines prefix-tuning, low-
rank adaptation (LoRA), and adapter layers.

B WMT Data

pair WMT15 WMT16 WMT21

cs-en 500 560
de-en 500 560
fi-en 500 560
ro-en 560
ru-en 500 560
tr-en 560
zh-en 3250

total 2000 3360 3250

Table 4: Overview of the amount of segments per lan-
guage pair in each dataset.

C Experiment details

C.1 BERTScore, MoverScore, BaryScore

Setup Although BERTScore was built using var-
ious models, for comparing sentences in English
(as both our references and hypotheses are), the au-
thors suggest using RoBERTaLARGE (Zhang et al.,
2020). We only use it on BERTScore, since it
was too slow with MoverScore and BaryScore. Its
configuration is: L = 24, H = 1024, A = 16
(Liu et al., 2020), where L is the number of lay-
ers, H the size of each layer and A stands for the
attention heads. BERTBASE is the original model
of MoverScore and BaryScore (Zhao et al., 2019;

Colombo et al., 2021) and also a possible optimiza-
tion for BERTScore. It has L = 12, H = 768
and A = 12 (Devlin et al., 2019). BERTTINY is
the smallest variant of BERT (Turc et al., 2020)
and was trained in the traditional way (directly on
data, no Knowledge Distillation). It has L = 2,
H = 128, A = 2. DistilBERT is a distillation
of BERTBASE. It has the same hidden dimensions
of 768 and 12 attention heads, but only L = 6.
Also, they optimized the final output layers (Sanh
et al., 2019). TinyBERT is another distillation of
BERTBASE with a more robust training method. It
has L = 4, H = 312, and A = 12 (Jiao et al.,
2020). DeeBERTMNLI is an early exiting version
of BERTBASE. It has the same structure, but after
each encoder layer there is one added classifica-
tion layer, that can be used as an off-ramp, to stop
inference at intermediate states (Xin et al., 2020).

Results We observe a speedup of the runtime
that coarsely correlates with the size of the model.
The figure shows that the fastest model on each
of the metrics is BERTTINY, which is up to 41x
faster than the baseline (on BERTScore), but its
quality also decreases by over 10 points correla-
tion for BERTScore. A better speedup-quality ratio
achieves TinyBERT: The quality decreases by less
than 6 points across all metrics (improves even for
MoverScore). Furthermore, it is still up to 27x
faster than the baseline (on BERTScore). Mem-
ory measurements show similar behavior to run-
times, and they coarsely correlate with model size.
BERTTINY uses 61x and TinyBERT 18x less mem-
ory than the baseline on BERTScore. Compared
to TinyBERT, DistilBERT shows lower speedup
and memory saving, but also a lower quality de-
crease (on all three metrics approximately half the
decrease of TinyBERT). In our experiments, Dee-
BERT behaves very similar to BERTBASE, both in
quality and efficiency.

C.2 BARTScore

Setup BARTLARGE Para is the original model
used in BARTScore, fine-tuned on the Parabank2
dataset. It consists of 12 encoder and 12 decoder
layers and has a hidden size of H = 1024 (Lewis
et al., 2020). BARTLARGE CNN uses the same
architecture, but after pre-training on CNNDM,
it was not fine-tuned on Parabank2. We run ex-
periments on BARTLARGE CNN and used these
results as a baseline for fair comparisons to the
other models. BARTBASE was proposed by Lewis
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Figure 3: CPU runtime/correlation plot of XMoverScore and SentSim
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93



et al. (2020) and differs from BARTLARGE in hav-
ing 6 encoder and decoder layers instead of 12 and
H = 768. dBART-6-6 is a distilled BART ver-
sion with 6 encoder layers and 6 decoder layers.
It was shrunk from BARTLARGE and therefore has
H = 1024 (Shleifer and Rush, 2020). dBART-
12-3 is a distilled BART version with 12 encoder
layers and 3 decoder layers. It was shrunk from
BARTLARGE and also has H = 1024 (Shleifer and
Rush, 2020). dBART-12-6-t has 12 encoder layers
and 6 decoder layers and was trained on WikiSQL
dataset. dBART-12-9-m has 12 encoder layers and
9 decoder layers, with H = 1024.

Results We observe differences among the base-
lines: BARTLARGE Para uses almost twice the
memory of BARTLARGE CNN. The fastest model
is again the smallest model – BARTBASE –
with speedups of 2.7x and 1.8x compared to
BARTLARGE CNN. BARTBASE is also the most
memory-efficient model: with the usage of 663MB,
it needs 2.6x less than BARTLARGE CNN. De-
spite being very efficient, BARTBASE’s quality de-
clines too much, with a correlation coefficient 12
points lower than the baseline (-25%). Concern-
ing quality, dBART-6-6 even gets a higher corre-
lation than BARTLARGE CNN by 0.02 (+3.6%). It
brings a speedup of 1.8x (CPU) and 1.7x (GPU)
and is 1.7x more memory efficient. dBART-12-3,
dBART-12-6-t and dBART-12-9-m do not achieve
competitive quality, also their acceleration over
BARTLARGE CNN is only moderate.

C.3 Reference-free metrics

Setup To implement efficient reference-less met-
rics, we explore the following multilingual embed-
ding models: mBERT is the original model of
XMoverScore used by (Zhao et al., 2020). It has
L = 12, H = 768, and A = 12. It was trained
on 104 languages (Devlin et al., 2019). XLM-
RBASE is the original model of SentSim used by
Song et al. (2021). It has L = 12, H = 768
and A = 12 and was trained on data in 100 lan-
guages (Conneau et al., 2020). DistilMBERT is
a distillation of mBERT (Sanh et al., 2019). It
has the same dimensions and attention heads, but
only L = 6 layers and the final output layers
were stripped. These missing output layers are
what makes this model incompatible to XMover-
Score. Thus, we only use this model for SentSim.
XtremeDistil is another distillation of mBERT
(Mukherjee and Hassan Awadallah, 2020). The

model, called TinyMBERT in the first version of
the paper, has L = 6, H = 256 and A = 12.
mMiniLM6 is a distillation of XLM-RLARGE with
L = 6, H = 384, and A = 12. mMiniLM12 is a
distillation of XLM-RLARGE with L = 12 (Wang
et al., 2021). For XMoverScore with language
models the two compared models are: GPT-2 (Rad-
ford et al., 2019) is the original model used by
XMoverScore (?). DistilGPT-2 is a distillation
of GPT-2 (von Platen, 2022). For SenSim with
sentence embeddings we replace the original sen-
tence embedding model with a lighter one. We try
3 other models from the SBERT framework. For
reasons of clarity, we abbreviate the names to a
letter from the SBERT site: A: xlm-r-bert-base-
nli-stsb-mean-tokens, the original model used by
(Song et al., 2021). B: distiluse-base-multilingual-
cased-v2 - a DistilBERT-based model which
was fine-tuned on synthetic data created with
Universal Sentence Encoder (Cer et al., 2018),
C: paraphrase-multilingual-MiniLM-L12-v2 -
based on MiniLM model with 12 layers, and D:
paraphrase-multilingual-mpnet-base-v2 - which
is based on MPNet model (Song et al., 2020).

Results We present the results in Figure 3. Both
mMiniLMs outperform their baselines in qual-
ity and efficiency. The 6-layer version is up
to 2.1x faster (on CPU) than the baseline and
has a 0.024 higher correlation for XMoverScore
(+5.8%). Even higher is the quality improve-
ment with mMiniLM12: it achieves a 0.032 higher
correlation than the baseline on XMoverScore
(+8.4%). Both models also show quality improve-
ments on SentSim. The space they occupy on a
disk is 1/5 of XLM-RBASE and 1/3 of mBERT.
Although the needed memory is a lot higher than
the disk space, with up to 1,594MB (mMiniLM12
on SentSim), the models still need 1.2x (SentSim)
and 1.4x (XMoverScore) less inference time than
the baselines. DistilMBERT on SentSim also
shows speedups of 1.2x on both CPU and GPU but
has a 0.034 lower Pearson’s r than XLM-RBASE.
XtremeDistil, despite bringing some memory effi-
ciency and a big saving on disk space, has a quality
that is too bad on both metrics. The remappings
on XMoverScore do not bring any difference for
mBERT and XLM-RBASE. For the mMiniLMs,
we observe a quality increase of 1.6 points (6 lay-
ers) and 1.3 points (12 layers) correlation com-
pared to using no remapping. Only for XtremeDis-
til do we see a real difference: using the remap-
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pings improves correlation by approximately 0.122
(+110%) compared to using the model directly. For
XMoverScore with language models we can not
see any change in runtime on a CPU, but observe
a speedup of 1.3x on a GPU. We also see a lower
memory usage of 317MB (20%) and a lower disk-
space of a third. The quality drops by 3.5 points.
For SentSim with sentence embedding models we
observe a slight speedup of Model B of 1.2x (CPU)
and 1.3x (GPU), but also a decrease of quality of
5.5 points. Model C shows only small decrease
of quality of 1.7 points, but is very efficient: it
runs in 1.5x faster speed on CPU and 1.1x faster
on GPU, saves memory (1.4x less) and also only
occupies 43% of the disk-space. Model D achieves
a slightly higher correlation (+1.2 points) and has
the same size as the baseline (comparable speed
and memory).

C.4 WMD

Results We see a drop in quality from a corre-
lation of 0.54 on average over all three datasets
to 0.43 and 0.39, but surprisingly, we see a sub-
stantial increase of quality when using rwmd on
WMT21. On the other hand, the quality of XMover-
Score, as indicated by the correlation with human
scores, declines when using these more efficient
variants. wcd achieves correlations approximately
10 percent lower than wmd. As on MoverScore,
rwmd’s correlations drop approximately 30 percent
for WMT15 and WMT16. For WMT21, we again
observe a very high correlation with rwmd.

Runtime For neither MoverScore nor XMover-
Score do we observe a substantial speedup while
using wcd or rwmd instead of wmd. Thus, we in-
vestigate the time consumption of each calculation
step in more detail.

Step WMD WCD RWMD

get BERT embeddings 285.499 287.915 291.122
calculate distance matrix 0.829 0.005 0.782
calculate distance 5.602 0.616 0.449

Table 5: Runtime (in ms) of each step of MoverScore
for various distance functions using its original model
BERTBASE.

In Table 5, we can see that the calculation of
wcd and rwmd is substantially faster than wmd —
9x and 12x on MoverScore and 20x and 27x on
XMoverScore. But it also shows that the calcu-
lation of the embeddings (and of the perplexity)

takes a much longer time than the calculation of
the distance. No matter how fast the distance can
be calculated, the speedup will be eaten up by the
variance of the calculation time for the embeddings
(and perplexity).

D Impact of different batch sizes

In order to examine the effects of different batch
sizes, we conducted reduced experiments with
a smaller number of models, testing only on
BERTScore and WMT15 dataset. See Table 6 for
a list of hyperparameters. As before, we report av-

Hyperparameter Setting

Model BERTBASE, BERTTINY,
TinyBERT, DistilBERT

Environment CPU and GPU cluster nodes
Batch size 1, 4, 16, 64

Table 6: Hypeparameter settings for batch-size ablation
study.

eraged results of 3 runs to account for fluctuations.

Model 1 4 16 64 r

BERTBASE .084 .021 .010 .009 .729
DistilBERT .032 .012 .006 .005 .709
TinyBERT .015 .015 .003 .002 .707
BERTTINY .005 .006 .005 .002 .635

Table 7: Runtime duration (seconds per segment) for
BERTScore with given models and variable batch size
in CPU environment. r stands for Pearson’s correlation
with human judgement and provided for brevity.

Model 1 4 16 64 r

BERTBASE .021 .006 .003 .002 .729
DistilBERT .013 .004 .002 .002 .709
TinyBERT .011 .004 .002 .001 .707
BERTTINY .007 .003 .002 .002 .635

Table 8: Runtime duration for BERTScore with given
models and variable batch size in GPU environment. r
stands for Pearson’s correlation with human judgement.

According to the results in Tables 7 and 8 there
is a notable change in the model’s relative effi-
ciency compared to each other with change of the
batch size. nevertheless, the best tradeoff between
metric’s quality and efficiency is still provided by
TinyBERT model. It is also worth noting that in the
case of the GPU environment, we observe faster
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saturation of efficiency gains between models of
different sizes. On higher batch sizes, they perform
around the same. However, switching to larger
batch sizes leads to progressively higher memory
consumption.
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