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Abstract
Real-time toxicity detection in online environ-
ments poses a significant challenge, due to the
increasing prevalence of social media and gam-
ing platforms. We introduce ToxBuster, a sim-
ple and scalable model that reliably detects
toxic content in real-time for a line of chat by
including chat history and metadata. ToxBuster
consistently outperforms conventional toxicity
models across popular multiplayer games, in-
cluding Rainbow Six Siege, For Honor, and
DOTA 2. We conduct an ablation study to as-
sess the importance of each model component
and explore ToxBuster’s transferability across
the datasets. Furthermore, we showcase Tox-
Buster’s efficacy in post-game moderation, suc-
cessfully flagging 82.1% of chat-reported play-
ers at a precision level of 90.0%. Additionally,
we show how an additional 6% of unreported
toxic players can be proactively moderated.

1 Introduction

Online spaces are plagued by toxic speech, span-
ning social media platforms (e.g., Facebook (Ciftci
et al., 2017), Twitter (Watanabe et al., 2018), Red-
dit (Mohan et al., 2017), YouTube (Döring and
Mohseni, 2020)), in-game chats (Silva et al., 2020)
and news websites comment sections (Zannettou
et al., 2020). As evidenced by surveys from the
Anti-Defamation League (ADL), exposure to toxic
language not only alienates users but also poses
a range of psychological harms and the potential
to incite real-world violence (ADL, 2021). Even
worse, marginalized groups continue to face a dis-
proportionate level of targeted online hate and ha-
rassment.

Companies strive to foster a healthy online com-
munity and have employed various methods to
address toxic speech, such as censoring words,
(shadow) banning users or blocking them from
communicating (Maher, 2016; Lewington, 2021).
However, the vast amount of user-generated data
and the rapidly evolving nature of language have

made it exceedingly challenging to implement con-
sistent moderation practices.

We leverage recent advancements in large lan-
guage models to create accurate and transferable
models for effective content moderation. Contex-
tual language embeddings, like BERT (Devlin et al.,
2018), serve as the foundation for many state-of-
the-art toxic speech detection models. However,
most existing approaches either neglect context en-
tirely or yield only marginal improvements and are
not fit for real-time moderation for in-game chat.

To address this limitation, we propose Tox-
Buster, the first real-time in-game chat toxicity de-
tection model capable of integrating chat history
and metadata. It is trained on annotated datasets
that encompass diverse perspectives, with annota-
tors from marginalized groups offering valuable
insights. Furthermore, we demonstrate the transfer-
abilty of ToxBuster across different games, as well
as its adaptability to a completely different domain,
i.e., comment threads of news articles. When it
comes to post-game moderation, we prioritize high
precision settings to maximize the impact of our
model without overloading limited manual content
moderation resources with false positives. Remark-
ably, ToxBuster achieves an impressive 82% iden-
tification rate for toxic players—reported by other
players for posting toxic chat— at a precision level
of 90.0%. This can significantly reduce the mod-
eration load of human moderators. In summary,
contributions are threefold:

• We present ToxBuster, a real-time toxicity de-
tection model for in-game chat that outperforms
current available solutions by leveraging chat his-
tory and metadata

• We show that the proposed model can transfer
across different games and domains.

• We discuss the post-game moderation implica-
tions and show how ToxBuster can automate a
high percentage of obvious cases of toxicity and
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refocus moderator’s effort towards unclear cases.

Reproducibilty: Source code for ToxBuster is
hosted on Github. Due to legal and privacy reasons,
R6S and FH datasets cannot be public.

2 Related Works

Toxicity detection research has gained increasing
attention due to the challenges it poses. These
challenges include not only the text itself, such as
the presence of out-of-vocabulary words, but also
the lack of consensus on the precise definition of
toxicity (van Aken et al., 2018). Definitions vary,
ranging from a broad concept of toxicity (Geor-
gakopoulos et al., 2018) to more specific categories
like hate speech (Gambäck and Sikdar, 2017), abu-
sive language (Park and Fung, 2017), cyberbullying
(Zhong et al., 2016), and offensive language. In
our study, we focus on adapting categories defined
by Alliance (2020) to address disruptive behavior
in online games.

Traditionally, toxicity detection has been ap-
proached as a classification task using various meth-
ods, including traditional ML models with man-
ual feature engineering (Watanabe et al., 2018),
deep neural networks (Gambäck and Sikdar, 2017;
Zhong et al., 2016), and pretrained language mod-
els (Almerekhi et al., 2022; Jhaveri et al., 2022;
Lees et al., 2022). Previous studies have explored
including additional context such as news article
titles (Gao and Huang, 2017), usernames (Mubarak
et al., 2017), Twitter user metadata (Fehn Unsvåg
and Gambäck, 2018), game-specific slang (Weld
et al., 2021) and parent comments and discussion ti-
tles (Pavlopoulos et al., 2020). These attempts to in-
corporate additional context into language models
have yielded limited performance gains, typically
less than 1%. To address this, we incorporate more
than just the previous comment (Pavlopoulos et al.,
2020; Yu et al., 2022) by utilizing all preceding
chat history available as well.

While previous research on toxicity detection
has explored metadata aspects, none have ad-
dressed the conversational aspect, especially with
this level of granularity, in contexts where more
than just the preceding line of text is used. We draw
inspiration from multi-turn conversational models
and incorporate speaker segmentation (metadata
including TeamID, Chat Type, and PlayerID) and
a naive dialogue augmentation technique that has
shown to enhance BERT for multi-turn conversa-
tions (Lu et al., 2020).

3 Methodology

In this section, we present four toxicity datasets
along with ToxBuster and the baselines models.

3.1 Dataset
We collected and curated datasets from three multi-
player games representing different genres: Rain-
bow Six Siege (R6S), For Honor (FH), and De-
fense of the Ancients 2 (DOTA 2). R6S is a first-
person shooter, FH is a melee action game, and
DOTA 2 is an online battle arena game. Addi-
tionally, we incorporated Jigsaw’s Civil Comments
(CC) dataset into our research. The annotation pro-
cess involved token-level annotations for R6S and
FH, while DOTA 2 and CC were annotated at the
sentence-level. For games, chat lines from a match
is considered a document while for CC, a document
contains each comment on an article. For detailed
dataset statistics, please refer to Table 1.

R6S FH DOTA 2 CC
Domain Game Game Game Media
Time 2021 2022 2017 2018
No. of Documents 1,392 5,340 1,921 65,148
No. of Lines 95,612 99,371 62,483 131,319
Avg. WPL 3.20 4.01 2.41 54.63
Avg. LPD 69.07 19.46 32.53 2.01
% of Toxic Lines 32.06% 21.24% 23.91% 8.01%

Table 1: Toxic chat datasets overview. WPL - Words
per Line. LPD - Lines per Document.

3.1.1 R6S & FH
For each game, we extract chat logs from regions
that communicate prominently in English. We over-
sample matches with a high volume of chat lines
and/or instances where at least one player was re-
ported by another player. The toxic classes we
adopt align with the “Disruptive Behavior in On-
line Game” categories outlined by Alliance (2020):
Hate and Harassment, Threats, Minor Endan-
germent, Extermism, Scams and Ads, Insults
and Flaming, Spam and Other Offensive Text.
For detailed definitions of each class and annota-
tion guidelines, please refer to Appendix A and B
respectively.

Our dataset includes diverse perspectives by in-
cluding annotators from marginalized groups. Each
line of the dataset was reviewed by three annota-
tors. To aggregate labels, we used the minimum
intersecting span of words from the annotators and
employed a majority vote, resolving ties by assign-
ing the most severe class. The final number of chat
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lines per class and Fleiss κ score are reported in
Table 2.

Class R6S FH
Hate and Harassment 5,482 4,453
Threats 618 421
Minor Endangerment 625 109
Extremism 392 173
Scams and Ads 456 53
Insults and Flaming 8,824 11,329
Spam 11,127 2,210
Other Offensive 3,117 2,077
Non-toxic 64,937 78,292
Fleiss κ 0.54 0.47

Table 2: Class distribution for R6S and FH (ordered by
toxicity severity level, descending)

3.1.2 DOTA 2
We utilize Weld et al. (2021)’s dataset as the foun-
dation. This dataset comprises automatic token-
level annotations and four manual sentence-level
annotations: “explicitly-toxic”, “implicitly-toxic”,
“action”, and “other”. To adapt the dataset for real-
time toxicity detection, we introduce the following
modifications: 1) merging the “action” class with
the “other” class, 2) breaking down the merged
sentences back into lines of chat, addressing the
merging of consecutive lines originating from the
same user. When a merged sentence is “explicitly-
toxic”, chat lines are labeled as “explicitly-toxic”
if they contain at least one toxic token. Otherwise,
they are labeled as “other”. For all other classes,
the chat lines retain the original labels from the
merged sentence.

Class DOTA 2
Explicitly Toxic 10,511
Implicitly Toxic 4,431
Other 47,541

Table 3: Class distribution for DOTA 2

3.1.3 CC
Civil Comments platform is a commenting plugin
for independent news sites. To adapt Jigsaw’s Civil
Comments dataset for real-time toxicity detection,
we create its comment history by including the past
comment thread. This is achieved by tracing all
parent comments. We use the binary toxic versus
non-toxic label for each comment.

3.2 ToxBuster

ToxBuster is a token classification model based on
BERTBASE . In our experiments, we employed a
60-20-20 train-validation-test split using 5 different
random seeds. We present the mean and standard
deviations of each metric. Our model achieved
improved performance through two approaches:
Chat History and Chat Speaker Segmentation.

3.2.1 Chat History

To enable reliable real-time toxicity detection, we
utilize chat history as additional context. For all
three in-game chat datasets, the average Word Per
Line (WPL) is less than 5. Thus, including all
available chat history becomes crucial.

Drawing inspiration from the question-
answering task, we treat chat history as the
question and the current chat line as the answer. In
particular, we concatenate all chat lines preceding
the current chat line as chat history and separate
them with the “[SEP]” token as the question.
During training, only the toxic class label is
provided for the current chat line, i.e. our model is
trained to predict the probability of each token’s
class in the current chat line given the chat history.

BERTBASE has a max token size of 512. Since
the main goal is to predict the current token’s class,
we employ a custom truncator. It first prioritizes
truncating the chat history by removing the earliest
chat lines (truncating left) and, if necessary, the
current chat line on the right. For the three in-game
chat datasets, the current chat line would never be
truncated.

In the case of in-game chat, players have the op-
tion to communicate with their teammates or with
everyone. Following the approach of dialogue aug-
mentation (Lu et al., 2020), we determine the type
of previous chat lines to include in the chat his-
tory by considering four different scopes: personal,
team, global and moderator. The personal scope of
the chat history includes only lines written by the
current player. The team scope expands the chat
history to include lines from players on the same
team. The global scope further includes past chat
lines broadcasted to all players. The moderator
scope includes remaining chat lines, such as those
from enemy teams that are not broadcasted to all
players. Table 4 presents a fabricated sample chat
at the beginning of a match.
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# Line playerID chatType teamID
1 (Team) Apple: Hf 6 Team 1
2 (All) Banana: Hf 5 All 1
3 (Team) Grape: Which site? 1 Team 0
4 (Team) Orange: A 0 Team 0
5 (All) Orange: Glhf 0 All 0

Table 4: Chat history & scope. We present the metadata
encoding when considering line #5. The corresponding
chat history for the different scopes of personal, team,
global and moderator would be then line 4, lines 3-4,
lines 2-4, and lines 1-4.

3.2.2 Chat Speaker Segmentation

The primary objective is to enhance the model by
incorporating conversational and game-related in-
formation. To achieve this, we introduce speaker
segmentation, which includes three metadata at-
tributes for each chat line: playerID, chatType, and
teamID.

ToxBuster is a BERT-based model with an ad-
ditional three inputs provided. We follow BERT’s
input embedding scheme, where it is the sum of
all (position and token) its encoding. As shown in
Figure 1, we introduce an encoding for each of the
teamID, chatType and playerID that corresponds
to the token. As such, the new input embedding
would then be the sum of all 5 encodings: Token,
Position, teamID, chatType and playerID.

Figure 1: ToxBuster with chat speaker segmentation.
Input embeddings are the sum of the corresponding
token, position, teamID, chat type and playerID. The
chat history includes as many lines as possible.

For the three chat metadata, playerID and
teamID dynamically changes based on the player
of the current chat line. ChatType can be either
team or all, indicating whether a line is exclusive
to the team or broadcasted to all players. PlayerID

is the unique identifier for the player associated
with the chat line, starting from 0 and bounded
by the number of teams times the team size. For
consistency, the player of the current chat line is
always 0. For other players on the same team, the
identifier is incremented based on the recency of
that player’s chat line. For players on the other
team, the identifier starts from the size of the team,
e.g, in a 5 v 5 game, the most recent opponent
that has typed in chat will be 5. With this scheme,
the playerID can be extended to even Battle Royal
games, where there can be multiple enemy teams.
TeamID is the unique identifier of the team the cur-
rent player belongs to. For consistency, the current
player is always team 0. The enemy team would be
team 1. For battle royal games, this scheme can be
extended similarly to the playerID. The last three
columns in Table4 describe the playerID, chatType
and teamID when detecting toxicity for line 5.

3.3 Baselines

Here, we present three baseline models used for
comparison with ToxBuster.

3.3.1 Cleanspeak
Cleanspeak is a paid tool that has “premier profan-
ity filter and moderation”1 based on user-defined
keywords and regexes. Toxicity is determined
based on the API response containing matched
text related to various toxic classes, which can be
mapped to our own. Currently, the toxic classes
are “bigotry_racism”, “harm_abuse”, “threats”,
“grooming”, “terrorism”, “pii” (personal identifi-
able information), “spam”, “bullying”, “vulgarity”,
“sexual”, “alcohol_drug”, “asciiart”.

3.3.2 Perspective API
We utilized Perspective API2 (v1alpha1) developed
by Jigsaw and Google’s Counter Abuse Technology
team for promoting healthier online discussions
(Lees et al., 2022). As noted by the research team,
we classified a chat line as toxic only if the returned
toxic score is >= 0.7. We remove approximately
13% of the chat lines during the calculation of the
metrics due to the API returning an error code for
unsupported languages.

3.3.3 Detoxify
Detoxifyunbiased (Hanu and Unitary team, 2020)
is a BERT-based models trained on CC. Further

1https://cleanspeak.com/docs/3.x/tech/apis/
2https://perspectiveapi.com/
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details of how the models were trained can be found
in their repository 3.

4 Results and Discussions

In the upcoming sections, we analyze ToxBuster’s
performance relative to baselines, examine individ-
ual toxic class performance, conduct an ablation
study to evaluate each model component’s impact
and assess implications for post-game moderation.

4.1 Baseline Comparison

Table 5 compares ToxBuster with baseline models
across all 4 datasets. The baseline models focus on
the binary task of classifying chat lines as toxic or
non-toxic. ToxBuster is trained on each dataset’s
specific toxic class, while ToxBusterbase lacks chat
history and speaker segmentation.

ToxBusterfull achieves the highest performance,
with a 5% improvement on R6S and a 3% improve-
ment on FH compared to ToxBusterbase. However,
no significant improvement is observed for DOTA
2 and CC, possibly due to dataset characteristics.
DOTA 2 dataset includes only all chat and initial
annotation included merged chat lines. Similarly,
the CC dataset lacks consideration for contextual
information during annotation.

In terms of precision, Perspective API generally
outperforms Cleanspeak, while Detoxifyunbiased
excells in recall and F1 score. Cleanspeak ranks the
lowest. Notably, baseline models perform poorly
on the DOTA 2 dataset, likely due to game slang
and a low average WPL of 2.41.

4.2 ToxBuster Transferabilty

In this experiment, ToxBuster is trained using one
specific toxic dataset and evaluated on the remain-
ing datasets. Each dataset was transformed into
a binary classification task, determining whether
each chat line was toxic or non-toxic. The findings
are summarized in Table 6, which reveals interest-
ing patterns.

Correlation with WPL: When considering the
diagonal entries (trained and tested on the same
dataset), we observe a positive correlation between
performance and the average Word Per Line (WPL).
The average WPL values for DOTA 2, R6S, FH
and CC are 2.41, 3.20, 4.01, and 54.63, respec-
tively. This matches our intuition where greater
word count facilitates more reliable toxicity predic-
tion.

3https://github.com/unitaryai/detoxify

Correlation with Domain: Focusing on the top
left section, the performance between R6S and FH
was consistently good, ranging from 81 to 89. Ex-
panding to include DOTA 2, we observe an accept-
able performance of 72, but it drops to 59 when CC
is included. This suggests that R6S and FH share
similar toxic language characteristics, with some
similarities extending to DOTA 2 and fewer with
CC. We attribute this pattern to the fact that R6S,
FH, and DOTA 2 belong to the game chat domain,
while CC falls within the social media comment
threads domain.

Correlation with Time: If we shift our attention
to the bottom right section, the performance be-
tween DOTA 2 and CC also exhibit good results,
ranging from 81 to 95. Interestingly, DOTA 2 per-
formed better on CC than either R6S or FH. We
attribute this difference to the evolution of toxic
language over time. The CC and DOTA 2 datasets
date back to 2017 and 2018, respectively, while the
R6S and FH datasets are more recent, from 2021
and 2022.

In summary, for robust real-time toxicity detec-
tion in game chat, the model should be trained
on up-to-date toxic game chat datasets rather than
generic toxicity datasets.

4.3 Game Adaptation

We also assess adapting ToxBuster from R6S to
FH, two multiplayer games with slightly differ-
ent data, including game-specific references and
potential differences in toxicity. We use 20,339
chat lines (20% of the dataset) as the test set. To
compare fine-tuning and adapting, we fine-tune
ToxBuster on FH and perform transfer learning
on the best-performing ToxBuster model on R6S
with gradually increasing the size of the FH train-
ing dataset. The results are presented in Table 7.
As expected, transfer learning outperforms fine-
tuning in all scenarios, indicating good transfer-
ability between R6S and FH. The performance
differences amongst the transfer learning settings
are minimal, suggesting that at low data settings,
transfer learning may not provide significant im-
provements and could even slightly decrease perfor-
mance (+691 indicates lower overall performance).
However, adapting from R6S and FH is beneficial
as it demonstrates a boost in the model, as evident
from the 1.5% in precision from ToxBuster+62,528

and ToxBusterR6S+62,528.
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R6S FH DOTA 2 CC
P R F1 P R F1 P R F1 P R F1

Cleanspeak 66.62 29.10 40.48 65.91 38.92 48.93 29.47 3.07 5.55 25.14 67.56 36.65
Perspective API 75.11 24.38 36.81 73.48 37.97 50.07 11.47 1.06 1.95 83.63 60.98 70.53
Detoxifyunbiased 63.47 29.58 40.33 66.01 50.09 56.98 26.98 3.22 5.75 69.99 75.81 72.79
ToxBusterbase 77.21 77.91 77.36 80.41 82.17 81.88 83.98 84.82 84.05 94.53 94.43 94.45
ToxBusterfull 82.95 83.56 83.25 84.88 85.62 85.09 84.39 85.09 84.53 95.48 95.46 95.47

Table 5: Toxicity classification performance across datasets. Performance is measured in terms of weighted average
precision, recall, and F1 score. Baseline models focus on the binary task of toxic versus non-toxic, while ToxBuster
is trained and tested for each toxic class.

Test
R6S FH DOTA 2 CC

Tr
ai

n

R6S 85.38 88.65 77.70 59.88
FH 81.79 89.60 81.62 42.27
DOTA 2 72.81 85.54 85.14 89.75
CC 67.49 75.77 81.88 95.47

Table 6: ToxBuster transferabilty across datasets. Trans-
ferabilty is tied closely with domain & time.

ToxBuster ToxBusterR6S

Precision Recall Precision Recall
0 - - 84.14 ± 0.3 85.81 ± 0.3
+ 691 76.50 ± 1.2 81.38 ± 0.4 84.01 ± 0.4 85.18 ± 0.4
+ 15,787 83.75 ± 0.6 84.34 ± 0.5 84.57 ± 0.1 84.27 ± 0.0
+ 25,448 84.20 ± 0.3 85.24 ± 0.5 85.04 ± 0.3 85.43 ± 0.3
+ 35,410 84.47 ± 0.4 85.31 ± 0.4 85.11 ± 0.3 85.65 ± 0.6
+ 53,582 84.84 ± 0.8 85.47 ± 0.9 85.43 ± 0.5 85.89 ± 0.3
+ 62,528 84.88 ± 0.6 85.62 ± 0.6 85.23 ± 0.4 85.93 ± 0.6

Table 7: Comparison of fine-tuning ToxBuster and
adapting ToxBusterR6S with increasing number of train-
ing data from FH. ToxBusterR6S achieves equal perfor-
mance as ToxBuster with less than half the training data.

4.4 Class-wise Evaluation

We also analyze our model’s performance for each
toxic class with results shown in Table 8. The
model can easily differentiate amongst non-toxic,
toxic words and spam. We attribute the lower F1
score in threats and minor endangerment to their
minority. While extremism and scams and ads have
even fewer samples, the language for both these
two categories are usually very unique. We notice
that the model often confuses amongst hate and ha-
rassment, threats, other offensive as the words are
often very similar and additional context from chat
history, in game knowledge and social constructs
are needed. Annotators also reported it was often
hard to choose between these categories as well.

4.5 Error Analysis

We randomly sampled 100 false positives and 100
false negatives. For false positives,our analysis

R6S FH
Class Precision Recall Precision Recall
Hate & Harass 63.78 ± 2.3 56.40 ± 3.8 58.76 ± 5.8 45.55 ± 0.4
Threats 31.53 ± 3.7 22.85 ± 4.6 36.38 ± 8.6 27.36 ± 7.0
Minor Endanger. 38.28 ± 7.1 29.21 ± 3.7 27.37 ± 13.0 13.70 ± 7.8
Extremism 54.58 ± 8.0 40.86 ± 8.9 35.08 ± 13.2 20.38 ± 10.6
Scams & Ads 56.89 ± 5.0 45.62 ± 9.5 51.33 ± 27.2 20.16 ± 10.1
Insults 58.97 ± 3.5 53.72 ± 2.3 59.63 ± 0.9 64.11 ± 2.3
Spam 84.15 ± 3.8 78.42 ± 3.8 58.86 ± 4.6 46.51 ± 9.1
Other Offensive 47.52 ± 4.2 44.20 ± 3.0 33.33 ± 4.1 20.23 ± 3.6
Non-toxic 88.32 ± 0.8 91.85 ± 0.9 92.55 ± 0.4 94.39 ± 0.4

Table 8: ToxBuster class performance for R6S and FH.
Blue and red highlights the best and worst performing
toxic classes respectively.

reveals that 25% of them were clearly non-toxic.
However, 42% of the text contained sexual content
unrelated to the game, which could be categorized
as bordering on sexual harassment. Additionally,
21% of the text mentioned racial groups, where the
toxicity of the chat line was open to debate. Fur-
thermore, 12% of the text included racial terms that
implied toxicity based on the context. For false neg-
atives, our analysis indicates that 65% of them were
toxic but not caught due to misspellings. Further-
more, 25% of the false negatives contained implicit
racism, ageism, and sexism. Additionally, 5% of
the false negatives were considered implicitly toxic
based on the context. Lastly, 5% were annotated
as toxic due to the use of profanity, although they
were not used in a toxic manner. These findings
highlight the nuanced nature of evaluating toxicity.

4.6 Ablation Study

In this section, we conduct an ablation study on
the two main components: Chat History and Chat
Speaker Segmentation

4.6.1 Chat History
In this experiment, we evaluate the impact of
chat history without chat speaker segmentation,
as shown in Table 9. Intuitively, increasing the
amount of context improves the reliability of tox-
icity prediction. This is evidenced by the nearly
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4% performance improvement with either global
or moderator scope. Notably, precision increases
as we include more context, while global demon-
strates higher recall and F1 score compared to mod-
erator, albeit with slightly lower precision. These
findings align with Lu et al. (2020) who empha-
sized the importance of dialogue consistency dur-
ing classification.

Precision Recall F1 Score
No History 77.21 ± 1.3 77.91 ± 1.0 77.36 ± 1.3
Personal 79.11 ± 0.7 79.82 ± 0.3 78.89 ± 0.8
Team 80.51 ± 0.2 80.10 ± 0.2 81.30 ± 0.0
Global 81.60 ± 0.5 82.21 ± 0.4 81.70 ± 0.5
Moderator 81.90 ± 0.4 81.47 ± 0.4 81.68 ± 0.4

Table 9: Impact of chat history & scope. Performance
increases with larger scopes of chat history.

4.6.2 Chat Speaker Segmentation
In this experiment, we focus on the impact of chat
speaker segmentation while keeping the chat his-
tory constant in the global mode. We compare
two methods of including chat metadata: in-line
and chat speaker segmentation. The in-line method
appends the metadata in front of each chat line,
which intuitively incorporates the information. Ta-
ble 10 presents the specific impact of each metadata
added and the overall impact when all three are in-
cluded. These metadata are typically considered
during human annotation to assess chat consistency.
Across both methods, playerID is the most influen-
tial feature, as it distinguishes chat lines based on
the player. The chat type, indicating whether the
intended audience is the team or everyone (includ-
ing the enemy team), is the next significant feature.
Comparing in-line and chat speaker segmentation,
the latter outperforms in terms of precision, recall,
and F1 score for each metadata. We speculate that
ToxBuster can better learn the correlation between
chat line metadata and toxicity when each token
has its own associated metadata, rather than posi-
tioning it in front of the chat line.

4.7 Post-Game Moderation Implication

In a real-world scenario, ToxBuster would be oper-
ated at a high precision threshold to ensure accurate
detection of toxic chat and minimize false posi-
tives. As shown before in Table 5, ToxBusterfull
significantly outperforms Cleanspeak and Perspec-
tive API, achieving 82.95% (+7) in precision and
83.56% (+54) in recall.

Precision Recall F1 Score
Base 81.60 ± 0.5 82.21 ± 0.4 81.70 ± 0.5

In
-L

in
e w/ teamID* 81.59 ± 0.5 82.08 ± 0.9 81.69 ± 0.7

w/ chat type* 81.82 ± 0.5 82.38 ± 0.4 81.88 ± 0.4
w/ playerID* 81.90 ± 0.4 82.47 ± 0.4 82.01 ± 0.4
w/ full* 81.95 ± 0.3 82.56 ± 0.3 82.12 ± 0.3

Sp
ea

ke
rS

. w/ teamID 81.61 ± 0.4 82.23 ± 0.4 81.72 ± 0.4
w/ chat type 81.91 ± 0.5 82.53 ± 0.8 82.18 ± 0.6
w/ playerID 82.36 ± 0.4 82.79 ± 0.4 82.43 ± 0.4
w/ full 82.95 ± 0.3 83.56 ± 0.3 83.25 ± 0.3

Table 10: Impact of Different Chat Metadata and Incor-
poration Method. Full incorporates all three.

Precision-Recall Tradeoff: In Figure 2, Tox-
Buster achieves a consistent precision of 95%
across variaous recall levels, indicating its effective-
ness in identifying and flagging potentially toxic
content. This high average precision demonstrates
reliable results for moderation purposes.

Figure 2: ToxBuster Precision-Recall Curve on R6S.
Average precision for non-toxic vs. toxic words is 95%.

Performance at High Precision Settings: Tox-
Buster successfully intercepts 5.38%, 2.07%, and
0.81% of chat lines for R6S when operating at high
precision thresholds of 90.0%, 99.0%, and 99.9%,
respectively. This emphasizes ToxBuster’s poten-
tial as a real-time chat moderation solution that
incorporates chat history and metadata, which is
a capability currently lacking in Perspective API.
Table 11 presents the recall rates for each class at
high precision levels. At a precision of 99.9%, Tox-
Buster achieves recall rates ranging from 0.4% to
6.5% across different classes. Notably, the classes
of Spam, Scams and Ads and Minor Endanger-
ment demonstrates the highest recall rates, likely
due to the distinct language patterns compared to
other toxic classes.

Viability for post-game Moderation: Table
12 presents a cross-reference of distinct players
flagged by ToxBuster, chat-reported players, and
reported players (due to disruptive behaviors) over
a one-week period in R6S. It is important to note
that, at the time of data collection, R6S only al-

9900



Class Name 90.0% 99.0% 99.9%
Hate and Harassment 14.22% 2.35% 2.35%
Threats 0.26% 0.26% 0.26%
Minor Endangerment 7.32% 6.69% 6.69%
Extremism 0.50% 0.50% 0.50%
Scams and Ads 8.84% 4.76% 4.76%
Insults and Flaming 1.18% 0.39% 0.39%
Spam 66.63% 42.01% 6.14%
Other Offensive 2.09% 0.72% 0.72%

Table 11: ToxBuster Recall Rate per Toxic Class at High
Precision Levels for R6S.

lows players to report others for a single reason,
meaning players engaging in both toxic chat and
disruptive in-game behavior are more likely to be
reported for their behavior rather than their chat.

% of Players 90.0% 99.0% 99.9%
F/P 29.48% 11.64% 7.89%

(F ∩ CR)/CR 82.1% 51.1% 41.3%
(F ∩ ¬CR)/¬CR 26.44% 9.36% 5.96%

(F ∩R)/R 55.49% 26.92% 19.57%
(F ∩ ¬R)/¬R 19.18% 6.37% 3.86%

Table 12: Intersection of flagged players (F) by Tox-
Buster, chat-reported players (CF) and reported players
(R). CR players represent 5.47% of all distinct players
and R players represent 25.64%.

We utilize this metric for two estimates. Firstly,
we estimate the model’s precision based on player
reports from the players’ perspective, acknowledg-
ing that this perspective may slightly differ from ac-
tual moderators. Secondly, we estimate the reduc-
tion in workload for moderators. By implementing
a simple yet effective automated post-game moder-
ation system that focuses on players both flagged
by ToxBuster and chat-reported, we can promptly
address toxic chat-reported players, leading to a
more positive player experience compared to man-
ual inspection by moderators for each instance.

The second row of Table 12 demonstrates that
ToxBuster identifies between 41% to 82% of chat-
reported players, indicating a high precision from
players’ perspective. This approach also signifi-
cantly reduces the workload for moderators when
dealing with this set of users. A more sophisticated
system could consider the severity level from each
toxic class for further improvements.

4.7.1 Proactive Moderation
Toxicity in online games and social media plat-
forms often goes unreported, which is a significant

issue (ADL, 2022). ToxBuster can help address this
problem through proactive light automatic moder-
ation. Table 12 demonstrates that a substantial
number of flagged players were not reported by
other players. For proactive moderation, we utilize
the average number of flagged chat lines per match
from chat-reported players as a simple measure.
Figure 3 shows that players with more chat reports
tend to have a higher number of flagged lines of
chat per match. Specifically, for players with more
than 3 chat reports, the average number of flagged
lines is 5. By applying this criterion, approximately
6.39% of non-chat-reported toxic players would be
identified, a start towards addressing this issue.

Figure 3: Average number of flagged toxic lines/match
over for increasingly chat-reported players. Players are
often chat reported when having more than 5 flagged
toxic lines.

5 Conclusion

In this paper, we propose ToxBuster, a simple and
scalable model specifically designed for real-time
chat moderation in in-game chat. ToxBuster out-
performs baseline models, including Cleanspeak
and Perspective API, across multiple datasets and
toxic categories. Additionally, ToxBuster can be
easily adapted for comment threads of social media
platforms. Our study emphasizes the importance
of using up-to-date toxic game chat datasets to
enhance model robustness, rather than relying on
generic toxicity datasets. Furthermore, we demon-
strate the seamless transferability between R6S and
FH datasets. Ablation studies further validate the
significant contributions of chat history and speaker
segmentation to ToxBuster’s effectiveness.

The precision-recall analysis illustrates Tox-
Buster’s capability to accurately identify and flag
toxic content with high precision and recall. In
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an automated post-game moderation scenario, Tox-
Buster successfully identifies toxic chat players,
flagging over 41% of chat-reported players at a pre-
cision level of 99.9%. Additionally, we explore
how ToxBuster can partially address the issue of
toxic players who are not chat-reported. Overall,
ToxBuster presents a robust and efficient solution
for automating chat moderation, promoting a safer
and more positive gaming experience for players.

Limitations

Currently, the model’s dataset is limited to the En-
glish language, with the exceptions of common
toxic phrases appearing in in-game chat lines from
other languages. Based on results from Perspec-
tive API and Jigsaw, we know that the methods
presented in this paper can be extended from mono-
lingual to multi-lingual.

ToxBuster will make errors. Only existing pat-
terns of toxicity in the dataset will be detected.
Language that closely resemble existing patterns
of toxic language could also be incorrectly flagged.
As such, the model without any active learning
is not suitable for a fully automated moderation.
The model also cannot completely replace human
moderation.

ToxBuster is intended for in-game chat that will
have mentions of in-game events. Hence, phrases
that could be considered toxic (a threat) in normal
everyday language could be scored as neutral or
having less probability of being toxic.

ToxBuster is a step in the right direction towards
combatting the many challenges of moderating in-
game chat toxicity. In terms of improving toxicity
detection, some directions are performing domain
adaption on the base language model on unlabeled
chat data, continuous learning and adversarial train-
ing. The model and dataset can be extended from
English to multilingual. Another area is biases
and its mitigation. While we have mitigated some
during the data annotation phase, we still need to
measure biases the model has learned and ways to
debias the models without degrading the model per-
formance. Finally, we can also analyze the causes
and impacts of toxicity from a player and game
design perspective.

Ethics Statement

As with any language models, ToxBuster will prop-
agate any existing biases in the dataset. We have
tried to mitigate biases in the annotation by taking

the diversity of the annotators identities into con-
sideration. In our sessions, we recognize that it
was hard to recruit those that identify as a woman.
We had more success in recruiting those that iden-
tified as belonging to marginalized groups (e.g.
LGBTQA1+, BIPOC), where half of the annotators
self-identifies as belonging to at least one of the
marginalized group.

Annotators were also warned about the toxic
content they will see. They were given a very lax
schedule and allowed to annotate freely at their own
pace over a lengthy time period, allowing many
breaks if needed.

As stated in the limitations, we are in the process
of devising methods to measure bias and debias the
model. An adaptation of Kiritchenko and Moham-
mad (2018) Equity evaluation corpus (EEC) will
be created to test and measure several categories
of social biases such as gender, race, sexual ori-
entation, etc. Meade et al. (2022) also includes a
few benchmarks (Sentence Encoder Association
Test and Word Embedding Association Test (May
et al., 2019)) and de-biasing methods. De-biasing
methods include counterfactual data augmenta-
tion (CDA), increasing dropout and projection-
based techniques. CDA works by rebalancing the
dataset by swapping bias attribute words. As rec-
ommended by Blodgett et al. (2020), we have in-
vited and welcomed new researchers from other
disciplinary studies, namely from linguistics and
psychology.
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A Annotator Details

For R6S and FH, annotators were recruited from so-
cial media with representation in game experience
and self-identification with marginalized groups

taken into consideration. Each annotator had to
be at least 18 years old, advanced in English pro-
ficiency, reside in the North American time zone
and active in the respective game. We define active
as having played the respective game within the
last year for at least 16 hours in the player versus
player (PVP) mode. After the initial recruitment, a
pilot test was conducted to further filter annotators
to those that understood the task and aligned them-
selves on the common definition of toxicity based
on examples shown. Each annotator was instructed
to highlight the minimum span of contiguous words
in a chat line that falls under a toxic category. If a
span of words can fall under more than one toxic
category, they were to use the most severe category.
Each chat line was annotated by three annotators,
with full visibility of all previous chat lines of the
match available. We also did not show any game
related events nor whether the player was reported.

B Detailed Toxicity Definitions

Our dataset does not include any audio or visual
data, and therefore, categories such as cheating,
abuse of play, antisocial actions are not within the
scope of this model.

1. Hate and Harassment: Identity-based hate
or harassment (e.g., racism, sexism, homopho-
bia) or bullying / mobbing (e.g., a group of
players bullying one or more players).

2. Threats: Threats of violence, physical safety
to another player, employee or property, ter-
rorism, or releasing a player’s real-world per-
sonal information (e.g., doxxing).

3. Minor Endangerment: Sexual and/or aggres-
sive actions towards minors or attempts to get
minors to perform sexual activities.

4. Extremism: Extremist views (e.g., white
supremacy), attempts to groom or recruit for
an extremist group or repeated sharing of po-
litical, religious, or social beliefs.

5. Scams and Ads: Fraud / scamming (e.g., in-
cluding phishing, account stealing, bad trades
or theft), posting inappropriate links (e.g.,
malware, dangerous websites, advertising ex-
ploits, etc ) and advertising of websites, ser-
vices, cheats or rival products.

9904

https://doi.org/10.18653/v1/2020.acl-main.396
https://doi.org/10.18653/v1/2020.acl-main.396
https://doi.org/https://doi.org/10.34624/jdmi.v3i6.15064
https://doi.org/https://doi.org/10.34624/jdmi.v3i6.15064
https://doi.org/https://doi.org/10.34624/jdmi.v3i6.15064
https://doi.org/10.18653/v1/W18-5105
https://doi.org/10.18653/v1/W18-5105
https://doi.org/10.1109/ACCESS.2018.2806394
https://doi.org/10.1109/ACCESS.2018.2806394
https://doi.org/10.1109/ACCESS.2018.2806394
https://doi.org/10.18653/v1/2021.findings-acl.213
https://doi.org/10.18653/v1/2021.findings-acl.213
https://doi.org/10.18653/v1/2021.findings-acl.213
https://doi.org/10.18653/v1/2022.naacl-main.433
https://doi.org/10.18653/v1/2022.naacl-main.433
https://doi.org/10.1145/3394231.3397902
https://doi.org/10.1145/3394231.3397902


6. Insults and Flaming: Insults or attacks on
another player or team (not based on player or
team’s real or perceived identity)

7. Spam: Excessive sharing of the same or sim-
ilar words, phrases, emojis or sharing (e.g.,
"kdjfklsjafkldjkla").

8. Other Offensive Texts: Any other message
not covered in the above categories that is
offensive and/or harms a player’s reasonable
enjoyment of the game.

C Model Reproduction Details

Our model is implemented with HuggingFace4 and
PyTorch5. Section 3.2.1 and 3.2.2 include explicit
information on the model architecture and prepro-
cessing steps. Our model uses default values for
BERT. The learning rate is 1e-5, chosen from a hy-
perparameter search amongst 1e-4, 1e-5 and 1e-6.
The learning rate scheduler is set to linear decay
with a warmup step ratio of 5%. Training with
GeForce RTX 2080 took approximately 7 hours
with max train epochs set to 100, early stopping
with patience of 5 epochs based on the weighted
F1 score.

D Sentence-level vs. Token-level

For this experiment, we do not include chat speaker
segmentation and use global mode for chat history.
We analyze in Table 13 the impact of changing
the max_token_size for the tokenizer and the level
of classification (sentence-level and token-level).
Contrary to our beliefs, it would seem that classify-
ing on the sentence level as opposed the token-level
is a slightly harder task.

Token Sentence
64 77.06 ± 0.88 76.12 ± 1.56
128 78.90 ± 0.64 79.05 ± 1.39
256 81.41 ± 0.42 80.45 ± 1.27
512 82.09 ± 0.39 80.88 ± 0.51

Table 13: Model mean F1 score on different max token
length and classification mode.

E Cold-Start Problem

As chat history is used for the model, a cold-start
problem may arise. To address this, we exam-
ine the results of ToxBusterBASE (is not trained

4https://huggingface.co/
5https://pytorch.org/

and doesn’t use chat history) and ToxBusterFULL

(trained with chat history and speaker segmenta-
tion) on the R6S test set. We bin the number of chat
lines in the chat history and report the F1-score
in Table 14. We can see that using chat history
will always help with the performance, although
marginally with 0 or 1 lines of chat history and
much higher for more lines of chat history. This
could indeed explain some of the variance we have
reported in the main results. More interestingly,
we see a large improvement in performance for 21
- 30 lines and the improvement slightly dropping
afterwards, suggesting that this may be the ideal
length of chat history for this dataset.

Chat History Support ToxBusterBASE ToxBusterFULL

0 96 81.69 81.72
1 92 80.65 81.68
2 - 10 811 78.15 83.43
11 - 20 901 77.92 82.22
21 - 30 772 75.87 84.25
31 - 40 717 77.35 82.75
41+ 14,447 77.14 83.65

Table 14: Impact of Context - Model F1 score across
differing chat history length.
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Figure 4: ToxBuster Precision-Recall Curve per Toxic Class on R6S.
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