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Abstract

This paper reports on the experiments aimed
to improve our understanding of the role of the
amount of data required for training attention-
based transformer language models. Specif-
ically, we investigate the impact of reducing
the immense amounts of required pre-training
data through sampling strategies that identify
and reduce high-frequency tokens as differ-
ent studies have indicated that the existence
of very high-frequency tokens in pre-training
data might bias learning, causing undesired ef-
fects. In this light, we describe our sampling
algorithm that iteratively assesses token fre-
quencies and removes sentences that contain
still high-frequency tokens, eventually deliver-
ing a balanced, linguistically correct dataset.
We evaluate the results in terms of model per-
plexity and fine-tuning linguistic probing tasks,
NLP downstream tasks as well as more seman-
tic SuperGlue tasks. The results show that pre-
training with the resulting balanced dataset al-
lows reducing up to three times the pre-training
data.

1 Introduction

Historically, using more training data has been
considered a key to improving the performance
of natural language processing (NLP) tools. The
same seems to be true for transformer-based large
language models (LLMs) such as BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019) that
exhibit their best performance when being trained
with really massive quantities of texts. However,
the question arises whether more training data is
the only factor for improving results or whether
specific characteristics of the provided texts have
a particular impact on the learning efficiency of
these powerful models. Recent research (Wei et al.,
2021; Razeghi et al., 2022) has found evidence
about the impact of the absolute frequency of pre-
training data tokens in the prediction capacities
of the model. Besides, high-frequency terms have

proved to be behind some phenomena related to the
geometry of the representations causing problems
for so called semantic tasks that rely on similar-
ity assessments (Ethayarajh, 2019; Fuster-Baggetto
and Fresno, 2022). In this paper, we report on our
experiments to better understand the impact of to-
ken frequency in the pre-training data on language
model (LM) quality, in terms of perplexity, and on
the quality of the representations that these mod-
els provide for fine-tuning. Our ultimate goal is
to study to what extent the quantity of pre-training
data could be lessened, since this could be of great
importance for training LM for low-resource lan-
guages (LRLs).

Texts are known to follow Zipf’s law with some
tokens occurring very frequently, some occurring
with medium frequency, and many tokens that
rarely occur forming a long tail. Different dis-
ciplines have addressed the problems of using
long-tailed training data where some elements ap-
pear on most of the data but most of the elements
are under-represented. Under-sampling and over-
sampling techniques to directly adjust the number
of examples by removing and adding data respec-
tively have been proposed (Cui et al., 2019; Rau-
nak et al., 2020). In this context, we propose an
under-sampling algorithm whose objective is to bal-
ance token frequency by removing the sentences in
which high-frequency tokens (and bigrams) occur,
thus improving the estimation of model probabil-
ities for low-frequency tokens. By ensuring that
tokens have a balanced exposure during training,
the model should become more capable of learn-
ing more diverse linguistic patterns, resulting in an
improved model perplexity and in better represen-
tations for NLP tasks. Our experiments show that
sampling the data to avoid a highly skewed token
frequency distribution delivers results equivalent
to pre-training the model with average three times
more but unbalanced, raw data.

In this paper, we report on how our algorithm
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processes the dataset, how it iteratively assesses
token frequencies and removes sentences that con-
tain still high-frequency tokens, eventually deliver-
ing a balanced, linguistically correct dataset. We
evaluate the results in terms of model perplexity
for English general and domain texts and for four
other languages of different morphological com-
plexities. Furthermore, we evaluate the approach
in terms of the quality of the representations for
fine-tuning to a range of tasks: linguistic probing
tasks, NLP tasks and more semantic SuperGlue
tasks. Our hypothesis was that if Fuster-Baggetto
and Fresno (2022) analysis is correct, reducing fre-
quency biases would also improve the results in
semantic tasks.

In what follows, section 2 reviews the related
work; section 3 describes the algorithm imple-
mented, as well as its impact on the initial and
the resulting datasets. Section 4 describes the ex-
perimental setup for training ten RoBERTa mod-
els with different data and in different languages
and domains. Also in section 4, we describe the
fine-tuning experiments for eleven different tasks
that were meant to get thorough information about
the impact of training the model with a balanced
dataset, specially in semantic tasks. Section 5 de-
scribes the results of the experiments in terms of
perplexity of the models and of F1-score of the
different tasks. Results are analysed and discussed
in section 6. Finally, section 7 is devoted to sum
up the conclusions and contributions.

2 Related Work

A number of works have studied the impact of
word frequency on different aspects of LLM and,
in particular, on the quality of the delivered rep-
resentations. Kassner et al. (2020) have studied
BERT models and possible memorization based
on token frequency, demonstrating that if a token
appears fewer than 15 times, the model will dis-
regard it, while a token that appears 100 times or
more will be predicted more accurately. Zhou et al.
(2022) demonstrated that high frequency words and
low frequency words are represented differently by
transformer LLM, in particular by BERT. Wei et al.
(2021) found evidence that BERT models struggle
to correctly predict a verb when it belongs to a set
of word pairs (S-V), or bigrams, that appears less
than 10 times or more than 100 times in the train-
ing corpus. Razeghi et al. (2022) also examined
the strong impact of the frequency of terms in pre-

training data, although in a GPT model, and found
a strong correlation of token frequencies with the
resulting model performance.

Puccetti et al. (2022) provided evidence directly
linking the presence of outlier dimensions (Koval-
eva et al., 2021) with the frequency of tokens in
the pre-training data. Outlier dimensions are those
dimensions at which parameters with an unusually
high magnitude —in terms of standard deviation–
– are found consistently across the model layers.
Puccetti et al. (2022) results suggest that outliers
are due to the highly skewed token frequency dis-
tribution in the textual pre-training data. Moreover,
Fuster-Baggetto and Fresno (2022) demonstrated
that the non-fine-tuned BERT models contain to-
ken frequency biases that distort the embedding
representation space. The distortion leads to the
already observed poor performance on semantic
tasks because of what Gao et al. (2019) already
diagnosed as anisotropy in transformer LMs or the
representation degeneration problem: the embed-
dings concentrate in a hypercone instead of occu-
pying the whole space. Consistently, Ethayarajh
(2019) found that randomly sampled words tend to
be highly similar when measured by cosine similar-
ity. Kovaleva et al. (2021) have also found evidence
that different transformer-based LMs have similar
behavior regarding poor semantic isometry, even
when they differ in number of parameters, architec-
ture or learning objective.

As for bias-removal techniques, our approach is
different from Fuster-Baggetto and Fresno (2022),
that preferred not to remove frequent tokens from
sentences because it would be affecting the ability
of the LM. Instead, they removed the embeddings
after processing, before pooling like Jiang et al.
(2022) and Yan et al. (2021). In our experiments,
we remove the sentences with a high frequency
token to guarantee that only grammatical sentences
are processed. Our approach is, thus, in line with
Samuel et al. (2023) findings that got a noticeable
difference in downstream tasks performance when
using the British National Corpus of 100M tokens,
as a sample of a curated data set that proved to be
enough to learn the required basic linguistic skills.

3 Frequency

In this section, we report on our algorithm that
processes a raw text corpus and returns a balanced
dataset. As explained in this section, which we set
to a size 10M tokens —as we will explain later on
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in more detail. The processing includes, on the
one hand, calculating the number of occurrences of
content tokens in the whole dataset and assessing
to what extent they usually co-occur with other less
frequent tokens, thus forming to be kept bigrams.
On the other hand, frequency counts are updated
after each sentence removal.

Algorithm 1 Removing sentences from dataset

Require: S, Tmax, Bmin, Freq, Bi
Ensure: Sbalanced

1: Sbalanced ← S
2: deleted_phrases← True
3: while deleted_phrases do
4: stop_process← False
5: for each si in Sbalanced do
6: W ← split_sentence(si)
7: if all wi in W, Freq[wi] >

Tmax and Bi[(wi, )] > Bmin then
8: Remove si from Sbalanced

9: Update wi from Freq
10: Update (wi, ) from Bi
11: stop_process← True
12: end if
13: end for
14: if stop_process == False then
15: deleted_phrases← False
16: end if
17: end while

3.1 Calculating token frequencies
To calculate the token frequencies of a dataset, we
implemented the following steps:

1. Word split: We divided the dataset into in-
dividual tokens by using the space character
(" ") as a delimiter. We opted for this easy
approach as it was enough for the purpose of
our experiments.

2. Stopword Removal: We eliminated stopwords
from the dataset because they are mainly
grammatical words that are among the most
frequent tokens in any language. For our ex-
periments, we used the Stopword function
from NLTK1 library, which contains stop-
words list of German, French and Turkish. We
got Quechua stopword from a Github reposi-
tory.2

1https://www.nltk.org
2https://github.com/stopwords-iso/

stopwords-iso

3. Counting Token Occurrences (Freq): We per-
formed a count of how many times each token
appeared in the dataset.

4. Bigram Counting (Bi): In addition to single
tokens, we also considered bigrams, which are
pairs of tokens appearing together. By count-
ing the occurrences of bigrams, we wanted
to take into account that very frequent tokens
can consistently co-occur with other less fre-
quent token that should be kept in the curated
dataset.

In the steps described above, we ob-
tain Freq and Bi. Freq is a list
{(w0, f0), .., (wi, fi), .., (wn, fn)}, where
wi is a content token and fi is the fre-
quency of wi. Similarly, Bi is a list
{((w0, ), fb0), .., ((wi, ), fbi), .., ((wn, ), fbn)},
where (wi, ) represents bigrams and fbi is the
frequency of (wi, ).

3.2 A frequency-algorithm for getting a
balanced dataset

One of the most important steps in balancing a
dataset is to setup an upper threshold for the oc-
currence of any token (Tmax) or token and usual
co-occurrences (Bmin).

Taking into account the previous research, we
decided to consider both token frequencies and
co-occurrence frequencies in our algorithm. Fur-
thermore, in order to adapt the algorithm to each
dataset, we decided to set Tmax value as a rela-
tive value, calculated based on the average frequen-
cies of the type tokens (TT), excluding outlier fre-
quencies (OF). To remove the outlier frequencies,
we used the "outlier_utils"3 library from Python.
Our algorithm utilizes a Bmin of 10 and Tmax is
obtained using the following equations:

Freqavg =

∑Z
n=1 Freqn

Z
(1)

where:

Z : Number of TT without OF.

Freqn : Frequency of tokenn
Freqavg : Average frequency

Tmax =

{
Freqavg if Freqavg < 100

100 if Freqavg ≥ 100
(2)

3https://pypi.org/project/outlier_utils/
#description
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Algorithm 1 (removing sentences from dataset)
is used to create a list of the sentences (Sbalanced)
that do not contain high frequency tokens. It takes
as parameters all the sentences from the dataset
(S), the list of token frequencies (Freq), the list of
bigrams (Bi), Tmax and Bmin.

To analyze each sentence (si) in Sbalanced where
∀ si ∈ Sbalanced = {s0, ..., si, ..., sn}, we split
si using (" ") as a delimiter, obtaining W =
{w0, ..., wi, ..., wn}, being each wi a token. Then,
for each element of W we obtain the values
Freq[wi] and Bi[(wi, )]. Freq[wi] and Bi[(wi, )]
values are compared with Tmax and Bmin, respec-
tively. If in all wi Tmax and Bmin are lower
than Freq[wi] and Bi[(wi, )], we remove si from
Sbalanced; and we update the frequency counts in
the lists Freq and Bi. The process is repeated each
time this condition is fulfilled, until the condition
is not fulfilled in any si. The output of this process
is Sbalanced.

3.2.1 Dataset size details
In order to conduct the experiments, we followed
Warstadt et al. (2020b), in which models created
with 10M and 100M datasets where compared, and
we used the algorithm to create balanced datasets
of 10M tokens, except for the LRL Quechua, which
we set at 1M tokens due to the lack of a large cor-
pus. Table 1 shows the amount of data consumed
for each dataset to reach 10M tokens using our
algorithm.

Dataset Language Size
needed Times

Wikipedia English 36M 3.6x
News English 29M 2.9x
Reviews English 24M 2.4x
BioMedic English 30M 3.0x
CS English 19M 1.9x

OSCAR
German 41M 4.1x
French 39M 3.9x
Turkish 72M 7.2x

Llamacha Quechua 6M 6x

Table 1: Details of raw datasets to result in a 10M
balanced one in number of tokens and reduction times.

The amount of data required to reach 10M tokens
varies significantly depending on the language and
domain. In the case of Quechua, the size of the
training data was 1M, and it required six times

more data to achieve the target. However, for most
datasets, an average increase of four times was
sufficient to reach 10M tokens, except for Turkish,
which required approximately seven times more
data.

4 Experimental Setup

In this section, we describe the setup of the differ-
ent experiments. We trained ten RoBERTa mod-
els with different processed and non-processed
datasets for English, French, German, Turkish data
and measured their perplexity to assess the impact
of balancing token frequency in pre-training data.
We also applied the algorithm for assessing how it
could be used in a LRLs scenario, such as the one
of Quechua, with only a 6M tokens corpus that got
reduced into only 1M. After that, we describe the
fine-tuning of the English models for four different
typical NLP tasks, for a linguistic probing classifier
and for four different SuperGLUE tasks.

4.1 Language models

For training all the LMs, we followed the configura-
tion outlined by Warstadt et al. (2020b) and specifi-
cally, we employed the hyperparameters from their
Med-Small model, which consisted of 8 attention
heads, a hidden size of 512, a feed-forward network
dimension of 2048, and a total of 45 million param-
eters. In line with common practice in transformer-
based LM development, we employed the BPE
tokenizer (Sennrich et al., 2015), utilizing a vocab-
ulary size of 52k tokens. Additionally, we adopted
identical parameter values for dropout, attention
dropout, and learning rate decay. For a comprehen-
sive overview of these parameters, please refer to
Table 8 in the appendix.

4.1.1 English Wikipedia corpus

English training data source is the Wikipedia cor-
pus used by Devlin et al. (2019). It is relevant to
note that this corpus has a total of 2.5 billion tokens
but for our experiments we have only downloaded
50M tokens. We compared our roBERTa models
trained with a balanced corpus of 10M tokens, ob-
tained by using the frequency-algorithm, with the
already available roberta-base models trained on
10M4 and 100M5 datasets.

4https://huggingface.co/nyu-mll/
roberta-base-10M-2

5https://huggingface.co/nyu-mll/
roberta-base-100M-2
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4.1.2 English domain corpora
In addition to the experiments explained above,
we trained RoBERTa models with data from dif-
ferent domains using our frequency-algorithm for
sampling the data. The importance of using
our frequency-algorithm on corpora other than
Wikipedia lies in the need to observe how our algo-
rithm behaves with domain-specific words and how
they are distributed in a specialized corpus. We se-
lected four specific domains for these experiments:
news, product reviews, biomedicine, and computer
science.

For the biomedicine and computer science do-
mains, we utilized data obtained from Lo et al.
(2019), with technical knowledge and specialized
terminology in those fields. Regarding the news
domain, we used data extracted from RealNews
(Zellers et al., 2019). Finally, for the Amazon prod-
uct reviews domain, we obtained training data from
HuggingFace6.

4.1.3 Other languages
In order to validate the robustness of the approach
with other languages that are morphologically dis-
tinct from English —that is, with a different dis-
tribution of tokens and types—, we conducted ex-
periments building models for German, French,
Turkish, and Quechua. As mentioned in the intro-
duction, we applied the algorithm to Quechua for
assessing how it could be used in a LRL scenario
with only a 6M tokens corpus.

The resources used for German, French, and
Turkish were obtained from the OSCAR corpus
(Ortiz Suárez et al., 2019). Each corpus has a dif-
ferent size. German has 21 billion tokens (Scheible
et al., 2020), French has 32.7 billion tokens (Mar-
tin et al., 2020) and Turkish has 11.5 million doc-
uments (Toraman et al., 2022). For Quechua, we
used the 6M corpus from Zevallos et al. (2022).

4.2 NLP downstream tasks
For English, we additionally fine-tuned a number
of classifiers for traditional NLP tasks: Part-of-
Speech tagging (POS), Dependency Labeling (DL)
and Named Entity Labeling (NER). POS and NER
task data were obtained from Weischedel et al.
(2013)7 and DL from Silveira et al. (2014).

We also addressed Relation Classification (REL)
task, which is the task of predicting the relation that

6https://huggingface.co/datasets/amazon_us_
reviews

7https://catalog.ldc.upenn.edu/LDC2013T19

holds in the real-world between two entities, as a
sample of a more semantic NLP task. Different re-
lations are taken from an inventory of symbolic
relation types Cause-Effect; Content-Container,
Instrument-Agency, etc. The data were taken from
Tenney et al. (2019).

All fine-tuning models used same hyperparam-
eters. For a comprehensive overview of these pa-
rameters, please see the appendix.

4.3 BLiMP tasks

We utilized the BLiMP testset (Warstadt et al.,
2020a) to evaluate the quality of representations
regarding individual grammatical phenomena in
English. BLiMP is a collection of 67 tasks, each
of which contains 1000 minimal pairs of sentences
that highlight specific morphological, syntactic, or
semantic phenomena. These BLiMP minimal pairs
consist of two sentences that differ in a single edit
but contrast in their grammatical acceptability. The
purpose of BLiMP is to conduct unsupervised eval-
uation of LMs through a forced-choice acceptabil-
ity judgment task. A LM is considered to classify
a minimal pair correctly if it assigns a higher prob-
ability to the acceptable sentence. Thus, BLiMP
provides a valuable tool for measuring and com-
paring the performance of models. For evaluation,
we followed the MLM scoring method proposed
by Salazar et al. (2020).

4.4 SuperGLUE tasks

SuperGLUE is a benchmark set consisting of eight
classification-based language understanding tasks
Wang et al. (2019). We evaluated English LMs
fine-tuning five SuperGLUE tasks in order to see
the impact of training with a balanced dataset in
tasks that are considered to involve understand-
ing such as Boolean Questions (BoolQ) (Clark
et al., 2019), Commitment Bank (CB) (De Marn-
effe et al., 2019), Choice of Plausible Alternatives
(CPA) (Gordon et al., 2012), Recognizing Textual
Entailment (RTE) (Wang et al., 2019) and Word in
Context (WiC) (Pilehvar and Camacho-Collados,
2019). Our interest was whether reducing fre-
quency biases would also improve the results in
semantic tasks. Description of the tasks and the
hyperparameter search range used for each task are
described in the appendices.
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English Wikipedia

Model Perplexity
roberta-base-100M 4.61
roberta-base-10M 10.78
roberta-freq-10M 4.93

Table 2: Model perplexity of language models trained
with raw data and balanced word token frequency.
The word "freq" in the model name refers to the use
frequency-balanced data after applying our algorithm.

5 Results

We now describe the results of the different experi-
ments. In all of them, the use of a balanced dataset
for training the LMs equals or improves its quality
in terms of perplexity of the LM or in terms of
accuracy in fine-tuned tasks8.

5.1 Language models and pre-training data

5.1.1 English Wikipedia
To assess the results, we evaluated the impact of
balancing the pre-training datasets by comparing
the perplexity of the model obtained with the per-
plexity of models trained with the same amount but
raw data.

Table 2 shows the perplexity of "roberta-base-
10M" and "roberta-base-100M" as obtained with
the models from Zhang et al. (2020), as well as the
model trained with the frequency balanced corpus.
The perplexity is reduced in almost 6 points, from
10.78 to 4.93, getting very close to 4.61 perplexity
of the model when trained with 100M words corpus
of raw data.

5.1.2 Domains
We also evaluated different domain-specific train-
ing sets collected from domains such as news, re-
views, biomedical, and computer science texts. As
shown in Table 3, the reduction of model perplexity
is clear in all the domains, with 6 points of reduc-
tion in average, which supports the robustness and
consistency of the impact of balancing word token
frequency.

5.1.3 Other languages
Like with the roBERTa model of English, we eval-
uated the perplexity of models trained with corpora

8Improvements are in all cases statistically significant at p
< 0.05 as assessed with a sign test

English Domains

Domain roberta-base roberta-freq
News 19.42 13.59
Reviews 25.17 18.26
BioMedic 17.31 10.15
Computer
Science

15.48 8.63

Table 3: Model perplexity of language models trained
with different domains and applying the frequency-
algorithm to get 10M tokens training data. These models
were trained from scratch for this experiment.

from different languages to see the impact of us-
ing our frequency algorithm. As shown in Table 4,
German achieves a reduction in perplexity of more
than 7 points using the balanced corpus (roberta-
freq). Similarly, French, Turkish and Quechua re-
duce perplexity by 8.26, 8.65 and 62.75 points re-
spectively, confirming that more morphologically
complex languages, with more word types due to
inflection, also greatly benefit of a balanced pre-
training dataset.

Other Languages

Language roberta-base roberta-freq
German 17.05 9.76
French 13.81 10.88
Turkish 35.18 26.53

Low-Resource Language

Language roberta-base roberta-freq
Quechua 358.47 295.72

Table 4: Model perplexity of language models trained
with different languages when applying the frequency-
algorithm. All models are trained with 10M tokens
except for Quechua, which is trained with only 1M
tokens. These models were trained from scratch for this
experiment.

5.2 NLP downstream tasks
As can be seen in Table 5, the use of our frequency
reduction algorithm to process the training dataset
leads to improvements in the four tasks: POS, NER,
REL and Dependencies. The "roberta-freq-10M"
model increases performance compared to "roberta-
base-10M", with better results for tasks that were
more semantic such as REL. Moreover, note that
the results in terms of F1-score are the same for
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NLP Task

Model Part-of-Speech NER REL Dependencies
roberta-base-100M 0.98 0.97 0.76 0.92
roberta-base-10M 0.96 0.95 0.67 0.88
roberta-freq-10M 0.97 0.97 0.76 0.92

Table 5: NLP task results in F1-score for the different language models trained according to: training size and
frequency reduction technique.

BLiMP

Task roberta-base-10M roberta-freq-10M roberta-base-100M
ANA. AGR. 91.1 96.7 97.2
ARG. STR 70.1 78.9 79.1
Binding 71.6 75.2 75.4
CTRL RAIS 70.7 79.7 79.6
D-N ARG. 91.6 93.1 94.5
Ellipsis 86.0 90.8 91.6
Filler GAP 67.3 79.1 78.8
Irregular 84.3 92.5 92.7
Island 53.6 61.3 63.0
NPI 75.6 77.3 77.2
Quantifiers 58.6 62.7 64.7
S-V ARG. 77.0 86.8 87.5

Table 6: BLiMP results for the 10M and 100M roberta-base models and the roberta model using our 10M frequency-
algorithm.

almost all cases that the scores obtained with the
"roberta-base-100M" model.

5.3 BLiMP Tasks

The experiments conducted with the BLiMP
dataset reveal improvements regarding the refer-
ence models used: "roberta-base-10M" (see Table
6) in most of the tasks. In the ANA.AGR task, a
score of 96.7 is achieved with the "roberta-freq-
10M" model, surpassing "roberta-base-10M" by
5.6 and coming close to the "roberta-base-100M"
model with 97.2. In the CTRL.RAIS task, the
"roberta-freq-10M" model achieves a score of 79.7,
surpassing "roberta-base-10M" by 9.0 and "roberta-
base-100M" by 0.1. Similarly, in the NPI task, the
"roberta-freq-10M" model demonstrates superior-
ity over the "roberta-base-10M" and "roberta-base-
100M" models by 1.7 and 0.1 respectively. As for
the Filter.GAP task, the "roberta-freq" model out-
performes both base models, achieving a score of
79.1. Lastly, the "roberta-freq-10M" model sur-
passes the "roberta-base-10M" model in all tasks.

5.4 SuperGLUE tasks

The experiments conducted on the SuperGLUE
dataset reveal important findings regarding the per-
formance of the evaluated models. The "roberta-
freq-10M" model achieves comparable or slightly
better performance than the baseline models in
most of the tasks evaluated in SuperGLUE.

As can be seen in Table 7, the most highlighting
task where the "roberta-freq-10M" equals "roberta-
base-100M" is WiC, achieving a score of 0.70.
Moreover, the "roberta-freq-10M" overcomes the
"roberta-base-10M" model in all tasks, with an av-
erage of 0.05 points.

6 Discussion

Since word frequency shows a highly skewed distri-
bution in raw texts, when using a balanced dataset
(especially when pre-training with a small 10M
corpus), the potential biases due to highly-frequent
tokens should be moderated, and the system should
be able to perform a better computation of the prob-
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SuperGLUE

Task roberta-base-10M roberta-freq-10M roberta-base-100M
BoolQ 0.68 0.73 0.74
CB 0.81 0.86 0.89
Copa 0.57 0.60 0.61
RTE 0.57 0.62 0.64
WiC 0.65 0.70 0.70

Table 7: SuperGlue results for the 10M and 100M roberta-base models and the roberta model using our 10M
frequency-algorithm.

abilities of medium and rare words.
The results of our experiments consistently show

that perplexity in all our experiments improves
when working with a balanced corpus. In particu-
lar, we have seen that using balanced datasets for
modeling morphological complex languages with
more number of types due to inflection like Ger-
man, French, Turkish and Quechua also reduces
model perplexity, confirming the robustness of the
approach with different probability distributions.

The improvement of rare tokens modeling after
eliminating high-frequency tokens is clearly shown
in the BLIMP results, which show a better perfor-
mance for a model trained with a balanced 10M
corpus than a model trained with a 100M words
corpus for tasks related to medium or rare words
like Negative Polarity Items (NPI) like ’ever’ or
Control/Raising verbs like ’oblige’ or ’promise’.
Note that negative sentences are a minority in En-
glish written texts ranging from less than 10% to
32% of the sentences in different reference cor-
pora (Jiménez-Zafra et al., 2020). Also note that
Filler-Gap phenomena mostly occur in question
sentences that are less frequent in any corpus of
English too (see, for instance, Liu et al. (2022)).

Moreover, since high-frequency words seem to
be responsible for representations with outlier com-
ponents distorting the geometry of the created hy-
perspace, semantic fine-tuned tasks should improve
more than others that do not rely on semantic simi-
larity. For instance, we see an important improve-
ment in the Relation Classification task (REL),
which predicts the relation that holds between two
entities, and also an improvement that equals the
results of pre-training with 100M in the task of
Word in Context (WiC) —a word sense disambigua-
tion task. Therefore, our results support Fuster-
Baggetto and Fresno (2022) because we found that
the lack of frequency bias improves the quality of

the semantic representation and makes the system
perform significantly better especially in semantic
tasks.

7 Conclusions

In the current paper, we reported on an algorithm
that processes a corpus assessing token frequencies
to remove sentences that contain high-frequency
tokens, eventually delivering a balanced, linguisti-
cally correct data set. We have shown that training
with a balanced corpus improves the quality of the
model, as shown in a significant reduction in per-
plexity for English general and domain texts and
for five other languages of different morphological
complexities. Furthermore, the results also show
the quality of the representations for fine-tuning
tasks: linguistic probing tasks, NLP tasks and Su-
perGlue tasks also improve the results obtained
with a non-balanced, raw dataset, in many cases
delivering results that equals the results obtained
with models trained with 100M tokens of raw text.
In particular, such better results in semantic tasks
confirm previous researches that signalled high-
frequency tokens distorting the semantic space cre-
ated by the models.

Summing up, the contributions of our research
are the algorithm for balancing textual data, the
different balanced corpora that are available with
the code at ANONYMIZED, and further evidence
about the impact of high-frequency tokens for train-
ing transformed-based LMs. Finally, we think that
our findings will be of great interest for LRLs, since
we have defined the characteristics of the data to
be gathered or created so that, using less data, the
created models can achieve the best results.

Limitations

We have limited ourselves to studying only four
domains other than Wikipedia because the majority
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of other types of domains are not publicly accessi-
ble or do not have the minimum required data for
our experiments.

On the other hand, we have chosen to use
Quechua as the language of low-resource settings
for being one of the few languages that meets
the necessary requirements for our experiments.
Quechua is a morphologically complex language
(agglutinative), and it has a dataset of 6M tokens
for training LMs.
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A Appendices

A.1 Language Models details

To train all LMs, we followed the choices by
Warstadt et al. (2020b) for their RoBERTa Med-
Small model with 45M parameters. Table 8 show
the hyperparameters used in our experiments.

Description Value
Number of Layers 6
Hidden size 512
Feed-forward network dimension 2048
Attention heads 8
Dropout 0.1
Attention dropout 0.1
Max Steps 10K
Learning rate decrease 5E-4
Batch Size 512
Number of parameters 45M

Table 8: Configuration used for all RoBERTa model
trainings

We ran all training on 5 server equipped with
an Intel Xeon E5-2650 v4 CPU (12 cores, 2.2GHz
30MB Cache 2400MHz 105W) and a Gigabyte
Geforce GTX 1080 Ti TURBO 11.72GB GPU. We
trained each model for 10k steps. The training time
was over 4 days for models of 10M and 15 hours for
models of 1M. The entire LMs creation experiment
took approximately 8 days.

A.2 NLP downstream tasks details

From the pretrained RoBERTa models, and still
following Zevallos and Bel (2023), we generated
representations of the token span and trained clas-
sifiers that predict whether a given label correctly
describes the input span for NER, POS, Depen-
dency Labeling (DL) and Relation Classification
(REL).

In order to obtain the best and validated results
in all tasks, we performed a 10-fold macro-F1 score
cross-validation. We set a batch size of 16 and a
learning rate of 2E-5 in all our fine-tuning models.
Furthermore, for evaluating the four tasks, we used
macro-F1 score.

On the other hand, we have used 1 server
equipped with an Intel Xeon E5-2650 v4 CPU (12
cores, 2.2GHz, 30MB Cache, 2400MHz, 105W)
and a Gigabyte GeForce GTX 1080 Ti TURBO
11.72GB GPU to train all these models. The train-
ing time was approximately 5 hours per task and
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model. In total, we trained 12 models over a period
of approximately 4 days.

A.3 BLiMP and SuperGlue details
The tasks of BliMP and SuperGlue are described
in Table 9 and Table 10 respectively.

7870



Task Fullname Description

ANA. AGR.
Anaphor
agreement

the requirement that reflexive pronouns like himself
(a.k.a. anaphora) agree with their antecedents in person,
number, gender, and animacy.

ARG. STR
Argument
structure

The ability of different verbs to appear with different
types of arguments. For instance, different verbs can
appear with a direct object, participate in the causative
alternation, or take an inanimate argument.

Binding Binding
The structural relationship between a pronoun and its
antecedent.

CTRL RAIS Control/raising

Syntactic and semantic differences between various
types of predicates that embed an infinitival VP. This
includes control, raising, and tough-movement
predicates.

D-N ARG.
Determiner-noun
agreement

Number agreement between demonstrative determiners
(e.g., this/these) and the associated noun.

Ellipsis Ellipsis

The possibility of omitting expressions from a sentence.
Because this is difficult to illustrate with sentences of
equal length, our paradigms cover only special cases of
noun phrase ellipsis that meet this constraint.

Filter GAP Filler-gap
Dependencies arising from phrasal movement in, for
example, wh-questions.

Irregular Irregular forms

Irregular morphology on English past participles
(e.g., broken). We are unable to evaluate models on
nonexistent forms like *breaked because such forms are
out of the vocabulary for some LMs.

Island Island effects
Restrictions on syntactic environments where the gap in
a filler-gap dependency may occur.

NPI NPI licensing
Restrictions on the distribution of negative polarity items
like any and ever limited to, for example, the scope of
negation and only.

Quantifiers Quantifiers

Restrictions on the distribution of quantifiers. We cover
two such restrictions: superlative quantifiers (e.g., at least)
cannot embed under negation, and definite quantifiers and
determiners cannot be subjects in existential-there
constructions.

S-V ARG.
Subject-verb
agreement

Subjects and present tense verbs must agree in number.

Table 9: Description of each BLiMP task used in our experiments.
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Task Fullname Description

BoolQ
Boolean Questions
(Clark et al., 2019)

BQ, is a QA task where each example consists
of a short passage and a yes/no question about
the passage. The questions were provided by
users of Google SE, and afterwards paired with
a paragraph from a Wikipedia article containing
the answer.

CB
CommitmentBank
(De Marneffe et al., 2019)

CB is a corpus of short texts in which at least
one sentence contains an embedded clause. The
embedded clause is annotated with the degree
of commitment expressed by the author of the
sentence, and the task is to predict it.

COPA
Choice of Plausible Alternatives
(Gordon et al., 2012)

COPA is a causal reasoning task that chooses
the cause or effect of a premise sentence from
two possible choices.

RTE
Recognizing Textual Entailment
(Wang et al., 2019)

RTE task is about text entailment derived from
the Natural Language Inference (NLI) dataset
in which given a premise sentence and a
hypothesis sentence, the task is to predict
whether the premise entails the hypothesis or
not.

WiC
Word in Context
(Pilehvar and Camacho-Collados, 2019)

WiC is a kind of disambiguation task. Given
two text snippets and a polysemous word that
appears in both sentence, the task is to decide
whether the polysemous word is used with the
same sense in both sentences.

Table 10: Description of each SuperGLUE task used in our experiments.
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