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Abstract

With the evolution of Large Language Mod-
els (LLMs) we can solve increasingly more
complex NLP tasks across various domains, in-
cluding spreadsheets. This work investigates
whether LLMs can generate code (Excel Office-
Scripts, a TypeScript API for executing many
tasks in Excel) that solves Excel specific tasks
provided via natural language user instructions.
To do so we introduce a new large-scale bench-
mark, INSTRUCTEXCEL,1 created by leverag-
ing the ‘Automate’ feature in Excel to automati-
cally generate OfficeScripts from users’ actions.
Our benchmark includes over 10k samples cov-
ering 170+ Excel operations across 2,000 pub-
licly available Excel spreadsheets. Experiments
across various zero-shot and few-shot settings
show that INSTRUCTEXCEL is a hard bench-
mark for state of the art models like GPT-4. We
observe that (1) using GPT-4 over GPT-3.5, (2)
providing more in-context examples, and (3)
dynamic prompting can help improve perfor-
mance on this benchmark.

1 Introduction

Spreadsheet software, especially Microsoft Excel,
is used every day by a diverse set of users (from
complete novices to highly sophisticated power
users) to solve a wide range of important tasks.
To help users accomplish their tasks, Excel has
introduced an array of features, including Analyze
Data2 where users can specify their task in natural
language (NL) for a limited scope of tasks. As
even seemingly simple manipulations can often
require knowledge of complex concepts like loops,
conditionals, and regular expressions (Desai et al.,

˚ Work done during internship at Microsoft
: Currently at Google DeepMind

1INSTRUCTEXCEL, along with the code used in our
experiments, is available at https://github.com/
microsoft/InstructExcel.

2https://support.microsoft.com/en-us/office/get-insights-
with-analyze-data-aa105149-1e48-446d-b3df-872dff70a866

2016) it is important to further diversify the range
of tasks AI assistants can support.

Meanwhile, the advent of large language mod-
els, together with the instruction learning paradigm
(Mishra et al., 2022b; Wei et al., 2022; Ouyang
et al., 2022; Sanh et al., 2022), has paved the way
for non-experts to accomplish many tasks just by
providing instructions in natural language. Can
we leverage this novel paradigm to let Excel users
automatically execute complex tasks from NL in-
structions?

Excel OfficeScripts3 provide a versatile Type-
Script API for most standard functions in Excel,
giving us a simple intermediate representation for
executing NL instructions in Excel. Our task is to
convert a user’s description of a simple action or
set of actions in Excel (such as editing formatting)
into an executable OfficeScript accomplishing the
action(s) on the given spreadsheet. Figure 1 shows
an example input and output, with additional exam-
ples in Table 5 of Appendix A.

We introduce INSTRUCTEXCEL, a benchmark
to investigate the instruction paradigm for generat-
ing OfficeScripts from NL instructions. We extract
publicly available Excel sheets and ask crowdwork-
ers to think of an action they want to perform on
the sheet and write a summary of it in NL. Sub-
sequently, we ask crowdworkers to execute that
action in the sheet and use the Automate feature to
record the action and generate the underlying code.
Automatic code generation improves output quality
and eliminates potential bugs prevalent in human-
written code. INSTRUCTEXCEL contains over 10k
samples covering 170+ OfficeScripts operations
across 2,000 publicly available Excel sheets.

We evaluate OpenAI’s GPT-3.5 Turbo and GPT-
4 models (OpenAI, 2023) as well as a T5 model

3OfficeScripts API documentation: https:
//learn.microsoft.com/en-us/javascript/
api/office-scripts/excelscript?view=
office-scripts.
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(Raffel et al., 2020), on INSTRUCTEXCEL and find
it to be a challenging benchmark even using state of
the art tools, indicating significant room for future
work on this task. We also find that GPT-4 im-
proves over GPT-3.5, and dynamic prompting and
more in-context examples improve performance,
but additional in-context instructions do not help.

In addition to evaluating capabilities of state-
of-the-art models on the full benchmark, we also
illustrate the broader utility of INSTRUCTEXCEL

through a case study on conditional formatting
rules. INSTRUCTEXCEL contains 660 examples
that represent conditional formatting tasks, which
are studied in isolation (Singh et al., 2022). Viewed
through the lens of this particular task, INSTRUC-
TEXCEL provides a data source that can be fur-
ther processed to enable experiments with task-
specific ground truth. Many other sub-tasks can
be extracted from INSTRUCTEXCEL in the same
manner, such as charting/plotting (Lee et al., 2021)
or formula creation (Chen et al., 2021b).

We believe INSTRUCTEXCEL will encourage
development of user-friendly methods to automate
various Excel tasks and help non-expert Excel users
in their daily workflow.

2 Related Work

2.1 Instruction Learning Paradigm

The instruction paradigm (Mishra et al., 2022b;
Wei et al., 2022; Sanh et al., 2022; Ouyang et al.,
2022) provides a user-friendly option to leverage
ML models just by providing instructions with-
out requiring underlying technical knowledge. In-
structions describe tasks in NL (Efrat and Levy,
2020; Weller et al., 2020), and are shown to help
models generalize to unseen tasks (Mishra et al.,
2022b; Wei et al., 2022; Ouyang et al., 2022;
Wang et al., 2022b; Xu et al., 2023; Zhong et al.,
2021; Gupta et al., 2023; Patel et al., 2022; Puri
et al., 2023; Mishra and Nouri, 2022; Chung et al.,
2022). Recent developments in large language
models (Brown et al., 2020; Chowdhery et al.,
2022) have led to the successful use of instruction
learning methods in various applications, such as
dialog (Gupta et al., 2022), tabular question answer-
ing (Luo et al., 2022), relation extraction (Chen
et al., 2021a), biomedical applications (Parmar
et al., 2022), NER (Wang et al., 2022a), program
synthesis (Kuznia et al., 2022), and style trans-
fer (Reif et al., 2022). Natural Instructions (Mishra
et al., 2022b), Supernatural Instructions (Wang

et al., 2022c), and Promptsource (Bach et al., 2022)
are some popular instruction learning benchmarks,
however they are focused on general NLP. In con-
trast to prior works, we focus on the application of
the instruction paradigm in the Excel domain.

2.2 Program Synthesis

The recent success of large language models
(LLMs) like Codex (Chen et al., 2021), GPT4
(OpenAI, 2023), PaLM (Chowdhery et al., 2022),
PaLM2 (Anil et al., 2023), StarCoder (Li et al.,
2023) and WizardCoder (Luo et al., 2023) has led
to significant progress in program synthesis. LLMs
have been found to generalize to many different
code generation tasks. The models vary in size
and training schemes and their success rate in per-
forming code generation tasks (Xu et al., 2022).
Several works leverage pre-trained models to map
NL queries to sequences of API elements or other
intermediate representations, which can be trans-
lated into code, though this may not be necessary
with models that have been pre-trained on code
(Hadi et al., 2022; Shin and Van Durme, 2022).
They have also been used for in-place data transfor-
mations (Narayan et al., 2022). Pre-trained models
have proven to be especially strong when combined
with clever post-processing steps or constrained de-
coding, for example in Jigsaw (Jain et al., 2022),
Synchromesh (Poesia et al., 2022), and PICARD
(Scholak et al., 2021). Chan et al. (2022) investi-
gates the impact of training on a large number of
different tasks. Other important aspects studied in-
clude length generalization (Anil et al., 2022), com-
positional generalization (Shi et al., 2022), reverse
engineering (Pearce et al., 2022), and generating
development tools (Bareiß et al., 2022). The task
of NL to Code is broadly of interest to the semantic
parsing literature (Kamath and Das, 2018; Zhong
et al., 2022; Zhao et al., 2022).

Existing benchmarks for automated code gener-
ation include CoNaLa (Yin et al., 2018), DJANGO
(Oda et al., 2015), HumanEval (Chen et al., 2021),
MBPP and MathQA-Python (Austin et al., 2021),
APPS (Hendrycks et al., 2021), and CodeCon-
tests (Li et al., 2022). In contrast to these bench-
marks that target general-purpose programming
languages, our work INSTRUCTEXCEL instead fo-
cuses on a specialized Excel API, which LLMs are
less likely to have encountered during pre-training.
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Figure 1: Schema of INSTRUCTEXCEL: A sample input-
output pair in INSTRUCTEXCEL. A natural language
description and the linearized spreadsheet data are the
inputs and the Excel OfficeScript code is the desired
output. We also have two additional pieces of metadata,
the URL for the Excel file and a description of the file’s
contents.

3 INSTRUCTEXCEL

In this section, we describe the INSTRUCTEXCEL

benchmark. We start with the schema used to repre-
sent the task, followed by our dataset construction
procedure, and an overview of the dataset statistics.

3.1 Task

The user inputs actions – such as clicking buttons,
writing formulas, and inserting columns. These
actions correspond to OfficeScript code which pro-
duces an equivalent effect on the Excel spreadsheet.
In addition, the user describes the intended result of
their actions using a natural language description.
Our task is to map the natural language description
input, along with the contents of the spreadsheet,
to the OfficeScript code output.

3.2 Schema

Figure 1 shows the schema of INSTRUCTEXCEL,
along with an example. It has 4 elements: input,
output, Excel file URL and Excel file description
(see Table 5 in Appendix A for more examples).

Input Each input contains a natural language in-
struction that specifies the desired manipulation of
the Excel spreadsheet, e.g. “highlight the 1st row
of sheet 1.” This can also contain references to cells

and other Excel-specific details associated with the
sheet. The input is typically a single line of text
provided by the crowdworker.

Output The output field contains the OfficeScript
code generated when the user records the actions
taken to accomplish their task. OfficeScripts are
written in TypeScript, a superset of JavaScript.

Each script must contain a main function with
the ExcelScript.Workbook type as its first parame-
ter. When the function runs, the Excel application
invokes the main function by providing the work-
book as its first parameter.

Excel File Name Each entry includes a link
pointing to the Excel file. Although we do not re-
lease the spreadsheets directly as part of the bench-
mark, each spreadsheet can be downloaded from
its associated URL.

Excel File Description Since some Excel files
are very large and may not fit within the limited
context size of smaller language models, we have
another field where the crowdworker describes the
contents of the Excel file in natural language. This
is usually one or two lines of text.

3.3 Constructing INSTRUCTEXCEL

Selecting Excel Files Starting from a dataset of
5,000 Excel documents from publicly available
links on the web, we removed any files that are in
languages other than English or that were password-
protected, corrupted, or otherwise inaccessible. We
also applied a size criteria (20 KB ă filesize ă
30 KB) to avoid Excel files that were too small to
have meaningful data or too large for human anno-
tators to understand and study in the provided time.
We eventually selected a final set of 2,000 Excel
documents to be further annotated.

Data Creation Process We used crowdsourcing
to record actions over the set of Excel documents.
We used a crowdsourcing platform called the Uni-
versal Human Relevance System.4 We recruited
English speaking annotators from India. We used
an intermediate third party vendor which assures
quality of the tasks through management of com-
munication and training of the annotators. We re-
quested our vendor to arrange a pool of annotators
who have basic familiarity with Excel applications.
We also provided the vendor a list of popular Excel

4UHRS located at: https://prod.uhrs.playmsn.
com/UHRS/.
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operations which they must use. We ensured that
our third party vendor had access to the Automate
feature in Excel Web version and that they could
access the Excel files of our dataset through the
Excel Web version.

For each document the user was instructed to in-
put a natural language description of the file. They
were then asked to type a natural language instruc-
tion, record themselves performing the relevant
action for the instruction, and copy-paste the re-
sulting code generated by the Automate feature in
Excel Web. They repeated that process 5 times per
spreadsheet. The full data collection process is il-
lustrated in Figure 2. A screenshot of the interface
for the human intelligence task (HIT) is provided
in Appendix B.

Qualification, Crowdworker Compensation and
Data Quality Check We provided 2 rounds of
pilot HITs to the vendor’s annotators, reviewed
their responses, and made clarifications to the in-
structions based on the feedback. Specifically, we
instructed annotators not to overuse or underuse
certain actions after observing the action distribu-
tion in pilot rounds. We provided various examples
of queries which could be toggled on and off within
the interface. We assessed the qualification of the
crowdworkers based on the responses to the pilot
HITs submitted to us. In addition to the hourly
rate of 12 USD for the annotation work, we also
covered the vendor’s management and training fees
to assure response quality.

Consent and Privacy Control Annotators had
the choice of performing the requested tasks only
after signing a consent form. In addition, we pro-
vided explicit instructions in the HITs that disal-
lowed sharing of any personal and identifiable in-
formation when providing responses.

3.4 Statistics
Table 1 shows key statistics of INSTRUCTEXCEL.
The most common words used in the Excel sheet
descriptions are ‘year’, ‘name’, ‘form’, ‘calendar’,
‘table’, and ‘content.’ These words represent com-
mon Excel workflows. ‘Formula’, ‘background’,
‘color’, ‘conditional’, and ‘formatting’ are the most
common words in the NL instructions.

Figure 3 shows the most common methods used
in the recorded OfficeScripts. We see a fairly broad
distribution over important Excel functionalities.
The top methods correspond with the most com-
mon words used in the users’ instructions – for ex-

Category # of instances

Samples 10347
Excel files 2000
Operations 177
Avg. Ops./Sample 8.9

Table 1: Statistics of INSTRUCTEXCEL. Operations are
distinct API methods that represent various Excel tasks.

EM ROUGE F1 BLEU

21.30 67.64 65.23 60.45

Table 2: Metrics measured between pairs of code out-
puts belonging to the same natural language queries.
The relatively low exact match but relatively high
ROUGE, F1, and BLEU scores reflect the fact that some
queries have multiple solutions that vary only slightly.

ample, use of the word ‘formula’ corresponds with
the method call ‘setFormulaLocal.’ Many of the
top methods require only one parameter. However,
some of the methods require fairly complex pa-
rameters. The ‘setFormulaLocal’ method requires
formulas input as strings, and ‘setRule’ requires
complicated conditional format rule objects that
must be constructed before being passed to the
method call. Some common actions performed by
users require sequences of multiple method calls;
for instance, inserting a shape requires specifying
the location, type, and color of the shape.

We found 76 queries that were repeated at least
once in the benchmark. Most of these queries are
general queries such as “freeze row 1” or “sort col-
umn G.” We compute the exact match, ROUGE, F1,
and SacreBLEU scores between all pairs of code
blocks belonging to the same natural language user
queries, displayed in Table 2. Although the re-
peated queries often have only one correct code
solution (for example, “freeze row 1” has only one
solution), many queries can be satisfied with multi-
ple code solutions (i.e., “Create chart on worksheet
Sheet1” can be satisfied with any chart type).

4 Experiment

We conduct experiments with supervised, zero-shot
and few-shot learning to assess the performance of
popular LLMs on INSTRUCTEXCEL. We use GPT-
3.5 Turbo and GPT-4 in our experiments (Ope-
nAI, 2023), specifically the “gpt-3.5-turbo-16k”
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Figure 2: Steps in data collection.

Figure 3: Plot showing the distribution of the top 20 most-common Excel operations in our dataset. The X axis
shows the unique operations, and the Y axis shows the frequency of the operations in INSTRUCTEXCEL.

and “gpt-4-32k” models.5 We also experiment with
finetuning the T5 Large LM Adapt model (Raffel
et al., 2020).6

In all experiments, a single example consists of
a triplet with 1) a natural language query, 2) the
data from the spreadsheet converted into a string
using a Pandas ExcelFile object, and 3) the ground
truth or generated OfficeScripts code. We elaborate
below on our full experiment setup.

4.1 Data Splits

We exclude examples from the benchmark that
have broken URLs for the purposes of our exper-
iments, as some of the URLs have expired since
data collection and annotation occurred.7 We di-
vide the remaining examples into train, dev and test
splits containing 4033, 1000 and 1000 instances

5https://platform.openai.com/docs/
models

6https://huggingface.co/google/
t5-large-lm-adapt.

7We intend to continue to collect and provide additional
data in our public repository, so some natural URL expiry will
not impact the utility of the dataset.

respectively. Considering the computational cost
and rate limit associated with GPT usage, we also
form a test-set subset of 200 samples which we use
in our experiments.

4.2 Setup

4.2.1 Zero-shot
In this setting we do not provide any examples to
the model. Instead, we provide the prompt ‘Gen-
erate a function with excel script to execute the
action given below in NL.’ In order to make the
task easier, we also add the common boilerplate
code which starts every OfficeScript to the prompt
as exemplified in Figure 4. The output is limited
to 256 tokens, and we impose this limit in all other
settings as well.

4.2.2 Few-shot and Max-shot
We use the in-context learning setup (Brown et al.,
2020), showing a few examples before prompting
the model to respond to the input query. We experi-
ment with two different few-shot learning setups.
First, we evaluate models in 3-shot learning (3 ex-
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Figure 4: Standard code template included at the end of
each prompt.

amples are presented), where in-context examples
are included after the instructions but before the
query. Second, we evaluate models in the Max-
shot setup, in which we add 10 examples. Unless
otherwise specified, the examples used to prompt
the model are randomly chosen and put in random
order ahead of time, and we use the same examples
for all test instances.

4.2.3 Max-shot+Instruction
Motivated by the success of detailed instructions
in improving model performance (Mishra et al.,
2022b; Wei et al., 2022; Ouyang et al., 2022;
Mishra et al., 2022a), we prompt with a longer
NL instruction along with 10 examples. The longer
instruction is listed in Appendix C.

4.2.4 Finetuning
We finetune only the T5 model, as finetuning GPT-
3.5 Turbo and GPT-4 is costly. Details of finetuning
and the parameters for T5 inference are listed in
Appendix D.

4.3 Data Inclusion

Although we try to include as much data as pos-
sible in the prompts, the spreadsheets can often
be too large to fit all of them in the prompt. This
problem is especially pronounced in the Max-shot
setting. We first calculate the number of tokens in
the prompt when using all available data for each
in-context example and the query. If the number
of tokens exceeds the context length for the model,
we remove the second half of each data string. We
repeat this process until the prompt is small enough
to fit in context, or all data has been deleted. If
all data has been deleted and the prompt is still
too large, we revert to the full data for each ex-
ample and simply truncate the string of in-context
examples to make the prompt fit in context.

To understand the impact of data truncation, we
analyze the two most space-restricted settings in
our experiments, the Max-shot+Instruction settings
with both the GPT3.5 model with 16k context size,
and the GPT4 model with 32k context size + API

in the prompt. Both settings always include the in-
tended 10 in-context examples in the prompt, and
the data included in the examples retain an aver-
age of 19.36 lines (for GPT-3.5) and 15.36 lines
(for GPT4+API). This typically guarantees that the
headers and some data are included for each of the
in-context examples and the query. We hypothesize
that increasing context window size will result in
performance improvements.

4.4 API in Context
To inform GPT of the API, we experiment with ap-
pending the API to every prompt. The API consists
of an alphabetically sorted list of all classes, enums,
methods, and properties in the OfficeScripts API,
along with the accepted parameters for methods
and the fields of all enums. We append the API
immediately under the instruction in the prompt,
before the in-context examples and the query.

4.5 Dynamic Prompting
One other method which can inform GPT of the
relevant API elements for a given input is dynamic
prompting (Liu et al., 2022). For dynamic prompt-
ing, given a natural language input, we search for
the most similar natural language inputs in the train-
ing set, measured according to F1 score of the nor-
malized text. We then append the top 3 or 10 exam-
ples from the training set, including the linearized
data from each example. This prompting strategy
not only provides in-context examples that are se-
mantically similar to the query, but also increases
the likelihood that the correct elements of the API
are directly exposed in the context.

4.6 Evaluation
We rely on textual similarity-based evaluation met-
rics that can easily be reused: Exact Match (EM)
comparing the normalized code prediction with
the gold standard, F1, ROUGE (Lin, 2004) and
SacreBLEU (Post, 2018) to estimate the textual
similarity between predicted code and the gold stan-
dard. We use the implementations of ROUGE and
SacreBLEU from HuggingFace Datasets,8 and we
use the built-in stemmer and ROUGE-L metric for
ROUGE. We remove the boilerplate code (shown
in Figure 4) before evaluation.

We also require a metric that measures semantic
equivalence of code outputs without penalizing ar-
bitrary choices like variable names or choices for

8https://huggingface.co/docs/datasets/
index.
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arbitrary parameter values. Some parameters and
numbers cannot be directly inferred from the natu-
ral language query or the spreadsheet data, and are
sometimes (but not always) arbitrary choices that
do not impact the correctness of the code. Queries
such as “insert shape in sheet December 2021” or
“Change the legends position on sheet data in chart”
can be correctly satisfied using many different pa-
rameter values for the shape type and legend posi-
tion, while queries such as “Apply group to A7:A11
on sheet1” require using the specific parameter val-
ues A7:A11. Distinguishing these cases is a non-
trivial task, and some use-cases are more parameter-
sensitive than others. In Section 6, we analyze the
subset of INSTRUCTEXCEL corresponding to con-
ditional formatting operators, which admit evalua-
tion by execution equivalence. However, evaluating
relevance to general NL queries automatically is
far more challenging.

To circumvent the general question of semantic
equivalence, in addition to computing metrics on
the original predicted and gold standard code, we
also report the value for each metric when ranges,
numbers, and parameters are stripped from the ex-
amples and replaced with placeholder values. We
call this function-based evaluation, since this ap-
proach enables us to study functional equivalence
of the output programs while ignoring some details.

We also annotate all predicted outputs from the
three models with the highest performance on auto-
mated metrics. For each predicted code output, we
give a binary judgment on whether the predicted
code output satisfies the request given by the user.
To aid in annotation, we perform our annotations
while looking at the gold standard outputs, and
we consult the spreadsheets when data from the
spreadsheet is necessary to judge correctness.

5 Results

Table 3 shows all metrics across various model-
ing setups, but only for Max-shot prompting. We
find that Max-shot outperforms Zero-shot, Few-
shot, and Max-shot+Instruction (see full results in
Appendix E) across all models, so we only report
Max-shot in-context learning and finetuning results
in this section. We summarize our main findings
below.

Finetuning Improves over In-context Learning
on Automated Metrics Model performance af-
ter finetuning is notably higher than model perfor-
mance in all other settings, when comparing on

automated metrics. However, GPT-4+DP outper-
forms the finetuned T5 model when comparing
manual annotation score. The relative performance
gain of finetuning over in-context learning is there-
fore unclear, though both appear effective.

GPT-4 outperforms GPT-3.5 Turbo For the
Few-shot (3), Max-shot and Max-shot+Instruction
settings, we observe that the performance of GPT-
4 is higher than GPT-3.5 Turbo (details in Ap-
pendix E).

More In-context Examples Help Few-Shot Capa-
bilities Across both GPT models, we observe that
the Max-shot model performance is much higher
than the Few-shot and Zero-shot performance (see
Appendix E for details). This potentially indicates
that addition of in-context examples can greatly
help LLMs generate OfficeScript code.

Detailed Instructions Do Not Help The Max-
shot+Instruction baseline is not remarkably dif-
ferent from the Max-shot baseline. Considering
the sensitivity of model performance to instruction
framing (Mishra et al., 2022a; Zhao et al., 2021), it
would be beneficial for future work to experiment
with other instruction variants.

API in Context Including the API in context im-
proves performance in the Zero-shot case, but not
in the Few-shot case. In the Max-shot (shown in
Table 3) and Max-shot+Instruction experiments,
including the API in context harms overall per-
formance. This is likely because the API has a
large number of tokens. Much less data can be
included in the prompt with this method, and some
in-context examples may need to be removed from
the prompt entirely.

Dynamic Prompting Dynamic prompting is in-
credibly effective, causing at least a 40% rela-
tive improvement in all 4 metrics. Despite this
performance improvement, the model still often
makes mistakes where API elements are halluci-
nated. Since prompting with the full API directly
seems to harm performance, solving the hallucina-
tion of API elements under in-context learning is
an important area for further study.

5.1 Manual Analysis
Our manual annotation indicates that although the
finetuned T5 model outperforms GPT4+DP on the
automated metrics, in-context learning with GPT-
4 slightly outperforms the finetuned T5 model in
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Standard Eval. Function-based Eval. Manual
Eval.Model EM ROUGE F1 BLEU EM ROUGE F1 BLEU

GPT3.5 Turbo 0.0 34.47 5.09 29.12 0.5 42.69 10.68 33.86 –
GPT4 3.0 52.70 42.62 40.08 15.5 63.25 52.73 52.15 –

GPT4+API 1.50 43.18 40.96 31.24 12.00 54.33 48.09 41.95 –
GPT4+DP 15.00 69.59 61.83 62.60 41.50 80.80 73.56 74.91 56.91

GPT4+API+DP 15.00 63.99 57.83 57.47 36.00 74.78 67.94 68.71 50.79
T5 (Finetuned) 17.00 76.73 72.06 68.81 45.50 87.58 83.46 81.70 52.38

Table 3: Model performance in different evaluation settings. All models are evaluated under Max-shot in-context
learning, except the finetuned T5 model. The full results on Zero-shot, Few-shot, and Max-shot+Instruction
can be found in Appendix E. EM is normalized exact match. Settings with +API indicate where we append the
description of the full OfficeScripts API to the prompts, and settings with +DP indicate where dynamic prompting is
applied. In the standard evaluation setting we report metrics for the full prediction against the original gold standard
output, while in the function-based evaluation setting we report metrics on normalized code predictions and outputs.
Normalization replaces parameters, ranges, and numbers with placeholder values.

manual correctness judgments. Thus, although the
automated metrics can help with rough compar-
isons, they do not give a complete picture of model
performance.

We also perform a 2-sample, one-sided t-test
to compare the value of each automated met-
ric for manually-judged incorrect predictions vs.
manually-judged correct predictions. This test has
the alternative hypothesis that the metric has a
lower average when the example is manually deter-
mined to be incorrect. We perform these tests for
the 3 top-performing models and all metrics. We re-
ject the null hypothesis with a p-value of 0.01 in all
cases. These tests indicate a statistically significant
difference between the values of automated metrics
for correct vs. incorrect predictions, suggesting
that automated metrics may serve as a convenient
(though incomplete) replacement for metrics based
on execution equivalence or manual judgment.

We also perform a qualitatitive exploration of
remaining error types. About 20% of the annotated
examples simply do not compile for the top three
scoring models, often because they hallucinate API
elements or formulas. Among the examples that
compile correctly, we identify three major remain-
ing error types for the finetuned T5 model: mis-
understanding the user’s intention, targeting the
wrong object or incorrect cell range, and accom-
plishing the correct task in a different way than
intended. Full examples of these failure modes
are shown in Figure 5. We also identify major
error types for the GPT4+DP model, finding that
misunderstanding the users’ intentions/solving the
wrong task and targeting the wrong object or cell

range are also the most prevalent. Examples of
errors made by GPT4+DP are included in Table 8
of Appendix F. In contrast to the T5 model, the
GPT4+DP model has more errors where a com-
pletely different task is solved than what is queried.
This is a potential artifact of in-context learning
that should be addressed. Both models suffer from
overwriting important data, as shown in the final
example of Table 8.

6 Case Study: Formatting Rules in Excel

The INSTRUCTEXCEL benchmark contains a wide
range of Excel tasks, including charting/plotting
(Lee et al., 2021), formatting (Singh et al., 2022),
and formulas (Chen et al., 2021b). We can de-
rive specific benchmarks for these individual down-
stream tasks from INSTRUCTEXCEL. In this case
study, we present an analysis of conditional format-
ting rules as a downstream task.

To focus on the task of learning conditional for-
matting rules, we extract all examples from the
INSTRUCTEXCEL dataset that involve any format-
ting operator. These extracted samples are then
manually validated to ensure their relevance to for-
matting tasks. We obtain a total of 660 valid CF
tasks after filtering.

To facilitate benchmarking, we transform the ex-
tracted conditional formatting tasks into an Interme-
diate Language (IL) representation specifically de-
signed for formatting operators (Singh et al., 2022).
Figure 6 showcases an example of this IL.

To evaluate the performance of various ap-
proaches on this task, we employed the original
natural language (NL) descriptions associated with
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Figure 5: Examples of errors made by the finetuned T5 model on test set examples. Each line shows an example of
a common type of error.

Figure 6: Example of a CF task from INSTRUCTEXCEL
and the associated Intermediate Language (IL) rule.

the tasks to generate simplified formatting rules.
As these rules were already in a parsed format, we
report the following evaluation metrics: (1) Ex-
act Match, (2) Sketch Match over the AST of the
parsed rules, and (3) Execution Match - Verifying
the equivalence of the resulting formatting by exe-
cuting the generated rules on data and comparing
the outcomes (Singh et al., 2022, 2023).

Table 4 illustrates the performance of various
baselines on the task of learning conditional for-
matting rules. GPT-4 with Max-shot in-context
learning achieves the highest performance among
the evaluated approaches. Our analysis showcases
the feasibility of extracting relevant data, trans-
forming it into an intermediate format, and bench-
marking various approaches for the specific task of
conditional formatting. These findings serve as a
compelling motivation for the broader usage of the
INSTRUCTEXCEL dataset in advancing research
and development within the Excel domain.

7 Conclusion

We introduce INSTRUCTEXCEL, a benchmark to
investigate the capability of models in generating
Excel OfficeScript code from NL instructions. IN-
STRUCTEXCEL consists of over 10,000 samples
covering 170+ Excel operations across 2,000 pub-

Model Setup EM SM ExM

GPT 3.5
Zero-shot 2.3 5.6 12.1

Few-shot (3) 42.3 42.2 64.3
Max-shot 50.8 59.8 67.2

GPT 4
Zero-shot 3.7 6.8 14.2

Few-shot (3) 45.6 60.5 70.2
Max-shot 53.5 63.4 73.3

Table 4: Baseline results on the CF task extracted from
INSTRUCTEXCEL. EM, SM and ExM indicate Exact
Match, Sketch Match and Execution Match respectively.

licly available Excel spreadsheets. Our experi-
mental results show that (1) GPT-4 (2) more in-
context examples, and (3) dynamic prompting help
improve performance on this benchmark, while
more-detailed in-context instructions and includ-
ing the API description do not help. Finetuning
aids performance on automated metrics, though
our manual annotation shows that the difference
between finetuning and in-context learning is not
conclusive. INSTRUCTEXCEL is still a challenging
benchmark for state of the art models like GPT-
4 and T5. We also demonstrate, through a case
study on conditional formatting, that INSTRUC-
TEXCEL can be used as source data for more spe-
cific study of important sub-tasks in Excel. We
hope that improvements on INSTRUCTEXCEL will
enable novice users to perform complicated actions
in Excel quickly, boosting productivity and teach-
ing important Excel functionality in the process.

8 Limitations

Our focus in INSTRUCTEXCEL is on instructions
written in English. A typical non-expert user work-
flow often involves languages other than English.
The limitation to not include local language in IN-
STRUCTEXCEL will be addressed in future work.
The programming language under study, Excel Of-
ficeScripts, is specific to Microsoft Excel, so our
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results may not generalize to other spreadsheet soft-
ware. Our focus in this work is to release a targeted
benchmark which, if performance is improved, will
enable a core set of NL to code functionality in Mi-
crosoft Excel. The potential risks from this work
are minimal. Excel OfficeScripts is a language de-
signed to be secure, targeted only at manipulating
data inside Excel spreadsheets. Therefore, there is
little risk that a model will produce overtly harmful
code in this domain.
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A Full Schema Example

Table 5 shows multiple input-output examples. The
examples include before and after images of the
relevant regions of the Excel spreadsheet.

B HIT Screenshot

Figure 7 shows a screenshot of the interface shown
to crowdworkers while inputting file descriptions,
NL instructions, and copy-pasted code from the
Automate feature.

C Longer Instruction

The more detailed instruction used in the Max-
shot+Instruction setting is: ‘Generate a function
with excel script to execute the action given be-
low in NL. You also need to generate comment de-
scribing the operation you are performing. Make
sure to generate a valid excel operation and pass
appropriate parameters as provided in the action
information. Simple solution is preferred over a
complex one.’

D Finetuning Parameters

T5 training was done for 5, 000 steps, with learning
rate increasing linearly from 0 to 1 ¨ 10´4 for the
first 1, 000 steps, and then linearly down to 0 for
the remaining steps. We restrict both the input and
output size to 1, 000 tokens. If inputs and outputs
are denoted as Ii and Oi “ ttpiq

k u|Oi|
k“1 respectively,

then the finetuning objective is to maximize the
probability of the true output given the input,

ppOi|Iiq “
|Oi|ź

k“1

pptpiq
k |tpiq

1 , . . . t
piq
k´1, Iiq .

At inference time, we use beam search with
beam size 5, and select the top 1 completion for
final evaluation.

E Full Experimental Results

The full results for the Zero-shot, Few-shot, Max-
shot, and Max-shot+Instruction settings on all mod-
els are reported in Table 6. In addition to the evalu-
ation metrics reported in Table 6, we also report the
same metrics after replacing all parameters, ranges,
and numbers in both the gold standard and pre-
dicted outputs with placeholder values (function-
based evaluation). These modified metrics are re-
ported in Table 7. Although the metrics are much
higher in this setting, the same overall trends hold.

F Failure modes of GPT4+DP

Table 8 shows major error modes for GPT4+DP.
These error modes are similar to those seen for T5
in Figure 5.
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Query Gold Standard Output

Find unique from column
Method range C11:C42 on G17
on sheet Au

function main(workbook: ExcelScript.Workbook) {

let selectedSheet = workbook.getActiveWorksheet();

// Set range G17 on selectedSheet

selectedSheet.getRange("E17").setFormulaLocal(

"=unique(C11:C42)");}

Find top 2 value from range
B6:P22 on sheet CVs

function main(workbook: ExcelScript.Workbook) {

let conditionalFormatting: ExcelScript.ConditionalFormat;

let selectedSheet = workbook.getActiveWorksheet();

// Change top bottom from range B6:P22 on selectedSheet

conditionalFormatting = selectedSheet.getRange("B6:P22")

.addConditionalFormat(

ExcelScript.ConditionalFormatType.topBottom);

conditionalFormatting.getTopBottom().getFormat()

.getFont().setColor("#9C0006");

conditionalFormatting.getTopBottom().getFormat()

.getFill().setColor("#FFC7CE");

conditionalFormatting.getTopBottom().setRule(

{rank:2,

type:ExcelScript.ConditionalTopBottomCriterionType.topItems,});}

replace all N/A with 0

function main(workbook: ExcelScript.Workbook) {

let selectedSheet = workbook.getActiveWorksheet();

selectedSheet.replaceAll("N/A", "0",

{completeMatch: false, matchCase: false});}

replace all N/A with 0

function main(workbook: ExcelScript.Workbook) {

let selectedSheet = workbook.getActiveWorksheet();

selectedSheet.getRange("B4:B10").replaceAll("N/A", "0",

{completeMatch: false, matchCase: false});}

Table 5: Example natural language queries and gold standard code outputs. Examples 1 ´ 3 include images of the
Excel spreadsheet before and after executing the gold standard code. Example 4 shows the same query on the same
data as example 3, solving using slightly different code.
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Figure 7: Screenshot of the HIT given to crowdworkers who created the INSTRUCTEXCEL dataset.

Model Setup EM ROUGE F1 SacreBLEU

GPT 3.5 Turbo

Zero-shot 0.0 29.46 5.44 21.75
Few-shot (3) 1.0 34.94 11.10 28.31

Max-shot 0.0 34.47 5.09 29.12
Max-shot+Instruction 0.0 35.67 2.67 29.53

GPT 4

Zero-shot 0.0 21.59 6.75 16.90
Few-shot (3) 1.5 42.57 31.73 31.09

Max-shot 3.0 52.70 42.62 40.08
Max-shot+Instruction 3.0 41.86 38.34 31.71

GPT 4 + API

Zero-shot 0.00 30.57 10.66 20.32
Few-shot 3.50 41.79 31.63 30.56
Max-shot 1.50 43.18 40.96 31.24

Max-shot+Instruction 1.50 33.15 30.95 23.80

GPT 4 + DP

Zero-shot 0.00 22.84 7.00 18.16
Few-shot 11.00 67.28 58.23 59.23
Max-shot 15.00 69.59 61.83 62.60

Max-shot+Instruction 15.00 69.22 61.95 62.29

GPT 4 + API + DP

Zero-shot 0.00 30.37 10.28 20.15
Few-shot 11.00 62.88 55.05 55.71
Max-shot 15.00 63.99 57.83 57.47

Max-shot+Instruction 13.50 64.61 60.15 57.94

T5 Finetuning 17.00 76.73 72.06 68.81

Table 6: Model performance in different evaluation settings. EM is normalized exact match.

4041



Model Setup EM ROUGE F1 SacreBLEU

GPT 3.5 Turbo

Zero-shot 0.0 36.67 4.13 25.65
Few-shot (3) 1.0 42.02 11.23 34.55

Max-shot 0.5 42.69 10.68 33.86
Max-shot+Instruction 0.5 44.04 6.64 35.59

GPT 4

Zero-shot 0.0 26.81 5.77 22.56
Few-shot (3) 1.5 50.05 35.35 39.25

Max-shot 15.5 63.25 52.73 52.15
Max-shot+Instruction 7.0 52.10 45.23 40.57

GPT 4 + API

Zero-shot 0.00 35.06 9.90 23.49
Few-shot 3.50 49.79 35.75 38.31
Max-shot 12.00 54.33 48.09 41.95

Max-shot+Instruction 1.50 43.86 36.08 32.28

GPT 4 + Dynamic Prompt

Zero-shot 0.00 28.26 6.88 22.97
Few-shot 33.50 77.91 68.91 71.19
Max-shot 41.50 80.80 73.56 74.91

Max-shot+Instruction 41.00 80.12 73.30 74.34

GPT 4 + API + Dynamic Prompting

Zero-shot 0.00 34.91 9.96 23.22
Few-shot 32.00 73.47 64.68 66.86
Max-shot 36.00 74.78 67.94 68.71

Max-shot+Instruction 38.00 76.09 70.81 70.03

T5 Finetuning 45.50 87.58 83.46 81.70

Table 7: Results ignoring parameters, ranges, and numbers (function-based evaluation).

4042



Error Ex. Input Pred. Output Gold Std.

User intention
misunder-
stood/incorrect
task

Change the
legends position
on sheet data in
chart

selectedSheet.addChart(

ExcelScript.ChartType.

columnClustered,

selectedSheet.getRange(

"A28:B30"));

chart_3.getLegend()

.setPosition(

ExcelScript.

ChartLegendPosition.top);

Incorrect target
for data opera-
tion

Data Validation
for drop down
for column
Lab from range
A11:A101 on
sheet Au

selectedSheet

.getRange("B13:B16")

.getDataValidation()

.setRule(

{list:{inCellDropDown:true,

source:"=$A$11:$A$101"}});}

selectedSheet

.getRange("A11")

.getExtendedRange(

ExcelScript.

KeyboardDirection.down)

.getDataValidation()

.setRule({

list:{inCellDropDown:true,

source:"=$A$11:$A$101"}});}

Incorrect for-
mula applied

Apply proper
function to cell
C4 in sheet
Supplementary
Data 2

selectedSheet

.getRange("C4")

setFormula(

"=AVERAGE(C5:C281)");

selectedSheet

.getRange("I10")

.setFormulaLocal(

"=proper(C4)");

Overwriting im-
portant data

Apply isnumber
function to cell
B7 of column
price of sheet
8.S1a Airline
Demand

selectedSheet

.getRange("B7")

.setFormulaLocal(

"=ISNUMBER(B7)");

selectedSheet

.getRange("H9")

.setFormulaLocal(

"=ISNUMBER(B7)");

Table 8: Types of errors made by the GPT4+DP model. The error type is listed, along with an NL query, predicted
(incorrect) output by GPT4+DP, and the gold standard output. Code is shortened to only include the relevant,
erroneous function calls.
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