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Abstract

Text-based games present an exciting test-bed
for reinforcement learning algorithms in the
natural language environment. In these adven-
ture games, an agent must learn to interact with
the environment through text in order to accom-
plish tasks, facing large and combinational ac-
tion space as well as partial observability issues.
However, existing solutions fail to decompose
the task and abstract the action autonomously,
which either pre-specify the subtasks or pre-
train on the human gameplay dataset. In this
work, we introduce a novel skill-centric rein-
forcement learning framework, which is capa-
ble of abstracting the action in an end-to-end
manner. To learn a more disentangled skill, we
focus on the informativeness and distinguisha-
bility of the skill in accordance with the infor-
mation bottleneck principle. Specifically, we
introduce a discriminator to enable the skill to
reflect the trajectory and push their represen-
tations onto the unit hypersphere to distribute
uniformly. Moreover, a self-predictive mecha-
nism is employed to learn inverse and forward
dynamics, and a self-recovery mechanism is
leveraged to refine the action representation,
thus resulting in a more comprehensive percep-
tion of dynamics and more effective represen-
tations of textual state and action. Empirical
experiments are carried out on the Jericho envi-
ronment and the results validate the superiority
against state-of-the-art baselines.

1 Introduction

Mastering the ability of understanding and respond-
ing using natural language is essential for a wide
range of technologies and applications (e.g., in cus-
tomer consultation and service systems). The inter-
active adventure games (Hausknecht et al., 2020),
such as zork1 (can be seen in Table 1), provide
a good test-bed for reinforcement learning (RL)
agents (Osborne et al., 2022) in the pursuit of in-
telligence, which can be regarded as long-horizon
puzzles or quests through navigating and interact-

Zork1
Observation: South of House
You are facing the south side of a white house. There is no
door here, and all the windows are boarded.
Action: Go east
Observation: Behind House
You are behind the white house. A path leads into the forest
to the east. In one corner of the house there is a small window
which is slightly ajar.
Action: Enter house
Observation: Kitchen
You are in the kitchen of the white house. A table seems to
have been used recently for the preparation of food. A passage
leads to the west and a dark staircase can be seen leading
upward.
Action: Go west

Table 1: The transcript of zork1 in textworld games. The
agent receives observation from the game environment.
According to the textual information, the agent executes
its action, and then the environment transits to the next
observation.

ing with multiple objects and locations. The game
player not only needs to accurately understand the
information of the environment, but also needs
to make an effective and well-performed reaction,
both in the form of natural language. This struc-
ture comes with two critical issues: (1) Large and
combinational action space. The agent faces about
1.64 × 1014 possible actions at every step in the
game zork1 (Ammanabrolu and Hausknecht, 2020),
which is a dauntingly large combinatorially-sized
action space and thus brings significant difficulties
in making decisions. Some works investigate fil-
tering out the irrelevant ones (Zahavy et al., 2018)
or generating contextually-relevant action candi-
dates (Yao et al., 2020). Another line of research
is dedicated to hierarchical reinforcement learn-
ing (Adolphs and Hofmann, 2020; Xu et al., 2022,
2021), which hierarchically decomposes tasks into
simpler ones and learns by hierarchical policies.
(2) Partial observability. Due to the limited in-
formation provided from the environment, incom-
plete textual description brings great obstacles to
the exploration and reasoning of the agent. There
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are some attempts to define and discover under-
explored states (Madotto et al., 2020), or bottle-
neck states (Ammanabrolu et al., 2020), hoping
to grasp and explore the environment more com-
prehensively. Other works resort to building a
knowledge graph from textual description (Am-
manabrolu and Hausknecht, 2020), hoping to cap-
ture more structural information about the environ-
ment. Unfortunately, these previous works heavily
rely on hard-crafted design. They pre-specify sub-
tasks or pre-train on the human gameplay dataset
in advance, which all fail to abstract the tasks au-
tonomously.

Action abstraction, a.k.a. “skill”, refers to a set
of pertinent long-horizon behaviors that an agent
is capable of engaging in, which is a temporally
extended macro-action in hierarchical reinforce-
ment learning. For instance, there are several steps
involved in entering a house, such as finding the
door, approaching it and opening the door. Lever-
aging such action abstraction can assist the intel-
ligent agent in autonomously breaking down the
challenging task into a hierarchy, where the ac-
tion space issue becomes trivial. Motivated by this,
to cope with the large action space challenge, we
choose to abstract the action from a novel perspec-
tive, without requiring the assistance of any pre-
trained models or prior knowledge. Additionally,
observing the textual state and action in the en-
vironment, the traditional representation extractor
designed for vector-based state and action is insuf-
ficient, necessitating the mining and exploitation
of comprehensive information. Thus, it is desir-
able to employ a better representation learner for
textual state and action. With valuable semantic
representation acquired from those textual obser-
vations, intelligent agents deployed on top of them
will bring more effective use of them naturally.

In this work, we introduce a skill-centric action
abstraction framework in an end-to-end manner for
text-based games, in the hopes of alleviating the
combinatorially-size action space and partial ob-
servability issues. A novel skill learning strategy is
designed according to the information bottleneck
principle, with the goal of a disentangled skill by
enhancing the informativeness and distinguishabil-
ity of the skill. In particular, in pursuing informa-
tiveness, we pull the representations of skill and the
current trajectory closely by maximizing the mu-
tual information between them, and push the repre-
sentations of skill and the other unrelated trajectory

away by minimizing their mutual information. By
this means, the skill is enforced to cover sufficient
information about the current trajectory while be-
ing parsimonious to exclude unrelated noisy infor-
mation. In pursuing distinguishability, the represen-
tations of skill and trajectory are separated onto the
unit hypersphere, thus preserving maximal infor-
mation. The discovered skill can guide the agent
to make optimal decisions. Besides, within the
skill-centric framework, the self-predictive mech-
anisms for inverse and forward dynamics and the
self-recovery dynamics learning for the action it-
self are presented. The core idea lies in easing the
partial information issue and reinforcing the rep-
resentations of textual state and action effectively.
Overall, our contributions can be summarized as
follows:

• A novel skill-centric reinforcement learning
framework in an end-to-end manner for text-
based games is presented, where the infor-
mation bottleneck-based action abstraction is
performed to improve the exploration of the
agent and lessen the burden of large action
space.

• Two simple yet effective representation learn-
ing strategies for the textual state and action
are developed, i.e., a self-predictive mecha-
nism and a self-recovery mechanism, investi-
gating the partial and textual information and
reinforcing effective representations.

• Promising results through extensive experi-
ments on text-based games demonstrate the
superiority of the proposed framework.

2 Related Work

2.1 RL agent for text-based games

Thus far, a considerable amount of literature has
investigated text-based games. Among them, re-
inforcement learning dominates interactive fiction
text-based games consisting of human-written text.
In Jericho (Hausknecht et al., 2020), there are three
categories of restrictions on the action space, parser-
based, template-based and choice-based. LSTM-
DQN (Narasimhan et al., 2015) is the first work
on combining reinforcement learning and natural
language understanding, which selects the verbs
and objects independently according to deep Q-
network. Deep Reinforcement Relevance Network
(DRRN) (He et al., 2016; Yao et al., 2021) and
Template-DQN (TDQN) (Hausknecht et al., 2020)
extend LSTM-DQN on template-based and choice-
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based action space, respectively. MPRC-DQN
(Guo et al., 2020) reformulates text-based games
as a multi-paragraph reading comprehension task
which utilizes context-query attention mechanism
and object-centric history retrieval strategy. An-
other representative series of research incorporates
knowledge graph to enhance state representation
(Ammanabrolu and Hausknecht, 2020). Addition-
ally, Adhikari et al. (2020) build a Graph Aided
Transformer Agent (GATA) to learn belief graph
for action selection during planning and general-
izing. Xu et al. (2020) conduct explicit reasoning
with knowledge graph with relational and tempo-
ral awareness and design a stacked hierarchical
attention mechanism to build state representation
from multi-model inputs. Assisted by a fine-tuned
GPT-2, CALM (Yao et al., 2020) leverages the
pre-trained language model to generate candidate
actions, which needs human gameplay and pre-
training in advance. CBR (Atzeni et al., 2022)
employs case-based reasoning which is built on a
collection of past experience and reuses the rele-
vant one. All of these earlier approaches, however,
make an effort to create action-reduction strategies,
or they enlist the assistance of knowledge graphs
or pre-trained models. Our mission is to free our
hands and decompose the tasks by abstracting ac-
tions in an end-to-end manner.

2.2 Hierarchical RL agent

Hierarchical reinforcement learning is a promis-
ing strategy for figuring out tough puzzles, which
decomposes a challenging long-horizon task into
simpler subtasks. Similar to the idea of feudal learn-
ing, LeDeepChef (Adolphs and Hofmann, 2020)
combines multiple actions into a single “high-level”
command that designs a recipe manager to iden-
tify which recipe action still needs to be performed,
which is not flexible because it is customized for
ingredients and inventory in cooking tasks. L-GAT
(Kohita et al., 2021) builds a hierarchical action
generation algorithm where the agent first defines
abstractive action template consisting of frame,
role and lexicon, and then generates a concrete
action commanding with hierarchical predicating,
word masking and template masking. Xu et al.
(2022) present a world-perceiving module to au-
tonomously decompose tasks and prune actions by
answering questions, although built on a question-
answering dataset and still require supervised pre-
training. H-KGA (Xu et al., 2021) applies hier-

archical reinforcement learning where high-level
policy is for goal generation and selection, and low-
level policy is for goal-conditioned reinforcement
learning. The process of goal-set generation is non-
learning, which is based on a fixed rule and cannot
be adapted to different types of games. It is worth
noting that all these works either presume the ac-
cessibility of a set of subtasks, or decompose a task
through pre-defined rules or a pre-trained module.
In this work, we aim to introduce a novel skill-
centric framework that aims at abstracting action,
without any extra involvement.

3 Preliminaries

3.1 Text-based games as POMDP

The agent in text-based games never has ac-
cess to global environment state, but only local
textual information. Therefore, the text-based
games can be formally defined as a discrete-time
Partially Observable Markov Decision Process
(POMDP). It can be represented as a 7-tuple
⟨S, T,A,Ψ, P,R, γ⟩: the state set S, the state tran-
sition function T , the action set A, the observation
set Ψ, the reward function R, the conditional ob-
servation probability P , and the discount factor
γ ∈ [0, 1]. Specifically, the agent receives an ob-
servation obst based on the current state st and last
action at−1 through P (obst|st, at−1) at timestep
t. Then, the agent acts its corresponding action at
based on its policy π, and receives the next state
and reward feedback based on T (st+1|st, at) and
R(st, at) separately from the environment. The
objective of reinforcement learning agent is to op-
timize the policy that maximizes its cumulative
discounted reward E[

∑∞
t=0 γ

tR(st, at)].

3.2 Skill learning in reinforcement learning

Skill is defined as a set of empowered actions and
we parameterize skill as a latent z. The skill-centric
policy is represented as π(a|s, z), where the skill
latent z is combined with the state to produce the
optimal action. It is assumed that skills are sam-
pled from a prior distribution p(z). Recent lines
of research show the interest in discovering skills
without the assumption of any other extrinsic re-
wards, i.e., in an unsupervised manner and without
any other human-designed rewards. It complies
with the demand that we do not have to impose an
artificially complex abstraction structure. Lever-
aging information theory such as measuring the
mutual information between state, action and skill
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Figure 1: The overall process of our proposed frame-
work.

(e.g., DIAYN (Eysenbach et al., 2019) and HIDIO
(Zhang et al., 2021)), RL agents are able to au-
tonomously discover such skills. To the best of
our knowledge, we are the first to consider skill
learning in text-based games with reinforcement
learning.

4 Methodology

Figure 1 depicts the whole process of our proposed
framework. Besides the general reinforcement
learning framework with agent and environment,
we introduce the skill and textual state and action
representation learning in text-based games, which
focus on large action space and partial observabil-
ity issues, and aid the agent in making the optimal
decision.

4.1 Informative and distinguishable skill
learning

Pursuing effective skills without any extrinsic su-
pervision, we simultaneously investigate extracting
the most shared information between the repre-
sentations of skill and the current trajectory and
remaining invariant to irrelevant ones, as shown
in the top half of Figure 2. Concretely, in light
of the informativeness, we propose an information
bottleneck-based way to learn a more disentangled
and interpretable skill. Then, in light of the distin-
guishability of skill, we propose to push their rep-
resentations away on the unit hypersphere, which
ensures preserving maximal information.

Informativeness. In accordance with the infor-
mation bottleneck principle (Alemi et al., 2017),
our objective of learning skill is to make skill pro-
vide sufficient information coverage of trajectory
while being parsimonious to leave out unrelated
noisy information. Formally, our aim is to maxi-
mize

J = I(Ω;Z)− αI(Z; Ω′), (1)

where I denotes mutual information, Z denotes the
skill latent variable, Ω is the trajectory and Ω′ is the
irrelevant trajectory for which we intend to keep
minimal information. We can rewrite the objective
of Eq. (1) in the following:

J = H(Z)−H(Z|Ω)− α
(
H(Z)−H(Z|Ω′)

)
,

(2)
where H(·) denotes entropy. The conditional en-
tropy H(Z|Ω) and H(Z|Ω′) are the entropy of
skill representation conditioned on the state and
unrelated noisy information. Our objective then
becomes to maximize:

J = (1− α)H(Z)−H(Z|Ω) + αH(Z|Ω′)

= − (1− α)Ez[log p(z)] + Ez,ω[log p(z|ω)]
− αEz,ω′ [log p(z|ω′)]

≥ Ez,ω

[
log qϕ(z|ω)− (1− α)p(z)

]

− αEz,ω′ [log qϕ(z|ω′)],
(3)

which gives us a variational lower bound. Approx-
imating the posterior p(z|ω) is intractable, so in-
stead, we estimate it with a discriminator qϕ(z|ω)
to obtain the lower bound, which can be known
from Jensen’s inequality. The trajectory comprises
a sequence of states and/or actions, forming a co-
hesive representation of interactions with the en-
vironment over a specific period. About the se-
lection of trajectory we displayed here, we will
conduct more experiments to illustrate. Rethinking
the first part of Eq. (3), an idea of a contrastive way
comes to us, specifically, maximizing log qϕ(z|ω),
i.e., maximizing the alignment between skill and
trajectory. For our practical implementation, we
parameterize this function through calculating the
cross-correlation matrix between skill and trajec-
tory. We convert to minimize the following loss
function which seeks to decorrelate the feature di-
mension and maintain non-redundant information:

∑

i

(1− Cii)
2 + λ

∑

i

∑

j ̸=i

C2
ij , (4)

where C denotes the cross-correlation matrix cal-
culated between skill and trajectory along the batch
dimension. Naturally, the above is dedicated to
identifying and isolating the underlying factors of
variation in the hopes of improving the representa-
tion of skill.

Distinguishability. The learned representations
can easily degenerate to one dominant dimension
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while others are less important. In order to circum-
vent this common issue in representation learning,
inspired by forcing representations to distribute
more uniformly and separably, we consider push-
ing the representations to distribute uniformly on
the unit hypersphere through minimizing

logEz,ω

[
exp(−2||fα(z)− f(ω)||2)

]
, (5)

where fθ(·) and f(·) are the encoder networks that
transform the skill and trajectory into representa-
tions, for subsequent RL policy optimization. The
reason for choosing the logarithm of average pair-
wise Gaussian potential as shown in Eq. (5) is that
it has a tight relationship to the universal optimal
point configuration (Cohn and Kumar, 2006).

Discussion. Recall that the objective of general
contrastive objective can be decomposed into two
components, each of which correlates with our two
objectives, informativeness and distinguishability,
respectively. The expansion is in the following:

L =− log
exp(sim(z, ω))∑

ω′∈Ω\ω exp(sim(z, ω′))
,

=− sim(z, ω)︸ ︷︷ ︸
informativeness

+ log
∑

ω′∈Ω\ω
exp(sim(z, ω′))

︸ ︷︷ ︸
distinguishability

,

(6)

where sim(·) is the similarity function. Two terms
of the above equation indicate bringing the repre-
sentation of skill and trajectory as close as possible,
namely, aligning them closer, and making the repre-
sentation of skill and unrelated trajectory as further

as possible, namely, spreading them out. In this
work, we have our own corresponding manifes-
tations and realization respectively. Forcing each
dimension to carry out its functions and fulfill its re-
lated obligations, we measure the cross-correlation
matrix beginning from a feature-wise point of view
and concentrate more on the disentanglement of
representation, which ensures informativeness. At
the same time, the representation of skill and trajec-
tory will also be projected into a unit hypersphere
to strive for uniform distribution, which ensures dis-
tinguishability. They work in harmony to achieve a
greater representation of the skill.

4.2 Self-predictive state and action
representation learning

When compared with vector-based ones in general
RL, the state and action in the Jericho environ-
ment are text, so it is crucial to extract effective
information from textual data, which is the only
feedback we got from the partial observation. In
this section, we introduce the self-predictive mech-
anism for learning inverse and forward dynamics,
and the self-recovery mechanism for improving
the action representation, as shown in the bottom
half of Figure 2. They intend to acquire effective
representations of state and action, so as to investi-
gate the world model in greater detail, without the
assistance of any additional auxiliary tasks.

Our framework is based on the DQN algo-
rithm (Mnih et al., 2015), consisting of experience
(st, at, st+1, rt), which we simply utilize for self-
supervised dynamics learning. First, rather than
manually building representations (feature extrac-

13229



tion), the self-predictive inverse dynamics mecha-
nism predicts the action based on the state and next
state. The objective of the inverse dynamics model
is described as:

Linv(θ, β, t)

= ℓ
(
Finv

(
fθ(st), fθ(st+1)

)
, fβ(at)

)

= − log pd

(
fβ(at)|Finv

(
fθ(st), fθ(st+1)

))
,

Linv(θ, β) =
T∑

t=0

Linv(θ, t),

(7)

where T is the path length. The inverse dynamics
model is denoted as Finv, which we implement as a
multi-layer perceptron. ℓ calculates the discrepancy
between the outputs of the inverse dynamics model
and the real one. Directly calculating the Euclidean
distance for the text embedding could cause the
representations to collapse. Here, we thus employ
GRU decoder d which is widely used in language
processing, and pd is the probability of decoding
the output of inverse dynamics to action sequence.
Next, for the self-recovery mechanism for action,
we propose to recover the output of fβ back into
real action, which is represented as:

Lrec(β, t) = ℓ
(
fβ(at), at

)

= − log pd
(
at|fβ(at)

)
,

Lrec(β) =
T∑

t=0

Lrec(β, t).

(8)

Similar to the inverse dynamics, self-predictive for-
ward dynamics is represented as follows, which
predicts the next state based on the current state
and action:

Lfor(θ, β, t)

= ℓ
(
Ffor

(
fθ(st), fβ(at)

)
, fθ(st+1)

)

= − log pd

(
fθ(st+1)|Ffor

(
fθ(st), fβ(at)

))
,

Lfor(θ, β) =
T∑

t=0

Lfor(θ, β, t),

(9)

where Ffor is the forward dynamics model. Having
the above mechanisms, we will embrace a better
perception of state and action, resulting in better
representations of state and action while alleviating
the partial observability issue.

Algorithm 1: Our framework.
1 Initialize replay buffer B;
2 Initialize state-action value function Q with random

weights;
3 s← s0, t← 0;
4 Sample a skill z ∼ p(z);
5 for timestep t = 1 to T do
6 With probability ϵ select the random action at,

otherwise select at = maxa Q(st, z, a);
7 Execute action at and receive st+1, rt from

environment;
8 Store (st, at, st+1, rt, zt) in B;
9 Sample random minibatch of transitions from B;

10 if t%UPDATE SKILL ==0 then
11 Sample a skill z ∼ p(z);
12 end
13 Perform the update of skill;
14 Perform the update of representations of state

and action;
15 Perform the update of Q-value;
16 end

4.3 Overall objective
Our framework is based on deep Q-value, and the
optimal action is according to the maximal of state
action Q-value: at = argmaxaQ(st, z, a). Fol-
lowing classic reinforcement learning, we deploy
ϵ-greedy policy to enhance exploration through se-
lecting the random action with probability ϵ. Thus,
the objective function of Q-value is:

JQ =Es,a,s′,z
[
Q(s, z, a)− (r(s, a)

+ γmax
a′

Q(s′, z, a′))
]2
.

(10)

The overall learning algorithm is summarized as
Algorithm 1.

5 Experiments and Analysis

5.1 Experimental setup
Game environment. Jericho games (Hausknecht
et al., 2020) provide human-made interactive fic-
tion to verify the performance of intelligent agents.
For example, the most famous game zork1, is
a treasure collecting game where the dungeon
crawler needs to explore a vast labyrinth and
solve puzzles. Furthermore, other significant ob-
stacles that intelligent agent faces are sparse re-
wards and unpredictable enemy attacks. In terms
of action space which can be categorized into
parser-based, template-based and choice-based, we
choose choice-based here. We conduct experiments
on different games of Jericho suite.

Implementation details. The size of the replay
buffer is 10000. The discount factor γ is 0.9.
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Game |T | |V | DRRN TDQN KG-A2C CALM SHA-KG MPRC-DQN L-GAT CBR Ours MaxR

balances 156 452 10 4.8 10 9.1 10 10 8.8 11.9 12.5 51

deephome 173 760 1 1 1 1 - 1 14.9 1 29.1 300

inhumane 141 409 0 0.7 3 25.7 5.4 0 0 24.2 28.7 90

jewel 161 657 1.6 0 1.8 0.1 1.8 4.5 0 6.4 6.5 90

karn 178 615 2.1 0.7 0 2.3 - 10 - 0 10 170

library 173 510 17 6.3 14.3 9.0 15.8 17.7 7.6 22.3 19.75 30

ludicorp 187 503 13.8 6 17.8 10.1 17.8 19.7 6.1 23.8 21 150

pentari 155 472 27.2 17.4 50.7 - 51.3 44.4 52.1 53.7 70

reverb 183 526 8.2 0.3 7.4 - 10.6 2 1.0 6.5 11.3 50

spellbrkr 333 844 37.8 18.7 21.3 40 40 25 39.4 41.2 49.4 600

temple 175 622 7.4 7.9 7.6 0 7.9 8 5.0 7.8 8 35

tryst205 197 871 9.6 0 6.7 - 6.9 10 - 13.4 11.9 350

yomomma 141 619 0.4 0 - - - 1 - 1 1 35

zork1 237 697 32.6 9.9 34 30.4 34.5 38.3 17.1 44.3 51 350

zork3 214 564 0.5 0 0.1 0.5 0.7 3.6 0.4 3.2 1 7

Table 2: The result scores of our proposed method and other baselines on Jericho games. |T | and |V | are the size of
template set and vocabulary set, respectively. MaxR is the maximum possible score for the game.

The maximum timestep is 100000. We use the
Adam optimizer (Kingma and Ba, 2015) to update
the weights under the learning rate 1e-4. For ev-
ery 1000 training episodes, we validate the model
and report the testing performance. Our code is
available at https://github.com/AnneZhu1020/
Abstract-then-play/.

Baselines. We compare with the following base-
lines:

• DRRN (He et al., 2016): The Q-value function
is approximated using interaction function on
state and action embeddings.

• TDQN (Hausknecht et al., 2020): For
template-based action space, there are three Q-
value approximations, one template and two
objects.

• KG-A2C (Ammanabrolu and Hausknecht,
2020): The Advantage Actor Critic is to esti-
mate the value of templates and objects with
knowledge graph enhanced state while con-
straining the type of actions.

• CALM (Yao et al., 2020): It generates action
candidates through training a GPT-2 based
language model with a large number of human
gameplay.

• SHA-KG (Xu et al., 2020): It considers a
stacked hierarchical attention for multi-modal
inputs and subgraphs of knowledge graph with
different semantic meanings.

• MPRC-DQN (Guo et al., 2020): For template-

based action space, it generates action by find-
ing supportive evidence from the observation
and augments the current observation with rel-
evant history.

• L-GAT (Kohita et al., 2021): Facilitated by
general semantic schemes (FrameNet, Verb-
Net, WordNet), it designs the general action
template based on prior knowledge.

• CBR (Atzeni et al., 2022): It is based on case-
based reasoning whose process consists of
retrieving, reusing, revising and retaining.

5.2 Comparison with state-of-the-arts

We compare our framework with recent reinforce-
ment learning models designed for text-based
games, and the results are reported in Table 2.
Our framework outperforms the existing methods
in most games, especially games zork1, spellbrkr
and inhumane with a large improvement which
are representative games for possible, difficult and
extreme (difficulty level). On the game karn and
yomomma, we show a competitive performance,
reaching the same maximum reward as the previous
state-of-the-art baselines. The promising results
demonstrate the effectiveness and practicability of
our proposed framework.

5.3 Detailed analysis

Effect of skill learning. This experiment is
conducted with other representative skill learn-
ing strategies, DIAYN (Eysenbach et al., 2019)
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Strategy zork1 spellbrkr inhumane Objective formula

Ours 51 49.395 28.75 maximize I(S;Z)− αI(Z;S′)

w/o skill learning 40 41.5 23.8 -
w/. DIAYN 42 42.3 24.2 maximize I(S;Z) +H(A|S)− I(A;Z|S)

w/. contrastive representation
(with InfoNCE loss)

44 41.1 25.1 maximize I(S;Z)

Table 3: Ablation study of our proposed framework with different skill learning strategies.
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Figure 3: Ablation study of skill on zork1. Shaded
regions indicate the standard deviations.

and contrastive learning with InfoNCE loss
(van den Oord et al., 2018). Specific objec-
tives of the above strategies are illustrated in
the last column of Table 3. Concretely, for
the last one, we optimize: f(ω)T f(z)

∥f(ω)∥∥f(z)∥T −
log 1

N

∑N
j=1 exp

f(ωj)
T f(z)

∥f(ωj)∥∥f(z)∥T . As we can see,
ours shows the best performance in representative
games in Jericho, compared with previous skill
learning strategies and the one without skill learn-
ing. This indicates the necessity of our proposed
skill learning.

Analysis on different settings of skill. Here are
two main questions about skill, discrete or contin-
uous skill, and the dimension embedding of skill.
We conduct experiments on discrete and contin-
uous with dimensions in the range of {4, 8, 16},
separately. It can be seen from Figure 3 that the
discrete embedding may be greatly affected by the
dimension of embedding. In contrast, the continu-
ous embedding can present a good performance
more stably. We guess this is because the dis-
crete skill embedding does not provide information
about the proximity of skills, thus learning a con-
tinuous embedding is more effective. Regarding
the dimension of continuous skill, there is only a

trajectory selection zork1 spellbrkr inhumane
[st; at] 43 41 27.2

[st; at; st+1] 44 43.65 27.3
[st+1 − st; at] 47 46.5 28.35
st+1 − st 51 49.395 28.75

Table 4: Ablation study of our proposed framework with
different trajectory selections across three games.

Strategies zork1 spellbrkr inhumane

Ours 51 49.395 28.75

w/o self-predictive forward dynamics 43 43.15 28.0

w/o self-predictive inverse dynamics 46 43.65 27.8

w/o self-recovery for action 47 44.5 28.35

Table 5: Ablation study of our proposed framework with
the self-predictive and self-recovery mechanisms.

slight difference among them where the continuous
skill with dimension 8 narrowly beats the others.

Analysis on trajectory selection. In this experi-
ment, aiming at answering which feature is the best
for extracting skill based on states and actions, we
perform four candidates across the above games.
From Table 4, we can conclude that selecting the
difference between two adjacent states as the trajec-
tory performs almost the best. Moreover, observing
the last two rows, it is surprised that the addition of
action does not bring about an improvement in the
effect. This finding is in line with the intention of
DIAYN (Eysenbach et al., 2019) which is to have
the state distinguish skill rather than action.

Ablation study of self-predictive and self-
recovery mechanisms. To analyze the proposed
self-predictive mechanism for forward and inverse
dynamics, and our self-recovery for action rep-
resentation itself, we conduct experiments across
three games. As shown in Table 5, we can find that
without the above mechanisms, the performance
will decrease to a certain extent in different games.
The effect of action reconstruction is the most sig-
nificant, followed by the learning of inverse dynam-
ics.
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Figure 4: T-SNE visualization of the representations of skill, state difference and state.

5.4 Skill visualization
In order to analyze the representations of state and
skill after learning, we perform t-SNE (der Maaten
and Hinton, 2008) to project them into a vector
of 2 dimensions. As shown in Figure 4, the state
representation visualization depicted in the right
figure differs significantly from the skill represen-
tation in the left figure. The result demonstrates the
consistency between the representation of skill and
trajectory selected (i.e., state difference), thereby
highlighting the effectiveness of our skill and state
representation learning through discriminator opti-
mization.

6 Conclusion

In this work, we present a novel skill-centric re-
inforcement learning framework for text-based
games. Our framework aims at abstracting the
action in an end-to-end manner, in line with the
information bottleneck principle which pursues the
informativeness and distinguishability of skill. For
better perceiving textual state and action, we em-
ploy self-predictive mechanisms for forward and
inverse dynamics and a self-recovery mechanism
for the action itself. To the best of our knowledge,
this is the first work to consider skill discovery and
representation learning in text-based games aiming
at eliminating partial observability and large action
space issues, without the need of any pre-trained
models or prior knowledge.

Limitations

For now, the latent of our skill is sampled from a
distribution, whose flexibility is not fully investi-
gated. We intend to exploit more flexible skills and
goal discovery, or direct generation via state or ac-
tion. Additionally, the sparse reward in text-based
games is also a burning challenge, which hinders
the efficient exploration of agents. Our abstracted

action, skill, to some extent eases off this issue,
but is not enough. We will dive into this more and
design a fancy solution later.
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