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Abstract

Increased focus on the computational efficiency
of NLP systems has motivated the design of ef-
ficient model architectures and improvements
to underlying hardware accelerators. How-
ever, the resulting increases in computational
throughput and reductions in floating point op-
erations have not directly translated to improve-
ments in wall-clock inference latency. We
demonstrate that these discrepancies can be
largely attributed to bottlenecks introduced by
deep learning frameworks. We denote this
phenomenon as the framework tax, and ob-
serve that the disparity is growing as hard-
ware speed increases over time. In this work,
we examine this phenomenon through a se-
ries of case studies analyzing the effects of
model design decisions, framework paradigms,
and hardware platforms on total model latency.
Code is available at https://github.com/
JaredFern/Framework-Tax.

1 Introduction

Natural language processing systems have bene-
fited from improvements in performance driven
by scaling of training data and number of model
parameters (Kaplan et al., 2020; Alabdulmohsin
et al., 2022; Tay et al., 2021, 2022). However, the
accompanying increases in computation raise con-
cerns as to the efficiency of these systems due to
associated environmental costs of development and
deployment (Schwartz et al., 2020; Strubell et al.,
2019).

In particular, efficiency is especially important
in inference settings where models are used re-
peatedly and at scale, in contrast to training which
poses a single upfront computational cost. For ex-
ample, Meta reports that inference workloads make
up 70% of their Al power consumption, with the
remaining 30% due to training and development
(Wu et al., 2022), while Google attributes 60% of
their ML energy consumption to inference (Pat-
terson et al., 2022). Inference is also estimated
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Figure 1: Latency as a function of a model’s multiply ac-
cumulate operations (MACs) on an Nvidia 2080ti GPU.
Expected relationships do not hold; model complexity
and hardware capabilities fail to predict latency due to
framework-boundedness.

to make up 80 to 90% of ML cloud computing
demand (Barr, 2019; Leopold, 2019). In these set-
tings, metrics of model speed such as latency and
throughput are essential for inference workloads
that are subject to real wall-clock time constraints
such as real-time natural language generation and
automated speech recognition (Reddi et al., 2020).

These concerns have motivated research in de-
signing more efficient neural network model archi-
tectures and faster hardware accelerators. In the
past five years alone, the number of papers that
mention the terms efficient or efficiency in top ma-
chine learning venues has grown by over 2.5x and
even more so at venues in natural language process-
ing, increasing by 8.3x in the same span.' This has
spurred innovations in the design of efficient neu-
ral network architectures for language aiming to
reduce the number of trainable model parameters,
floating point or multiply-accumulate operations
(MACG:s) (Iandola et al., 2020; Dai et al., 2020; Sun

'Based on publications at ML (ICLR, ICML, NeurIPS)
and NLP conferences (ACL, EMNLP) between 2017 and 2022
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et al., 2020). Over the same period, GPU hardware
accelerators have seen similar performance gains
with the number of floating point operations per
second (FLOPS) growing by over 175%.2

Despite this progress, the supposed gains offered
by higher performance hardware and more effi-
cient models are often not realized in inference
settings, where wall-clock model speed has not re-
liably improved, as seen in Figure 1. We show
that this misalignment is primarily attributable to
overhead incurred by deep learning frameworks
used to implement and execute models. In the past,
the execution of large neural networks common to
natural language processing has been assumed to
be compute-bounded by computationally intensive
tensor operations (Li et al., 2020). However, as
the speed of hardware increases, the overhead in-
troduced by the deep learning frameworks used to
implement and deploy these models is no longer
negligible and imposes bottlenecks on inference.

In this work, we conduct a systematic investiga-
tion in which we show that improvements to neural
network architectures and hardware have not trans-
lated into reductions in inference latency. We show
that this breakdown is largely due to overhead in-
troduced by deep learning frameworks. We refer to
this phenomenon as the framework tax, and show
that it exists across all deep learning framework
paradigms (e.g. eager execution, just-in-time, and
ahead-of-time compilation).

At small batch sizes and sequence lengths, we
show that fixed framework overhead dominates in-
ference time leading proxy measurements of model
efficiency, such as MACs and parameter count, to
breakdown as predictors of inference latency. Fur-
thermore, we note that existing efforts to improve
model efficiency by designing lower FLOP model
architectures and faster GPU kernels do not reduce
latency, when total execution is bound by fixed-cost
framework overhead. Moreover, we note that as
hardware performance increases, NLP systems will
become increasingly framework-bound at larger
batch sizes.

An exhaustive comparison of the rapidly grow-
ing space of models and hardware platforms is out
of scope, so we instead identify the most popular
model components, inference environments, and
hardware accelerators for testing (i.e. isolating the
cases most likely to mislead a practitioner). We
analyze the performance of transformer and convo-

2Per theoretical FLOPS of Nvidia GPUs (2017-2022).

lutional neural newtork models in eager execution
PyTorch, just-in-time compiled TorchScript, and
ahead-of-time compiled ONNX runtime using a
CUDA execution provider. We perform our study
across seven different GPUs from the Pascal, Tur-
ing, and Ampere Nvidia GPU microarchitectures.
Based on our findings, we provide a series of
recommendations for NLP researchers and practi-
tioners presented through a collection of case stud-
ies. Among these, we recommend usage of static
or ahead-of-time inference runtimes when batch
sizes are small as they can substantially reduce
framework overhead. Alternatively, when using
eager execution-based frameworks for inference,
we recommend increasing model width or batch
size at no cost to latency and take advantage of per-
formance gains associated with increased model
capacity (Zagoruyko and Komodakis, 2016). For
example, hidden dimensions in self-attention and
fully connected layers can be doubled to increase
model capacity without affecting latency, imply-
ing that model designers have an extra degree of
freedom often overlooked when designing around
parameters or FLOPs. We hope that our analy-
sis and recommendations will help bridge the gap
between efficient NLP research and practice.

2 Related Work

2.1 Efficiency Metrics & Cost Indicators

Previous efforts to report efficiency often utilize
proxy metrics for amount of computation, such as
the number of floating point (FLOPs) or multiply-
accumulate (MACs) operations (Schwartz et al.,
2020). Similarly, number of trainable parameters is
a frequently reported as a proxy for memory utiliza-
tion (Lan et al., 2019). Unfortunately, these proxy
metrics are often not predictive of realworld effi-
ciency. For example, total FLOPs does not account
for the varying extent to which different operations
can be parallelized and techniques such as weight
tying can reduce parameter counts without reduc-
ing the amount of required computation (Lan et al.,
2019). From the perspective of device utilization,
hardware and model FLOPs utilization (Chowdh-
ery et al., 2022) are reported as the ratio between
observed FLOPs per second and a hardware plat-
forms peak theoretical FLOPs.

Previous works examining the relationship be-
tween efficiency measures showed that different
cost indicators do not correlate well with each other
during neural network training (Dehghani et al.,
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2021). In particular, it has been hypothesized that
discrepancies between FLOPs and wallclock infer-
ence latency is primarily are primarily compute
bounded by kernel execution or memory-bound by
data movement as opposed to framework bottle-
necks (Langerman et al., 2020). These previous
works have largely focused on convolutional neural
networks (CNNs) in computer vision. We extend
these analyses to the inference setting and study
transformer-based neural networks for NLP, and
show that FLOP-based proxy metrics breakdown
for due to additional performance bottlenecks in-
troduced by deep learning frameworks.

2.2 Efficient Model Design

Desire to develop computationally efficient models
for language processing has led to the development
of a variety of model architectures that achieve
comparable task performance under fixed FLOP
budgets. For example, compression of input se-
quences and intermediate representations has been
used to reduce the computational cost of long text
sequences (Dai et al., 2020; Goyal et al., 2020)
and distillation has been used to reduce model
size (Sanh et al., 2019; Hou et al., 2020). Other
work has sought to design efficient model archi-
tectures by developing low-FLOP substitutes for
standard, dense self-attention and convolution op-
erations (Iandola et al., 2016; Zhang et al., 2018;
Sandler et al., 2018; Sun et al., 2020; Xiong et al.,
2021; Wang et al., 2020b).

Additionally, direct efficiency metrics, such as
wall-clock latency and energy usage have been in-
corporated into the objectives of neural architec-
ture search (NAS) and AutoML methods (Wu et al.,
2019; Tan et al., 2019; Wang et al., 2020a). Man-
ual inspection of the learned models shows that
NAS often implicitly learns to take advantage of
supported parallelism, learning wider architectures
on GPU devices and deeper models on CPU de-
vices (Cai et al., 2018; Tan et al., 2019; Sandler
et al., 2018). However, it is often impossible to
control for the hardware systems used for collect-
ing these metrics leading to conclusions that may
not generalize across deployment settings.

2.3 Platform Performance Analysis

Efforts to establish common benchmarks leverage
reference models and hardware platforms with tar-
get latency or accuracy (Reddi et al., 2020; Zhou
et al., 2020). Although these efforts have led to
improvement in end-to-end latency, they often ab-

stract away the underlying frameworks, compilers,
backends, and hardware platforms. While general
improvements in hardware and software kernels
may lead to improvements across all models, it has
been argued that solely focusing on performance
optimization of a limited set of model architec-
tures and runtimes may lead to overspecialization
(Hooker, 2021).

Previous analysis of the computational proper-
ties of hardware accelerators has largely focused
on the training setting in which larger kernels and
batch sizes hide framework overhead that emerges
in the inference setting (Wang et al., 2020c; Zhu
et al., 2020, 2018). Other analyses of end-to-end
systems analyses has primarily focused on domain-
specific applications in reinforcement learning and
recommendation systems (Gleeson et al., 2021; Lin
et al., 2022), where simulation and memory access
dominate execution time. Additionally, these prior
efforts are restricted to small sets of reference mod-
els and have not directly examined the relationship
between model architectures and platforms.

3 Preliminaries

3.1 Neural Network Frameworks

To take advantage of massively parallel hardware
accelerators, inference with variable length text and
speech sequences are padded to fixed length tensors
that are processed with neural network frameworks.
These frameworks provide implementations and
APIs for tensor operations, gradient calculation,
and construction of neural network computational
graphs. Frameworks generally fall into the follow-
ing design paradigms (Kahn et al., 2022):

Eager Execution: The computational graph is
constructed from a series of operations that are
executed as soon as called from an interpreter. Ex-
amples include: PyTorch (Paszke et al., 2019) and
Chainer (Tokui et al., 2015).

Deferred Execution: A series of operations are
defined and executed on sample data to generate a
dataflow graph that can then be just-in-time (JiT)
compiled. Examples include: TorchScript, Jax
(Bradbury et al., 2018), Theano (Al-Rfou et al.,
2016), Caffe (Jia et al., 2014).

Static: The computational graph is pre-defined,
compiled, and executed inside a specialized run-
time; allowing for aggressive, global ahead-of-time
(AoT) compiler optimizations. Examples include:
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Figure 2: Profiles where execution is framework bound
by CPU kernel dispatch operations (above) and compute-
bound by GPU kernel operations (below). Small com-
pute kernels occur in inference at lower batch sizes.
Boxes with dashed lines represent framework overhead.

ONNX Runtime, TensorFlow 1.0, MXNet, Ten-
sorRT, and TVM (Chen et al., 2015, 2018).

Eager execution frameworks compute each layer
as separate operations which each incur additional
overhead from CPU kernel dispatches. To accel-
erate execution, deferred execution and static in-
ference frameworks compile the neural network’s
computational graph to combine multiple opera-
tions together (e.g. fusing attention layers and
GELU activations) or remove unnecessary com-
putation (i.e. scalar folding). Removal of kernel
launch operations can reduce the memory footprint
and result in more efficient kernels, thus decreasing
overall framework overhead.

While deferred and static frameworks are com-
monly used in deployment settings, the NLP re-
search community relies heavily on eager mode
frameworks during the development of new mod-
els for their ease of use. This further exacerbates
the community divide, where models are designed
under different assumptions than deployed.

3.2 Framework Overhead

Deep learning frameworks asynchronously dis-
patch computation for execution on highly paral-
lelized hardware accelerators, as shown in Figure
2. For sufficiently large compute kernels, such as
those during training, models achieve near max-
imum GPU utilization — measured as the differ-
ence between total execution time and active GPU
time (Zhu et al., 2018). However, during inference,
smaller input sizes lead to suboptimal GPU utiliza-
tion as the rapid executing kernels do not saturate
the fixed cost framework overhead incurred from
CPU operations such as kernel launch, graph con-
struction, control flow, and device synchronization;

—— Total Model Latency
fffff CUDA Kernel Execution Time
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Figure 3: Framework overhead of BERT-Base in Py-
Torch for various batch sizes on an RTX-8000. Al-
though small batch sizes require fewer FLOPs, these re-
ductions do not translate to speedups in latency. Frame-
work overhead is substantial at low batch sizes but only
a small constant at large batch sizes.

See Figure 3 (Aminabadi et al., 2022).

Kernel serialization with optimizations such as
CUDA Graphs remove the overhead from multiple
kernel dispatches by capturing and replaying the
entire computational graph as a single operation.
However, kernel serialization requires that models
are graph safe (i.e. static shapes and static con-
trol flow). This can pose challenges for NLP sys-
tems which often leverage dynamic computational
graphs to deal with variable length sequences, parse
tree depths, and batch sizes (Looks et al., 2017).

When the execution of GPU kernel computation
is largely blocked by CPU framework operations
such as kernel dispatches, the model’s execution
becomes framework-bound. In this setting, latency
is constant regardless of batch size or number of
MACs computed. For settings where latency is de-
pendent on the execution of computational kernels
and data movement, models are compute-bound.

4 Experiments

We evaluate models frameworks from each of the
major paradigms: eager execution PyTorch, de-
ferred execution TorchScript, and statically com-
piled ONNX Runtime with a CUDA backend.

We use PyTorch 1.12.1 with CUDA 11.6 and
Python 3.8.13. We use ONNX Runtime 1.7.0 with
CUDA 11.1.1 and cuDNN v8.0.4.3. Baseline exper-
iments are run on a compute node with an Nvidia
RTX-8000 GPU and an Intel Xeon E5-2630 CPU
with 32 GB of DDRAM memory.

We measure latency, GPU utilization over a
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Figure 4: Latency vs. (batch size and sequence lengths) for baseline models in FP16 and FP32 on RTX-8000.
Framework boundedness exists for all models at small input sizes where framework overhead dominates runtime
and results in constant latency regardless of input size. Framework overhead is most prominent in smaller models

executed in half precision on slower frameworks.

range of batch sizes to capture common inference
use cases as stated in (Reddi et al., 2020): sin-
gle example inferences is common in streaming
on-device applications, such as autocomplete and
automatic speech recognition; large batch inference
is typical in offline server settings.

We simulate text data by randomly generating
token sequences of length 128, as commonly used
in sentence classification tasks (Liu et al., 2019;
Izsak et al., 2021). We report averaged metrics
from 100 forward passes after 10 warm-up passes
to initialize model weights and data. GPU core and
memory utilization are measured with the Nvidia
Nsight Compute and Nvidia Management Library.

We select BERT-Base (Devlin et al., 2018) and
ResNet-50 (He et al., 2016) as representative mod-
els for encoder-only and convolutional neural net-
work architectures commonly used for sentence
and image classification tasks (Reddi et al., 2020;
Janapa Reddi et al., 2022). We evaluate model ar-
chitectures for natural language generation, speech,
and vision and show that they all observe frame-
work bound behavior in Appendices C, D and E.

Analysis The number of FLOPs required for
model inference scales with the input batch size
and sequence length. As such, one would expect
that latency scales accordingly as well. However,
as seen in Figure 4, models exhibits framework
boundedness for both small sequence lengths and
batch sizes, where latency is constant regardless of
input size.

Computation with mixed and half precision
(FP16) often increases training throughput over
single precision (FP32), we observe that frame-
work overhead results in latency bottlenecks re-
gardless of the precision during inference. As half
precision computation is faster due to reduced data
movement, GPU kernel execution time takes longer

to overtake fixed framework overhead. As a re-
sult, half precision inference is framework bound
for larger batch sizes. For inference with larger
compute-bound batch sizes, latency observes ex-
pected speedups from using half precision.

Although models based on convolutions
(ResNet-50) and self-attention (BERT-Base)
operations both exhibit framework-bound behavior,
they transition to compute boundedness at different
batch sizes. The difference in model behavior can
be attributed to differences in the rate at which
compute kernels overtake CPU dispatch operations.
For the well-optimized operations (Conv2Ds and
GEMMs) that make up ResNet-50 and BERT, the
time per FLOP is reasonably consistent.

4.1 Framework Design Decisions

In Figure 4, we observe that frameworks from all
execution paradigms exhibit framework bound be-
haviors. However, deferred execution TorchScript
and static ONNX Runtime, which support com-
putational graph compilation (e.g. operator fu-
sion), exhibit less framework overhead and provide
speedups over eager PyTorch. These increases are
especially pronounced at low batch sizes where
inference is framework-bound. For batch size 1,
TorchScript and ONNX provide an average FP16
speed up of 34.16% and 71.38% over PyTorch,
respectively. As batch sizes increase and models
become compute bound, there is minimal differ-
ence in latency across frameworks as the majority
of execution time is spent on kernel execution.
Additionally, we consider both static, serial-
ized CUDA graphs and PyTorch BetterTransformer
framework optimizations in Figure 5. BetterTrans-
former provides speedups through additional kernel
fusion and sparse tensor operations that take advan-
tage of sparse sequence lengths and padding tokens
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Figure 5: Different framework optimizations lead to la-
tency improvements in different regimes for BERT-Base.
CUDA Graph kernel serialization reduces launch over-
head in the framework bound regime, whereas sparse
computation reduces latency at larger batch sizes.

to remove redundant computation.

To construct sparse inputs, we simulate sam-
ples by generating variable length sequences and
padding to the maximum sequence length of 128.
Sentences are randomly generated according to the
sequence length distribution of the Penn Treebank
(Taylor et al., 2003), with an average length of
20.92 and a standard deviation of 10.18 tokens.

Analysis Utilization of CUDA Graphs substan-
tially reduce latency at low batch sizes when infer-
ence is bounded by framework overhead from ker-
nel launches. However, at larger batch sizes, nested
tensor operations can leverage sparsity in padded
variable sequence lengths to provide substantial
latency reductions when inference is compute-
bounded.

4.2 Model Design Decisions

We examine a variety of common model architec-
ture design decisions and investigate their align-
ment with commonly reported efficiency proxies
and empirically observed latency.

4.2.1 Scaling Model Depth & Width

Assumption Scaling the dimensionality and
number of hidden layers is commonly used in
NLP and computer vision as a means to explore
tradeoffs between model performance and com-
putational requirements (He et al., 2016; Touvron
et al., 2021; Zhou et al., 2021). Recent work has
shown that model end-task performance scales dif-
ferently along each axis (Tay et al., 2021, 2022;
Nguyen et al., 2021).

@® BERT-Base Narrow Wide 6-Layer DistilBERT @® 18-lLayer BERT

1071 10t

Latency

1072 1072

101 10! 10%2 10° 10t 102
MACs Batch Size

Figure 6: Comparison of latency for BERT variants
that scale model width and depth. Increases in model
depth add more framework overhead, whereas increases
in model width lead to faster transitions to compute
boundedness.

We compare our baseline models to variants that
scale both model width and depth. We examine
12-layer BERT-Base against its 6-layer DistilBERT
(Sanh et al., 2019) variant and experiment across
parameterized BERT models, varying the number
of encoder layers as well as width of their fully
connected and self-attention layers.

Analysis When scaling model depth, we observe
that latency increases in both the framework- and
compute-bound regimes as each added layer op-
eration requires an additional CPU-GPU dispatch.
Deeper model variants have a larger fixed latency
in the framework-bound regime as seen in Figure 6.

Counter-intuitively, wider model variations see
no increase in latency at low batch sizes. As model
execution is framework bound, total runtime is con-
stant despite wider operations requiring more float-
ing point operations. Instead, increased per-layer
kernel execution time causes these wider models
to become compute-bound at lower batch sizes. In
the compute-bound regime, latency scales more
rapidly with batch size for wide models.

4.2.2 Downsampling and Hierarchical Pooling

10t 10t
® BERT-Base
Funnel TF

Latency

102 102
108 10° 1010 10° 10t 102
MACs Batch Size

Figure 7: Comparison of BERT and Funnel Transformer
latency. Despite using fewer total MAC operations,
Funnel is slower than BERT for inference due to the
introduction of additional intermediate pooling layers.
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Assumption Self-attention layers in Transformer
architectures are notoriously computationally ex-
pensive as their complexity scales quadratically
with input sequence length. To reduce this com-
putational bottleneck, researchers have developed
efficient transformer architectures that seek to re-
duce sequence lengths via methods such as down-
sampling, low rank approximations, and locality
sensitive hashing (Dai et al., 2020; Kitaev et al.,
2020; Wang et al., 2020b; Xiong et al., 2021).

We examine the performance of the Funnel
Transformer which applies average pooling to per-
form sequence length reduction every 4 layers. The
model achieves comparable accuracy to BERT on
downstream tasks while requiring 42% fewer total
MAC operations through sequence length reduc-
tion. This model achieves similar downstream task
performance to BERT-Base and trains 33% faster
based on wall-clock time.

Analysis While Funnel Transformer reduces to-
tal FLOPs and obtains substantial speedups in large-
scale training, this speedup does not translate to
increased speed of inference as seen in Figure 7. In
practice, the average pooling layers used to perform
sequence length reductions add additional opera-
tions to the computation graph and increase the
model’s framework overhead. At low batch sizes,
Funnel Transformer is framework bound at a much
higher latency than BERT, and remains slower even
at larger batch sizes. While some architectural inno-
vations decrease the total number of model FLOPs,
some approaches increase the size of tensor opera-
tor graphs (e.g. vis-a-vis additional layers) which
can ultimately increase inference latency.

4.2.3 Efficient Mobile Architectures
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Figure 8: Latency of Transformer models using efficient
variations of convolution and self-attention operations.
All of the variants observe lower latency at large batch
sizes, but have worse FLOP utilization. Efficient Trans-
former variants are slower than BERT at small batch
sizes due to the introduction of more layers.

Assumption Model architectures that target de-
ployment on edge devices, such as mobile phones,
are often designed to decrease the total number of
FLOPs or MACs under the assumption that such
reductions translate to decreased latency. Towards
this end, operations such as grouped convolutions
(Zhang et al., 2018; Iandola et al., 2020), inverted
residual bottlenecks (MBConvs) (Sandler et al.,
2018; Sun et al., 2020), and squeeze and excitation
layers (Iandola et al., 2016) have all been proposed
as substitutes for dense convolution, self-attention,
and linear operations. However, in practice these
operations often lack the highly optimized frame-
work and hardware support developed for more
standard operations and as a result exhibit higher
per-flop latency and poor memory utilization.

We examine this assumption with models that
use grouped convolutions in SqueezeBERT (Ian-
dola et al., 2020) inverted bottleneck layers and
Mobile BERT (Sun et al., 2020).

Analysis To achieve comparable accuracy on
downstream language tasks with low-FLOP opera-
tions, efficient BERT variants require much deeper
model architectures which results in much higher
fixed framework overhead as seen in Figure 8. Ad-
ditionally, these models exhibit worse FLOP per
second due to poor memory utilization compared
to conventional dense linear and convolution op-
erations. These operations can lead to slowdowns
in deployment settings where depthwise and point-
wise convolutions may have limited hardware and
framework backend support.’

4.3 Hardware Considerations

0
10 ® Nvidia 1080Ti

Nvidia 2080Ti
Nvidia 3090
Nvidia V100
Nvidia A100

107t

1072 10-2

10° 10! 102 10° 10! 102
Batch Size Batch Size

Figure 9: Framework overhead occurs across genera-
tions of GPU hardware, with increasing prominence as
hardware speeds increase with newer generations.

In Figure 9, we observe that framework-bounded
behaviors during inference across multiple gener-

3Pointwise convolutions are often memory-bound: https:
//pytorch.org/tutorials/recipes/recipes/tuning_guide.html
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ations of consumer, workstation, and datacenter
Nvidia GPUs. As the speed of the accelerator in-
creases, the relative execution speed of the com-
pute kernels decreases while the total framework
overhead due to CPU kernel dispatch operations
remains constant. We observe that GPUs that lack
Tensor Core support for half precision operations,
such as the 1080Ti, are notably slower and less
framework-bound than newer GPUs. Conversely,
this leads faster GPUs, such as the RTX 3090 and
the A100, to remain framework bound at larger
batch sizes for both ResNet-50 and BERT. These
observations indicate that framework bounds on
model execution will continue to worsen as hard-
ware improves unless deep learning frameworks are
commensurately improved. For example, BERT-
Base is not framework bound for older 1080Ti
GPUs but is on newer 3090 GPUs.

Framework boundedness is mainly caused by
bottlenecks due to CPU dispatch operations. As a
result, the fixed latency for framework-bound mod-
els is a product of the entire system configuration,
dependent on hardware specifications such as CPU
and memory speeds. In contrast, the latency of
compute-bound models is mainly determined by
the properties of kernels: operation type, kernel
size, and their supported GPU FLOPs per second
— with faster GPUs yielding faster execution. Ad-
ditional details on hardware system configurations
are provided in Appendix A.

5 Discussion

Computational graph optimizations and com-
pilation improve latency. Removal of host lan-
guage dependencies and graph optimizations pro-
vides substantial speedups over eager frameworks
for inference at low batch sizes. However, fea-
ture completeness for operators and control flow
varies across graph optimizers and compilers. For
example, the FNet architecture (Lee-Thorp et al.,
2021) relies on FFTs as a deterministic swap-in
for self-attention. FFT operations are not currently
supported by ONNX or TorchScript As expected,
FNet executed in PyTorch outperforms BERT exe-
cuted in ONNX despite less framework overhead
and numerous static optimizations — with a 10.31%
speedup at batch size 1. For improvements in re-
search to translate to deployment, additional invest-
ment can be directed towards support for complex
control flow and operators in inference runtimes.

Dynamic computational graphs can be faster
for input sentences with variable lengths. Dy-
namic computational graphs can leverage input
sparsity to reduce latency when processing vari-
able length text. For example, PyTorch with sparse
tensor optimizations reduces the latency of static
CUDA graphs by 80.56% at batch size 128 when
processing sparse inputs.

At large input sizes, framework overhead from
graph operations is negligible. For batch sizes
larger than 16, we find that there is minimal la-
tency difference across models, inference runtimes,
and frameworks. In the compute-bound regime,
number of FLOPs is still a poor latency predictor
due to variable execution time for different opera-
tions. For example, efficient mobile architectures
that depend on inverted-residual layers are mem-
ory inefficient and are much slower per-FLOP than
standard convolution and linear layers.

For framework-bound models, model depth is a
reasonable proxy for latency. Number of float-
ing point operations is a poor indicator of latency
in a framework-bound setting, as total runtime
is generally constant and tied to framework over-
heads and the size of the computational graph. In
framework-bound models, the size of the computa-
tional graph is related to model depth.

Estimations of latency for models deployed in
production settings must account for their target
framework and hardware platform. Model de-
velopment frequently occurs using eager execution
research frameworks. However, deployment often
occurs in inference runtimes and on mobile devices
or specialized hardware. This misalignment can
mislead the development of “efficient” models and
result in claimed gains that do not translate to real-
world deployment settings. As such, researchers
should be clear in specifying the setting of their “ef-
ficiency" gains, such as the target frameworks and
hardware platform, when developing new methods.
For example, techniques such as hardware-aware
neural architecture search which leverage direct
latency measures must also control for framework
choices to account for this mismatch.

Throughput and input size can be increased
at minimal cost for framework-bound models.
For a given model, latency is constant regardless
of batch size until compute kernels saturate and
exceed CPU launch costs. If computation is bot-
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SADim FCDim Batch Seq Latency TP
768 3072 1 128 0.0136  0.0136

768 3072 4 128 0.0134  0.0034

768 3072 1 512 0.0134 0.0134
1536 6144 1 128 0.0134 0.0134

Table 1: Latency and throughput (TP) of BERT PyTorch
models on RTX-8000. Scaling along batch sizes and
model width shows no increase in latency.

tlenecked by framework overhead, the batch size
or input size can be increased without increases in
overall runtime. In practice, this can lead to the pro-
cessing of larger batch sizes and sequence lengths
at no additional latency cost until kernel operations
saturate framework overhead.

Model width can be increased at no cost for
framework-bound models. For a given batch
size, individual layers of a framework bound model
can be made wider by increasing hidden dimension
or filter size without impacting latency. Wider mod-
els are known to exhibit better task performance
due to increased parameter count and expressivity
(Zagoruyko and Komodakis, 2016).

Model designers can leverage wider architec-
tures with their target inference framework and
hardware setting in mind to achieve higher utiliza-
tion. For example, models processing few exam-
ples during inference can leverage wider layers to
avoid framework bottlenecks. See Table 1.

Using higher-performing hardware does not
necessarily improve end-to-end performance.
Framework overhead limits the impact of improved
hardware as it limits utilization. This trend will con-
tinue as ML-specific hardware advances without ef-
forts to address software bottlenecks. For example,
single-example inference with both BERT is slower
using an A100 than using a V100 GPU despite a
2.75x increase in peak computational throughput.

6 Conclusion

We conduct an extensive study of neural networks
from the convolutional and transformer architec-
ture paradigms across a variety of software and
hardware platforms. We show that inference per-
formed with these large neural networks, which
was previously assumed to be compute bounded,
is in fact limited by overhead incurred by deep
learning frameworks. While wider transformer ar-
chitectures (e.g. BERT-Base) exhibit less bounded-
ness behaviors than narrower, deeper CNNs (e.g.

ResNet-50), we show that all models exhibit frame-
work boundedness. Additionally, we observe that
these inefficiencies are becoming more apparent as
hardware accelerator speeds increase.

We introduce the concept of the framework tax
to describe when improvements in hardware speed
and reductions in required computation fail to trans-
late to speedups in model latency and throughput
due to bottlenecks incurred by deep learning frame-
works. We hope that these observations raise aware-
ness of the impact and limitations created by choice
of deep learning frameworks on model develop-
ment and deployment.

7 Limitations

In this work, we study the inference efficiency of
speech and language models using GPU hardware
accelerators. While GPUs are the most common
general purpose hardware accelerators, there ex-
ist domain specific architectures such as Google
TPU’s, GraphCore IPUs, and custom ASICs which
present additional settings for future investigation.
Additionally, our study evaluates efficiency via
model latency and our claims do not necessarily
translate to other metrics of efficiency, such as
power consumption or power output.

As models continue to scale in size, they often
require model or data parallelism techniques that
require computation across several nodes which
introduce overhead from multi-device synchroniza-
tion and network communication. Additionally, we
do not study latency in the training setting where
the per-layer computation is larger due to the com-
putation of gradients and losses.
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A Hardware Platforms

Full details for the various hardware platforms and
GPUs used for evaluation in Section 4.3 are de-
scribed in Table 2 .

B Hardware and Utilization

In Table 3, we examine GPU hardware utilization
of various frameworks in terms of the percentage of
SMs active (i.e. number of compute units utilized)
and warp occupancy (i.e. amount of time each com-
pute unit is active). Graph compilations and ker-
nel serialization reduce framework overhead and
increase hardware utilization. All frameworks ob-
serve suboptimal hardware utilization

C Additional Experiments: Natural
Language Generation

In Figure 10, we examine the GPT-2 decoder-only
transformer model architecture and observe that as
with encoder-only architectures generative models
encounter framework boundedness for small input
sizes. Evaluations are performed across batch sizes
from 1 to 128 and a fixed generation length of 16
tokens.
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CPU GPU GPU Arch Core Count  Tensor Clock Rate  Memory Mem BW  FP16
Cores (GHz) (GB) (GB/s) TFLOPS
Intel Xeon Silver 4110  1080Ti Pascal 3584 - 1.38 11 484.4 22.78
Intel Xeon Gold 6242 V100 Volta 5120 640 1.23 32 897 28.26
Intel Xeon E5-2630 2080Ti Turing 3584 544 1.35 11 616 26.90
Intel Xeon E5-2630 RTX-8000 Turing 4608 576 1.40 48 672 32.62
AMD EPYC 7282 3090 Ampere 10496 328 1.35 24 936 35.89
Intel Xeon Silver 4110  A6000 Ampere 10752 336 1.41 48 768 38.71
Intel Xeon 8339HC A100 Ampere 6912 432 1.215 40 1935 71.97

Table 2: Details on hardware platforms used in our experiments, ordered by Nvidia microarchitecture generation.

Framework Graph Compilation  Kernel Serialization ~ Latency SMs Active ~ Warp Occupancy
PyTorch None None 10.54ms  2.6% 0.9%

PyTorch with TorchScript Just-in-Time None 6.14 ms 18.5% 3.0%

PyTorch with CUDA Graphs None Yes 2.82ms 57% 9.2%

ONNX RT Ahead-of-Time None 2.56 ms 22.3% 9.5%

ONNX RT with CUDA Graphs  Ahead-of-Time Yes 2.11 ms 59% 20.3%

Table 3: Comparison of SM Activity Across Frameworks for BERT-Base at batch size 1.
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Figure 10: Latency of generative language models for
varying batch sizes.

D Additional Experiments: Vision

In Figures 11 and 12, we examine vision models
utilizing “efficient”" model design choices through
scaling and efficient operation variants. Image in-
puts are simulated by randomly generating three-
channel 224 x 224 RGB images. As with language
models, deeper models introduce additional frame-
work overhead and low-FLOP alternatives are more
framework bound.
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Figure 11: Latency of vision models that scale model
depth and number of hidden dimensions.
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Figure 12: Latency of vision models using efficient
variations of convolution and self-attention operations.

E Additional Experiments: Speech

In Figure 13, we examine the behavior of the
WavLM (Chen et al., 2022) model which consists
of a CNN encoder followed by transformer encoder
layers. Audio inputs are simulated as 2 second
sequences sampled at 16 kHz to create 32,000-
dimensional floating point inputs. In Figure 13,
we observe that WavLM exhibits framework bound
behavior but quickly transitions to being compute-
bound due to the large audio sequence lengths.
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Figure 13: Transformer-based speech models exhibit
framework boundedness but transition to compute-
bound at small batch sizes due to long sequence lengths.
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