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Abstract

Emotion recognition is a crucial task for hu-
man conversation understanding. It becomes
more challenging with the notion of multi-
modal data, e.g., language, voice, and facial
expressions. As a typical solution, the global-
and the local context information are exploited
to predict the emotional label for every sin-
gle sentence, i.e., utterance, in the dialogue.
Specifically, the global representation could
be captured via modeling of cross-modal in-
teractions at the conversation level. The lo-
cal one is often inferred using the temporal
information of speakers or emotional shifts,
which neglects vital factors at the utterance
level. Additionally, most existing approaches
take fused features of multiple modalities in
an unified input without leveraging modality-
specific representations. Motivating from these
problems, we propose the Relational Temporal
Graph Neural Network with Auxiliary Cross-
Modality Interaction (CORECT), an novel neu-
ral network framework that effectively captures
conversation-level cross-modality interactions
and utterance-level temporal dependencies with
the modality-specific manner for conversation
understanding. Extensive experiments demon-
strate the effectiveness of CORECT via its state-
of-the-art results on the IEMOCAP and CMU-
MOSEI datasets for the multimodal ERC task.

1 Introduction

Our social interactions and relationships are all in-
fluenced by emotions. Given the transcript of a
conversation and speaker information for each con-
stituent utterance, the task of Emotion Recognition
in Conversations (ERC) aims to identify the emo-
tion expressed in each utterance from a predefined
set of emotions (Poria et al., 2019). The multimodal
nature of human communication, which involves
verbal/textual, facial expressions, vocal/acoustic,
bodily/postural, and symbolic/pictorial expressions,
adds complexity to the task of Emotion Recogni-
tion in Conversations (ERC) (Wang et al., 2022).

This isn't anything like I 
thought anything would be.

This is just this…

Oh, sure this is standing on 
the beach, this is waiting, 

fighting.

Right.

...I can't believe it. I never 
thought you would get 

married.

I know me neither.

Oh my gosh.

Just a couple days ago.

Oh my gosh.

excited

excited

excited

excited

excited

sad

sad

sad

angry

neutral

ID: Ses01M_script02_2 ID: Ses05F_impro03

: Speaker 1 : Speaker 2

Emotion EmotionUtterance text Utterance text

Figure 1: Examples of temporal effects on conversations

Multimodal ERC, which aims to automatically de-
tect the a speaker’s emotional state during a conver-
sation using information from text content, facial
expressions, and audio signals, has garnered signif-
icant attention and research in recent years and has
been applied to many real-world scenarios (Sharma
and Dhall, 2021; Joshi et al., 2022).

Massive methods have been developed to model
conversation’s context. These approaches can be
categorized into two main groups: graph-based
methods (Ghosal et al., 2019; Zhang et al., 2019;
Shen et al., 2021b) and recurrence-based meth-
ods (Hazarika et al., 2018a; Ghosal et al., 2020;
Majumder et al., 2019; Hu et al., 2021). In addi-
tion, there have been advancements in multimodal
models that leverage the dependencies and com-
plementarities of multiple modalities to improve
the ERC performance (Poria et al., 2017; Hazarika
et al., 2018b; Zadeh et al., 2018). One limitation
of these methods is their heavy reliance on nearby
utterances when updating the state of the query
utterance, which can restrict their overall perfor-
mance. Recently, Graph Neural Network (GNN)-
based methods have been proposed for the mul-
timodal ERC task due to their ability to capture
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long-distance contextual information through their
relational modeling capabilities. However, those
models rely on fused inputs being treated as a sin-
gle node in the graph (Ghosal et al., 2019; Joshi
et al., 2022), which limits their ability to capture
modality-specific representations and ultimately
hampers their overall performance.

The temporal aspect of conversations is crucial,
as past and future utterances can significantly influ-
ence the query utterance as Figure 1. The sentence
“I know me neither” appears with opposing labels
on different dialogues, which could be caused by
sequential effects from previous or future steps.
There are only a few methods that take into account
the temporal aspect of conversations. MMGCN
(Wei et al., 2019) represents modality-specific fea-
tures as graph nodes but overlooks the temporal
factor. DAG-ERC (Shen et al., 2021b) incorpo-
rates temporal information, but focuses solely on
text modality. Recently, COGMEN (Joshi et al.,
2022) proposes to learn contextual, inter-speaker,
and intra-speaker relations, but neglects modality-
specific features and partially utilizes cross-modal
information by fusing all modalities’ representa-
tions at the input stage.

The aforementioned limitations motivate us
to propose a COnversation understanding model
using RElational Temporal Graph Neural Net-
work with Auxiliary Cross-Modality Interaction
(CORECT). It comprises two key components:
the (i) Relational Temporal Graph Convolutional
Network (RT-GCN); and the (ii) Pairwise Cross-
modal Feature Interaction (P-CM). The RT-GCN
module is based on RGCNs (Schlichtkrull et al.,
2018) and GraphTransformer (Yun et al., 2019)
while the P-CM is built upon (Tsai et al., 2019).
Overall, our main contributions are as follows:

• We propose the CORECT framework for Mul-
timodal ERC, which concurrently exploit the
utterance-level local context feature from mul-
timodal interactions with temporal dependen-
cies via RT-GCN, and the cross-modal global
context feature at the conversation level by
P-CM. These features are aggregated to en-
hance the performance of the utterance-level
emotional recognition.

• We conduct extensive experiments to show
that CORECT consistently outperforms the
previous SOTA baselines on the two publicly
real-life datasets, including IEMOCAP and
CMU-MOSEI, for the multimodal ERC task.

• We conduct ablation studies to investigate the
effect of various components and modalities
on CORECT for conversation understanding.

2 Related Works

This section presents a literature review on Multi-
modal Emotion Recognition (ERC) and the appli-
cation of Graph Neural Networks for ERC.

2.1 Multimodal Emotion Recognition in
Conversation

The complexity of conversations, with multiple
speakers, dynamic interactions, and contextual de-
pendencies, presents challenges for the ERC task.
There are efforts to model the conversation context
in ERC, with a primary focus on the textual modal-
ity. Several notable approaches include CMN
(Hazarika et al., 2018b), DialogueGCN (Ghosal
et al., 2019), COSMIC (Ghosal et al., 2020), Dia-
logueXL (Shen et al., 2021a), DialogueCRN (Hu
et al., 2021), DAG-ERC (Shen et al., 2021b).

Multimodal machine learning has gained popu-
larity due to its ability to address the limitations
of unimodal approaches in capturing complex real-
world phenomena (Baltrušaitis et al., 2018). It is
recognized that human perception and understand-
ing are influenced by the integration of multiple
sensory inputs. There have been several notable
approaches that aim to harness the power of multi-
ple modalities in various applications (Poria et al.,
2017; Zadeh et al., 2018; Majumder et al., 2019),
etc. CMN (Hazarika et al., 2018b) combines fea-
tures from different modalities by concatenating
them directly and utilizes the Gated Recurrent Unit
(GRU) to model contextual information. ICON
(Hazarika et al., 2018a) extracts multimodal con-
versation features and employs global memories to
model emotional influences hierarchically, result-
ing in improved performance for utterance-video
emotion recognition. ConGCN (Zhang et al., 2019)
models utterances and speakers as nodes in a graph,
capturing context dependencies and speaker depen-
dencies as edges. However, ConGCN focuses only
on textual and acoustic features and does not con-
sider other modalities. MMGCN (Wei et al., 2019),
on the other hand, is a graph convolutional net-
work (GCN)-based model that effectively captures
both long-distance contextual information and mul-
timodal interactive information.

More recently, Lian et al. Lian et al. (2022)
propose a novel framework that combines semi-
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supervised learning with multimodal interactions.
However, it currently addresses only two modali-
ties, i.e., text and audio, with visual information
reserved for future work. Shi and Huang (2023)
introduces MultiEMO, an attention-based multi-
modal fusion framework that effectively integrates
information from textual, audio and visual modal-
ities. However, neither of these models addresses
the temporal aspect in conversations.

2.2 Graph Neural Networks

In the past few years, there has been a growing in-
terest in representing non-Euclidean data as graphs.
However, the complexity of graph data has pre-
sented challenges for traditional neural network
models. From initial research on graph neural net-
works (GNNs)(Gori et al., 2005; Scarselli et al.,
2008), generalizing the operations of deep neural
networks were paid attention, such as convolution
(Kipf and Welling, 2017), recurrence (Nicolicioiu
et al., 2019), and attention (Velickovic et al., 2018),
to graph structures. When faced with intricate inter-
dependencies between modalities, GNN is a more
efficient approach to exploit the potential of mul-
timodal datasets. The strength of GNNs lies in its
ability to capture and model intra-modal and inter-
modal interactions. This flexibility makes them an
appealing choice for multimodal learning tasks.

There have been extensive studies using the ca-
pability of GNNs to model the conversations. Di-
alogueGCN (Ghosal et al., 2019) models conver-
sation using a directed graph with utterances as
nodes and dependencies as edges, fitting it into a
GCN structure. MMGCN (Wei et al., 2019) adopts
an undirected graph to effectively fuse multimodal
information and capture long-distance contextual
and inter-modal interactions. Lian et al. (2020)
proposed a GNN-based architecture for ERC that
utilizes both text and speech modalities. Dialogue-
CRN (Hu et al., 2021) incorporates multiturn rea-
soning modules to extract and integrate emotional
clues, enabling a comprehensive understanding of
the conversational context from a cognitive per-
spective. MTAG (Yang et al., 2021) is capable of
both fusion and alignment of asynchronously dis-
tributed multimodal sequential data. COGMEN
(Joshi et al., 2022) uses GNN-based architecture to
model complex dependencies, including local and
global information in a conversation. Chen et al.
(2023) presents Multivariate Multi-frequency Mul-
timodal Graph Neural Network, M3Net for short,

to explore the relationships between modalities and
context. However, it primarily focuses on modality-
level interactions and does not consider the tempo-
ral aspect within the graph.

3 Methodology

Figure 2 illustrates the architecture of CORECT
to tackle the multimodal ERC task. It consists
of main components namely Relational Temporal
Graph Convolution Network (RT-GCN) and Pair-
wise Cross-modal Feature Interaction. For a given
utterance in a dialogue, the former is to learn the
local-context representation via leveraging various
topological relations between utterances and modal-
ities, while the latter infers the cross-modal global-
context representation from the whole dialogue.

Given a multi-speaker conversation C consisting
of N utterances [u1, u2, . . . , uN ], let us denote S
as the respective set of speakers. Each utterance
ui is associated with three modalities, including
audio (a), visual (v), and textual (l), that can be
represented as uai , u

v
i , u

l
i respectively. Using local-

and global context representations, the ERC task
aims to predict the label for every utterance ui ∈ C
from a set of M predefined emotional labels Y =
[y1, y2, . . . , yM ].

3.1 Utterance-level Feature Extraction

Here, we perform pre-processing procedures to ex-
tract utterance-level features to facilitate the learn-
ing of CORECT in the next section.

3.1.1 Unimodal Encoder
Given an utterance ui, each data modality mani-
fests a view of its nature. To capture this value, we
employ dedicated unimodal encoders, which gen-
erate utterance-level features, namely xai ∈ Rda ,
xvi ∈ Rdv , xli ∈ Rdl for the acoustic, visual, and
lexical modalities respectively, and da, dv, dl are
the dimensions of the extracted features for each
modality.

For textual modality, we utilize a Transformer
(Vaswani et al., 2017) as the unimodal encoder to
extract the semantic feature xli from uli as follows:

xli = Transformer(uli,Wl
trans) (1)

where Wl
trans is the parameter of Transformer to

be learned.
For acoustic and visual modalities, we employ a

fully-connected network as the unimodal encoder
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Figure 2: Framework illustration of CORECT for the multimodal emotion recognition in conversations

to extract context features for each modality type
via the following procedure:

xτi = FC(uτi ;Wτ
fc), τ ∈ {a, v} (2)

where FC is the fully connected network, Wτ
fc ∈

Rdτ×dτin are trainable parameters; dτin is the input
dimension of modality τ

3.1.2 Speaker Embedding
Inspired by MMGCN (Wei et al., 2019), we lever-
age the significance of speaker information. Let
us define Embedding as a procedure that takes
the identity of speakers and produce the respective
latent representations. The embedding of multi-
speaker could be inferred as:

Semb = Embedding(S,NS) (3)

where Semb ∈ RN×NS and NS is the total num-
ber of participants in the conversation. The ex-
tracted utterance-level feature could be enhanced
by adding the corresponding speaker embedding:

Xτ = ηSemb + Xτ , τ ∈ {a, v, l} (4)

where Xτ ∈ RN×dτ refers to the global-context
representation from the whole dialogue obtained
from the respective unimodal encoder; Xτ repre-
sents the enhanced representation with the inclu-
sion of the speaker embedding; η ∈ [0, 1] indicates
the contribution ratio.

3.2 Relational Temporal Graph Convolutional
Network (RT-GCN)

RT-GCN is proposed to capture local context in-
formation for each utterance in the conversation
via exploiting the multimodal graph between utter-
ances and their modalities.

3.2.1 Multimodal Graph Construction
Let us denote G(V,R, E) as the multimodal graph
built from conversations, where {V, E ,R} refers to
the set of utterance nodes with the three modality
types (|V| = 3 × N), the set of edges and their
relation types. Figure 3 provides an illustrative
example of the relations represented on the con-
structed graph.

Nodes. Each utterance ui generates three nodes
uai , uvi , and uli, which xai , xvi , and xli are the respec-
tive audio, visual, and lexical feature vectors.

Edges. The edge (uτi , u
τ
j , rij) ∈ E , τ ∈ {a, v, l}

represents the interaction between uτi and uτj with
the relation type rij ∈ R. In the scope of paper,
we consider two groups of relations: Rmulti and
Rtemp. Specifically, Rmulti represents the intra
connections between the three modalities within
the same utterance, reflecting multimodal interac-
tions. On the other hand,Rtemp captures the inter
connections between utterances of the same modal-
ity within a specified time window. This temporal
relationship includes past/previous utterances de-
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noted as P and next/future utterances denoted as
F . As a result, there are 15 edge types created with
the definitions of the two groups.

Multimodal Relation. Emotions in dialogues can-
not be solely conveyed through lexical, acoustic,
or visual modalities in isolation. The interactions
between utterances across different modalities play
a crucial role. For example, given an utterance in
a graph, its visual node has different interactive
magnitude with acoustic- and textual nodes. Ad-
ditionally, each node has a self-aware connection
to reinforce its own information. Therefore, we
can formalize 9 edge types ofRmulti to capture the
multimodal interactions within the dialogue as:

Rmulti =




{(uai , uvi ), (uvi , uai ), (uai , uai )}
{(uvi , uli), (uli, uvi ), (uvi , uvi )}
{(uli, uai ), (uai , uli), (uli, uli)}

(5)

Temporal Relation. It is vital to have distinct
treatment for interactions between nodes that occur
in different temporal orders (Poria et al., 2017). To
capture this temporal aspect, we set a window slide
[P,F ] to control the number of past/previous and
next/future utterances that are set has connection to
current node uτi . This window enables us to define
the temporal context for each node and capture the
relevant information from the dynamic surrounding
utterances. Therefore, we have 6 edge types of
Rtemp as follows:

Rtemp =

{
{(uj

past→ ui)
τ |i− P < j < i}

{(ui future← uj)
τ |i < j < i+ F}

(6)

where τ ∈ {a, v, l}; i, j ∈ 1, N ; future← and
past→

indicate the past and future relation respectively.

3.2.2 Graph Learning
With the objective of leveraging the nuances and
variations of heterogeneous interactions between
utterances and modalities in the multimodal graph,
we seek to employ Relational Graph Convolutional
Networks (RGCN) (Schlichtkrull et al., 2018). For
each relation type r ∈ R, node representation is
inferred via a mapping function f(H,Wr), where
Wr is the weighted matrix. Aggregating all 15
edge types, the final node representation could be
computed by

∑R
r f(H,Wr).

To be more specific, the representation for the
i-th utterance is inferred as follows:

gτi =
∑

r∈R

∑

j∈Nr(i)

1

|Nr(i)|
Wr · xτi + W0 · xτi (7)
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Figure 3: An example construction of a graph illustrat-
ing the relationship among utterance nodes represent-
ing audio (square), visual (circle), and text (triangle)
modalities with window size [P,F ] = [2, 1] for query
utterance i-th. The solid blue, solid red, and dashed red
arrows indicate cross-modal-, past temporal- and future
temporal connections respectively.

where Nr(i) is the set of the node i’s neighbors
with the relation r ∈ R, W0,Wr ∈ Rdh1×dτ are
learnable parameters (h1 is the dimension of the
hidden layer used by R-GCN), and xτi ∈ Rdτ×1 de-
notes the feature vector of node uτi ; τ ∈ {a, v, l}.

To extract rich representations from node fea-
tures, we utilize a Graph Transformer model (Yun
et al., 2019), where each layer comprises a self-
attention mechanism followed by feed-forward neu-
ral networks. The self-attention mechanism allows
vertices to exploit information from neighborhoods
as well as capturing local and global patterns in
the graph. Given gτi is the representation of ith ut-
terance with modality τ ∈ {a, v, l} obtained from
RGCNs, its representation is transformed into:

oτi = ||Cc=1[W1g
τ
i +

∑

j∈N (i)

ατ
i,jW2g

τ
j ] (8)

where W1,W2 ∈ Rdh2×dh1 are learned parameters
(h2 is the dimension of the hidden layer used by
Graph Transformer); N (i) is the set of nodes that
has connections to node i; || is the concatenation
for C head attention; and the attention coefficient
of node j, i.e., ατ

i,j , is calculated by the softmax
activation function:

ατ
i,j = softmax(

(W3g
τ
i )

⊤(W4g
τ
i )√

d
) (9)

W3,W4 ∈ Rdα×dh1 are learned parameters.
After the aggregation throughout the whole

graph, we obtain new representation vectors:

Gτ = {oτ1 , oτ2 , . . . , oτN} (10)

where τ ∈ {a, v, l} indicates the corresponding
audio, visual, or textual modality.
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3.3 Pairwise Cross-modal Feature Interaction
The cross-modal heterogeneities often elevate the
difficulty of analyzing human language. Exploit-
ing cross-modality interactions may help to reveal
the “unaligned” nature and long-term dependen-
cies across modalities. Inspired by the idea (Tsai
et al., 2019), we design the Pairwise Cross-modal
Feature Interaction (P-CM) method into our pro-
posed framework for conversation understanding.
A more detailed illustration of the P-CM module is
presented in Appendix A.1.2

Given two modalities, e.g., audio a and tex-
tual l, let us denote Xa ∈ RN×da , Xl ∈ RN×dl

as the respective modality-sensitive representa-
tions of the whole conversation using unimodal
encoders. Based on the transformer architecture
(Vaswani et al., 2017), we define the Queries as
Qa = XaWQa , Keys as K l = XlWKl , and Val-
ues as V l = XlWV l . The enriched representation
of Xa once performing cross-modal attention on
the modality a by the modality l, referred to as
CMl→a ∈ RN×dV , is computed as:

CMl→a = σ

(
XaWQa(WKl)⊤(Xl)⊤√

dk

)
XlWV l

(11)

where σ is the softmax function; WQa ∈ Rda×dK ,
WKl ∈ Rdl×dK , and WV l ∈ Rdl×dV are learned
parameters. The value of dQ, dK , dV is the dimen-
sion of queues, keys and values respectively.

√
dk

is a scaling factor and d(.) is the feature dimension.
To model the cross-modal interactions on un-

aligned multimodal sequences, e.g., audio, visual,
and lexical, we utilize D cross-modal transformer
layers. Suppose that Za

[i] is the modality-sensitive
global-context representation of the whole con-
versation for the modality l at the i−th layer;
Za
[0] = Xa. The enriched representation of Z[i]

l de-

noted as Z[i]
l→a by applying cross-modal attention

of the modality l on the modality a is computed as
the following procedure:

Zl→a
[0] = Za

[0]

Zl→a
[i] = CMl→a

[i] (LN(Zl→a
[i−1]),LN(Zl→a

0 ))

+ LN(Zl→a
[i−1])

Zl→a
[i] = (LN(Zl→a

[i] ))FFN + LN(Zl→a
[i] ) (12)

where Z is the intermediate representation; LN is a
layer normalization (Ba et al., 2016), which helps

Dataset
Dialogues Utterances

train valid test train valid test
IEMOCAP

(6-way)
108 12 31 5,146 664 1,623

IEMOCAP
(4-way)

108 12 31 3,200 400 943

MOSEI 2,249 300 646 16,327 1,871 4,662

Table 1: Statistics for IEMOCAP, MOSEI datasets

to stabilize the learning process and enhance the
convergence of the model. LN(Za→v

[i] ))FFN ex-
presses the transformation by the position-wise
feed-forward block as:

LN(Zl→a
[i] ))FFN = max(0,LN(Zl→a

[i] ))Ω1

+ b1)Ω2 + b2 (13)

where Ω1 and Ω2 are linear projection matrices;
b1 and b2 are biases.

Likewise, we can easily compute the cross-
modal representation Z[i]

a→l, indicating that infor-
mation from the modality a is transferred to the
modality l. Finally, we concatenate all representa-
tions at the last layer, i.e., the D−th layer, to get
the final cross-modal global-context representation
Z[D]
a⇄l. For other modality pairs, Z[D]

v⇄l and Z[D]
v⇄a

could be obtained by the similar process.

3.4 Multimodal Emotion Classification
The local- and global context representation re-
sulted in by the RT-GCN and P-CM modules are
fused together to create the final representation of
the conversation:

H = Fusion([G,Z]) (14)

= [{oτ1 , oτ2 , . . . , oτN}, {Z[D]
a⇄v,Z[D]

v⇄l,Z[D]
l⇄a}]

where τ ∈ {a, v, l}; Fusion represents the con-
catenation method. H is then fed to a fully con-
nected layer to predict the emotion label yi for the
utterance ui:

vi = ReLU(Φ0hi + b0) (15)

pi = softmax(Φ1vi + b1) (16)

ŷi = argmax(pi) (17)

where Φ0,Φ1 are learned parameters.

4 Experiments

This section investigate the efficacy of CORECT
for the ERC task through extensive experiments in
comparing with state-of-the-art (SOTA) baselines.
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Methods
IEMOCAP (6-way)

Happy Sad Neutral Angry Excited Frustrated Acc. (%) w-F1 (%)
bc-LSTM (Poria et al., 2017) 32.63 70.34 51.14 63.44 67.91 61.06 59.58 59.10
CMN (Hazarika et al., 2018b) 30.38 62.41 52.39 59.83 60.25 60.69 56.56 56.13
ICON (Hazarika et al., 2018a) 29.91 64.57 57.38 63.04 63.42 60.81 59.09 58.54

DialogueRNN (Majumder et al., 2019) 33.18 78.80 59.21 65.28 71.86 58.91 63.40 62.75
DialogueGCN (Ghosal et al., 2019) 47.10 80.88 58.71 66.08 70.97 61.21 65.54 65.04

MMGCN (Wei et al., 2019) 45.45 77.53 61.99 66.70 72.04 64.12 65.56 65.71
DialogueCRN (Hu et al., 2021) 51.59 74.54 62.38 67.25 73.96 59.97 65.31 65.34
COGMEN (Joshi et al., 2022) 55.76 80.17 63.21 61.69 74.91 63.90 67.04 67.27

CORECT (Ours) 59.30 80.53 66.94 69.59 72.69 68.50 69.93 (↑ 2.89) 70.02 (↑ 2.75)

Table 2: The results on IEMOCAP (6-way) multimodal (A+V+T) setting. The results in bold indicate the
highest performance, while the underlined results represent the second highest performance. The ↑ illustrates the
improvement compared to the previous state-of-the-art model.

4.1 Experimental Setup

Dataset. We investigate two public real-life
datasets for the multimodal ERC task including
IEMOCAP (Busso et al., 2008) and CMU-MOSEI
(Bagher Zadeh et al., 2018). The dataset statistics
are given in Table 1.

IEMOCAP contains 12 hours of videos of two-
way conversations from 10 speakers. Each dialogue
is divided into utterances. There are in total 7433
utterances and 151 dialogues. The 6-way dataset
contains six emotion labels, i.e., happy, sad, neu-
tral, angry, excited, and frustrated, assigned to the
utterances. As a simplified version, ambiguous
pairs such as (happy, exited) and (sad, frustrated)
are merged to form the 4-way dataset.

CMU-MOSEI provides annotations for 7 senti-
ments ranging from highly negative (-3) to highly
positive (+3), and 6 emotion labels including hap-
piness, sadness, disgust, fear, surprise, and anger.

Evaluation Metrics. We use weighted F1-score
(w-F1) and Accuracy (Acc.) as evaluation metrics.
The w-F1 is computed

∑K
k=1 freqk × F1k, where

freqk is the relative frequency of class k. The
accuracy is defined as the percentage of correct
predictions in the test set.

Baseline Models. CORECT is compared against
SOTA baselines specific to each dataset. For IEMO-
CAP, we consider two model groups namely: i)
RNN-based models include bc-LSTM (Poria et al.,
2017), CMN (Hazarika et al., 2018b), ICON (Haz-
arika et al., 2018a), DialogueRNN (Majumder
et al., 2019); ii) Graph-based methods are Dia-
logueGCN (Ghosal et al., 2019), MMGCN (Wei
et al., 2019), DialougueCRN (Hu et al., 2021),
CHFusion (Majumder et al., 2018), and COGMEN
(Joshi et al., 2022). For CMU-MOSEI, we inves-

Modality Settings
IEMOCAP (4-way)

Acc. (%) w-F1 (%)
bc-LSTM (Poria et al., 2017) 75.20 75.13

CHFusion (Majumder et al., 2018) 76.59 76.80
COGMEN (Joshi et al., 2022) 82.29 82.15

CORECT (Ours) 84.73 (↑ 2.44) 84.64 (↑ 2.49)

Table 3: The results on the IEMOCAP (4-way) dataset
in the multimodal (A+V+T) setting. The ↑ indicates the
improvement compared to the previous SOTA model.

tigate multimodal models including Multilogue-
Net (Shenoy and Sardana, 2020), TBJE (Delbrouck
et al., 2020), and COGMEN (Joshi et al., 2022).

Implementation Details. Due to the space limit,
the implementation details for feature extraction
and interaction are described in Appendix A.1.

4.2 Comparison With Baselines

We further qualitatively analyze CORECT and the
baselines on the IEMOCAP (4-way), IEMOCAP
(6-way) and MOSEI datasets.

IEMOCAP: In the case of IEMOCAP (6-way)
dataset (Table 2), CORECT performs better than
the previous baselines in terms of F1 score for in-
dividual labels, excepts the Sad and the Excited
labels. The reason could be the ambiguity between
similar emotions, such as Happy & Excited, as well
as Sad & Frustrated (see more details in Figure
6 in Appendix A.2). Nevertheless, the accuracy
and weighted F1 score of CORECT are 2.89% and
2.75% higher than all baseline models on average.
Likewise, we observe the similar phenomena on
the IEMOCAP (4-way) dataset with a 2.49% im-
provement over the previous state-of-the-art mod-
els as Table 3. These results affirm the efficiency
of CORECT for the multimodal ERC task.
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Methods
Sentiment Classification

Accuracy (%)
Emotion Classification (Binary, 1 vs. all)

weighted F1-score (%)
2 Class 7 Class Happiness Sadness Angry Fear Disgust Surprise

Multilouge-Net (Shenoy and Sardana, 2020) 82.88 44.83 67.84 65.34 67.03 87.79 74.91 86.05
TBJE (Delbrouck et al., 2020) 82.40 43.91 65.91 70.78 70.86 87.79 82.57 86.04
COGMEN (Joshi et al., 2022) 82.95 45.22 70.88 70.91 74.20 87.79 81.83 86.05

CORECT (Ours) 83.66 46.31 71.35 72.86 76.77 87.90 84.26 86.48

Table 4: Results on CMU-MOSEI dataset compared with previous works. The bolded results indicate the best
performance, while the underlined results represent the second best performance.

Sub-
Modules

IEMOCAP
(6-way)

IEMOCAP
(4-way)

Acc. (%) w-F1 (%) Acc. (%) w-F1 (%)
-w/o RT-GCN 66.61 66.55 (↓ 3.47) 80.69 80.54 (↓ 4.10)

-w/o P-CM 66.54 66.64 (↓ 3.38) 82.18 82.16 (↓ 2.48)
-w/oRmulti 66.54 66.82 (↓ 3.20) 82.61 82.53 (↓ 2.11)
-w/oRtemp 67.04 67.34 (↓ 2.68) 82.08 82.07 (↓ 2.57)
CORECT 69.93 70.02 84.73 84.64

Table 5: The performance of CORECT in different strategies under the fully multimodal (A+V+T) setting. Bolded
results represent the best performance, while underlined results depict the second best. The ↓ represents the decrease
in performance when a specific module is ablated compared to our CORECT model.

CMU-MOSEI: Table 4 presents a comparison of
the CORECT model on the CMU-MOSEI dataset
with current SOTA models in two settings: Senti-
ment Classification (2-class and 7-class) and Emo-
tion Classification. Apparently, CORECT consis-
tently outperforms other models with sustainable
improvements. One notable observation is the itali-
cized results for the Fear and Surprise labels, where
all the baselines have the same performance of
87.79 and 86.05 respectively. During the experi-
mental process, when reproducing these baseline’s
results, we found that the binary classifiers were
unable to distinguish any samples for the Fear and
Surprise labels. However, with the help of technical
components, i.e., RT-GCN and P-CM, our model
shows significant improvement even in the pres-
ence of severe label imbalance in the dataset. Due
to space limitations in the paper, we provide addi-
tional experiments on the CMU-MOSEI dataset for
all possible combinations of modalities in Table 7
(Appendix A.2).

4.3 Ablation study

Effect of Main Components. The impact of
main components in our CORECT model is pre-
sented via Table 5. The model performance on
the 6-way IEMOCAP dataset is remarkably de-
graded when the RT-GCN or P-CM module is not
adopted with the decrease by 3.47% and 3.38%
respectively. Similar phenomena is observed on

the 4-way IEMOCAP dataset. Therefore, we can
deduce that the effect of RT-GCN in the CORECT
model is more significant than that of P-CM.

For different relation types, ablating either
Rmulti or Rtemp results in a significant decrease
in the performance. However, the number of labels
may affect on the multimodal graph construction,
thus it is no easy to distinguish the importance of
Rmulti andRtemp for the multimodal ERC task.

Table 8 (Appendix A.2) presents the ablation
results for uni- and bi-modal combinations. In
the unimodal settings, specifically for each indi-
vidual modality (A, V, T), it’s important to high-
light that both P-CM module and multimodal re-
lations Rmulti are non-existent. However, in bi-
modal combinations, the advantage of leveraging
cross-modality information between audio and text
(A+T) stands out, with a significant performance
boost of over 2.75% compared to text and visual
(T+V) modalities and a substantial 14.54% com-
pared to visual and audio (V+A) modalities.

Additionally, our experiments have shown a
slight drop in overall model performance (e.g.,
68.32% in IEMOCAP 6-way, drop of 1.70%)
when excluding Speaker Embedding Semb from
CORECT.

Effect of the Past and Future Utterance Nodes.
We conduct an analysis to investigate the influ-
ence of past nodes (P) and future nodes (F) on
the model’s performance. Unlike previous studies

15161



Modality
Settings

IEMOCAP
(6-way)

IEMOCAP
(4-way)

Acc. (%) w-F1 (%) Acc. (%) w-F1 (%)
A 52.31 51.49 67.02 65.48
T 67.22 67.26 82.82 82.65
V 38.63 37.67 49.73 47.97

A+T 68.27 68.36 83.14 83.13
T+V 65.50 65.61 81.76 81.75
V+A 54.16 53.82 69.03 68.21

CORECT (A+T+V) 69.93 70.02 84.73 84.64

Table 6: The performance of CORECT under various
modality settings.

Figure 4: The effects of P and F nodes in the past and
future of CORECT model on the IEMOCAP (6-way)
The red-dash line implies our best setting for P and F .

(Joshi et al., 2022; Li et al., 2023) that treated P
and F pairs equally, we explore various combina-
tions of P and F settings to determine their effects.
Figure 4 indicates that the number of past or future
nodes can have different impacts on the perfor-
mance. From the empirical analysis, the setting
[P,F ] of [11, 9] results in the best performance.
This finding shows that the contextual information
from the past has a stronger influence on the multi-
modal ERC task compared to the future context.

Effect of Modality. Table 6 presents the perfor-
mance of the CORECT model in different modality
combinations on both the IEMOCAP and CMU-
MOSEI datasets.

For IEMOCAP (Table 2 and Table 3), the tex-
tual modality performs the best among the uni-
modal settings, while the visual modality yields
the lowest results. This can be attributed to the
presence of noise caused by factors, e.g., camera
position, environmental conditions. In the bi-modal
settings, combining the textual and acoustic modal-
ities achieves the best performance, while combin-

ing the visual and acoustic modalities produces the
worst result. A similar trend is observed in the
CMU-MOSEI dataset (Table 4), where fusing all
modalities together leads to a better result com-
pared to using individual or paired modalities.

5 Conclusion

In this work, we propose CORECT, an novel net-
work architecture for multimodal ERC. It consists
of two main components including RT-GCN and
P-CM. The former helps to learn local-context
representations by leveraging modality-level topo-
logical relations while the latter supports to infer
cross-modal global-context representations from
the entire dialogue. Extensive experiments on two
popular benchmark datasets, i.e., IEMOCAP and
CMU-MOSEI, demonstrate the effectiveness of
CORECT, which achieves the new state-of-the-
art record for multimodal conversational emotion
recognition. Furthermore, we also provide ablation
studies to investigate the contribution of various
components in CORECT. Interestingly, by analyz-
ing the temporal aspect of conversations, we have
validated that capturing the long-term dependen-
cies, e.g., past relation, improves the performance
of the multimodal emotion recognition in conversa-
tions task.

Limitations

Hyper-parameter tuning is a vital part of optimiz-
ing machine learning models. Not an exception,
the learning of CORECT is affected by hyper-
parameters such as the number of attention head
in P-CM module, the size of Future and Past Win-
dow. Due to time constraints and limited compu-
tational resources, it was not possible to tune or
exploring all possible combinations of these hyper-
parameters, which might lead to local-minima con-
vergences. In future, one solution for this limitation
is to employ automated hyper-parameter optimiza-
tion algorithms, to systematically explore the hy-
perparameter space and improve the robustness of
the model. As another solution, we may upgrade
CORECT with learning mechanisms to automati-
cally leverage important information, e.g., attention
mechanism on future and past utterances.
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A Appendix

A.1 Implementation Details

A.1.1 Multimodal Raw Feature Extraction
The multimodal feature extraction process involves
extracting features from the acoustic, lexical, and
visual modalities for each utterance.

For IEMOCAP, the audio features, with a size
of 100, are obtained using the OpenSmile Toolkit
(Eyben et al., 2010); visual features, with a size
of 512, are extracted using OpenFace (Baltrusaitis
et al., 2018); textual features, with a size of 768,
are derived using sBERT (Reimers and Gurevych,
2019).

For MOSEI, the audio features are extracted
using librosa (McFee et al., 2015) with 80 filter
banks, resulting in a feature vector size of 80.The
visual features, with a size of 35, are obtained
from (Bagher Zadeh et al., 2018). The textual fea-
tures, with a size of 768, are obtained using sBERT
(Reimers and Gurevych, 2019).

A.1.2 Pairwise Cross-modal Feature
Interaction

Figure 5 illustrates details of Pairwise Cross-modal
Feature Interaction (P-CM).
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Figure 5: Illustration of the P-CM module between
modality β and α.

A.2 Additional Experiment Result

Table 8 showcases the results on the IEMOCAP
dataset (both 6-way and 4-way) for all the modality

combinations of the CORECT model, while Ta-
ble 7 presents an ablation study conducted on the
CMU-MOSEI dataset, considering various modal-
ity combination settings.

Figure 6 shows the confusion matrix for pre-
diction on IEMOCAP (4-way) and IEMOCAP (6-
way), respectively.
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(a) Confusion matrix on the IEMOCAP (4-way).
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Figure 6: Visualization the confusion matrices of
CORECT under multimodal (A+V+T) setting. Most
of False predictions observed on IEMOCAP (6-way)
came from the ambiguity between pair of labels: Happy
and Excited, Neural and Frustrate.

A.3 Reproducibility

CORECT is implemented using Pytorch 1, and run
experiments on Google Colab Pro. We choose
Adam as the optimizer and set the dropout rate to
0.5. The numbers of multi-head attentions used in
Graph Transformer and P-CM are selected as 7 and
2, respectively. For IEMOCAP dataset, the learn-
ing rate is 0.0003; Window size [P,F ] is tested on
various settings in the range of [1,15]. For CMU-
MOSEI dataset, the learning rate is 0.0006; Win-
dow size [P,F ] is picked between [5,4] due to the
property of short dialogue in CMU-MOSEI. Refer-

1https://pytorch.org/
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Datasets Modality
Settings

Sentiment Class
Accuracy (%)

Emotion Class
weighted F1-score (%)

2 Class 7 Class Happiness Sadness Angry Fear Disgust Surprise
Multilogue-Net

(Shenoy and Sardana, 2020)
A+T+V 82.88 44.83 67.84 65.34 67.03 87.79 74.91 86.05

TBJE
(Delbrouck et al., 2020)

A+T 82.4 43.91 65.91 70.78 70.86 87.79 82.57 86.04

COGMEN
(Joshi et al., 2022)

A+T+V 82.95 45.22 70.88 70.91 74.20 87.79 81.83 86.05

CORECT (Ours)
T 84.13 45.80 67.82 72.12 75.55 87.79 84.63 86.05

A+T 84.28 44.89 67.49 71.53 75.39 87.79 84.69 86.05
A+T+V 83.66 46.31 71.35 72.86 76.77 87.90 84.26 86.48

Table 7: Ablation study on CMU-MOSEI dataset. The multimodal implementation (A+V+T) consistently outper-
formed the baseline models in most of the modality combinations. For the 2-class sentiment and the Disgust class
emotion, our approach reaches a competitive performance.

Dataset
A T V A+T T+V V+A A+V+T

Acc W-F1 Acc W-F1 Acc W-F1 Acc W-F1 Acc F1 Acc W-F1 Acc F1

IEMOCAP
(6-way)

w/o RT-GCN 35.12 30.01 64.7 64.34 30.99 26.88 67.10 66.92 65.37 65.50 52.13 51.80 66.61 66.55
w/o P-CM - - - - - - 65.87 65.89 65.00 65.07 53.54 52.86 66.54 66.64
w/oRmulti - - - - - - 66.30 66.27 64.76 64.78 53.67 53.48 66.54 66.82
w/oRtemp 41.53 39.49 63.65 63.72 27.66 27.37 67.34 67.33 65.43 65.29 50.65 49.67 67.04 67.34
CORECT 52.31 51.49 67.22 67.26 38.63 37.67 68.27 68.36 65.50 65.61 54.16 53.82 69.93 70.02

IEMOCAP
(4-way)

w/o RT-GCN 55.25 52.18 80.38 80.25 34.04 31.33 81.87 81.18 80.17 80.04 58.96 58.57 80.69 80.54
w/o P-CM - - - - - - 80.91 80.94 80.38 80.04 69.25 69.00 82.18 82.16
w/oRmulti - - - - - - 81.76 81.78 80.38 80.47 69.14 68.84 82.61 82.53
w/oRtemp 56.84 54.88 80.70 80.70 41.04 39.75 82.08 81.99 81.34 81.36 57.16 56.62 82.08 82.07
CORECT 67.02 65.48 82.82 82.85 49.73 47.97 83.14 83.13 81.76 81.75 69.03 68.21 84.73 84.64

Table 8: Ablation study on IEMOCAP dataset. It shows the consistency of our proposal method since any ablation
experiments (on both modal settings and modules) results in a reduction of overall performance. On unimodal
setting of {A, V, T}, P-CM module and multimodal relation are not exist. Therefore there are no ablation of P-CM
andRmulti on these unimodal setting, denotes by “-”.

ring to the training log on the IEMOCAP (6-way)
dataset using Google Colab Pro, each mini-batch
(size of 10 dialouges) takes approximately 0.4s.
The similar ratio is observed on the MOSEI dataset.
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