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Abstract

Previous studies observed that finetuned mod-
els may be better base models than the vanilla
pretrained model. Such a model, finetuned on
some source dataset, may provide a better start-
ing point for a new finetuning process on a de-
sired target dataset. Here, we perform a system-
atic analysis of this intertraining scheme, over
a wide range of English classification tasks.
Surprisingly, our analysis suggests that the po-
tential intertraining gain can be analyzed inde-
pendently for the target dataset under consider-
ation, and for a base model being considered
as a starting point. Hence, a performant model
is generally strong, even if its training data was
not aligned with the target dataset. Further-
more, we leverage our analysis to propose a
practical and efficient approach to determine if
and how to select a base model in real-world
settings. Last, we release an updating rank-
ing of best models in the HuggingFace hub per
architecture.'

1 Introduction

Finetuning pretrained models (Devlin et al., 2019),
is currently the standard and best approach for
adjusting such models to perform a downstream
task (Chen et al., 2022). The resulting finetuned
models are typically used for inferring the labels
of new examples that are reminiscent of the data
used for finetuning. However, it was shown (Phang
et al., 2018a) that finetuned models, trained on
some source dataset, may represent better base
models, namely a better starting point for a new
finetuning process on a desired target dataset. This
scheme, often referred to as intertraining, is the
focus of the present work.

Given a target dataset, one may wonder what
could be the intertraining gain, to determine

*These authors contributed equally to this work.
1https ://ibm.github.io/model-recycling/

whether it is worthwhile spending resources on se-
lecting a base model. Assuming the potential gain
is high, the following natural question is which
base models are most promising, out of countless
options available through hubs HuggingFace (e.g.
Wolf et al., 2020). We propose pragmatic methods
to answer both questions, supported by extensive
experiments.

We begin with two observations: (i) some target
datasets are intertraining-sensitive, i.e., have the
potential to gain significantly from intertraining,
while others are not, and are typically indifferent to
the base model selection. Furthermore, revealing
this property of the target dataset can be done effi-
ciently, by examining the gains obtained when us-
ing a single representative base model as a starting
point; (ii) some base models are of high quality, i.e.
finetuning on them provides consistent improve-
ments on target datasets, but most base models are
inferior and degrade performance. Furthermore,
ranking base models by quality can be done on
one target task — and efficiently, via linear probing,
namely training only the base model classification
head, over a single representative dataset.

Thus, we argue that a preferable base model can
be selected independently of the target dataset.
This is in contrast to the common perception (c.f.
§7) that the alignment of the target dataset and the
source dataset — used to generate the base model —
is a major factor in determining intertraining suc-
cess. We substantiate our observation of indepen-
dence by conducting experiments on a comprehen-
sive set of target datasets and base models, compris-
ing models obtained under controlled conditions as
well as models from HuggingFace. In addition to
these findings, we analyze attributes of the source
and target datasets that affect gains (§6).

As some models are just better, not due to the
choice of a current dataset, it makes sense to rank
the models once and pick the best ones. But even
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ranking a thousand models is costly. In §8, we
rely on our analysis to propose a practical approach
to efficiently select models in a real-world setting.
Moreover, instead of expecting others to rank the
models, we share an updating site site featuring the
best models currently found. So far, we tested over
2.5K models.

2 Preliminaries

In this paper, we use the following terminology. A
dataset is a set of examples and labels. Our goal
is to maximize accuracy on the test of the target
dataset, "target" for short. We discuss the differ-
ence between domain, task, and dataset in App. A.

A pretrained (PT) model is a self-supervised
model, e.g., RoOBERTa (Liu et al., 2019). A fine-
tuned model is a PT model that was further trained
over some source dataset, denoted henceforth as
"source". We assume access to many such mod-
els, e.g., through HuggingFace. A base model
can be either a PT model or a finetuned model.
When finetuning over the target train data, one can
start from any base model. Intertraining refers to
starting from a finetuned model as a base model,
and in this case, we refer to this base model as
an intermediate model. We denote by S! , the
accuracy score obtained over the target test set,
t, after finetuning some base model m over the
target train set. The intertraining gain of model
m w.r.t. using the PT model, is thus defined via
gain (m,t) = st, — s . Note that the gain may
be negative. Given a set of intermediate models,
M = mjp...my, the intertraining max-gain is
defined as max,,cns (sfn — stPT). Thus, theoret-
ically, max-gain is achieved by finetuning all the
available intermediate models and picking the one
best performing on the target test set. To avoid
overfitting and reduce costs, our goal is to find an
intermediate model with a gain that is as close as
possible to the max-gain, without explicitly fine-
tuning all the intermediate models.

3 Experimental Setup

Our experimental setup is described next. The pa-
rameters for reproducibility are detailed in App. B.

3.1 Dataset Groups

Our experiments are based on 3 groups of English
text classification datasets described next (App. C).

We focus on text classification for ease of evalua-
tion, but assume the tasks are diverse enough for
our conclusions to extend to other settings.

General. Containing GLUE (Wang et al., 2018)
and SuperGLUE classification datasets (Wang
et al., 2019a), excluding test only and regression
datasets. The datasets cover a wide range of tasks,
from sentiment analysis through linguistic accept-
ability to natural language inference. It is the most
commonly used benchmark in related work (§7).

NLI. Containing Natural Language Inference
and Entailment tasks. Datasets of this group all
share the same task. There is some overlap between
NLI and General; in Fig. 1 and mean comparison
we subtract the overlapping datasets from General.

Twitter. Containing 6 Twitter datasets collected
by TweetEval (Barbieri et al., 2020). The tasks
range from irony detection to emoji prediction.
Datasets of this group all share the same domain.

3.2 Models

Unless stated otherwise, our PT model of choice is
RoBERTA (Liu et al., 2019). We acquire interme-
diate models in two ways:

In-house. Obtained by finetuning the PT model
over General, NLI, and Twitter dataset groups as
the source datasets, with 5 seeds. Since we con-
trol the datasets and have knowledge about their
features, this enables us to find relations between
the dataset properties and the intermediate models
generated from these datasets.

Off-the-shelf. 66 RoBERTa models downloaded
from HuggingFace (see App. §E for more details).
Since these models do not carry information ex-
cluding their names, this set allows us to validate
our claims on a "real-world" model distribution.

3.3 Models/Targets experiments

We test many intermediate models on various tar-
get datasets. We finetune each intermediate model
and the PT on the target train, and report the inter-
training gain over the target test. In the In-house
models/targets experiment, all 22 datasets from the
General, NLI, and Twitter groups act as both source
and target and gains are average of 5 seeds. In the
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Figure 1: Results of in-house models/targets experiment. Columns correspond to target datasets and Rows

correspond to intermediate models generated based on same datasets as source. The 22 datasets come from the
General, NLI and Twitter groups. Each value indicates intertraining gain w.r.t. the PT model, averaged over 5 seeds.
Sorted by group and source average gain (bottom row). Positive significant cells (>2 STD) are italicized.

Off-the-shelf models/targets experiment, we down-
load the 66 source models from Huggingface and
test on the 14 General datasets as targets.

4 Results

Most models are worse than PT and about 1 in
6 are better, providing positive intertraining gain.
The in-house models/targets results are depicted in
Fig. 1 and STDs and reference results in App. §D.
App. §E reports results with off-the-shelf RoOBERTa
and T5 intermediate models.

The rows and columns in Fig. 1 are similarly
ordered — first the General datasets, then the NLI
datasets, and last the Twitter datasets. Loosely
speaking, we do not recognize an approximate
green block structure across the diagonal; namely,
we do not observe clear intertraining gain for simi-
lar tasks (NLI); nor for similar domains (Twitter).
However, some columns and some rows depict
higher intertraining gains, while for others, the im-
pact is minor. Taken together, these observations
suggest little dependence between the source used
to generate the intermediate model and the perfor-
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Figure 2: Linear probing MNLI (x) is enough to predict
finetuning gains (y) averaged over 14 General datasets.
Each point corresponds to one off-the-shelf base model.

mance over the target. This is in contrast to the
common assumption (§7) that the source and target
need to be similar for intertraining to work. Next,
we delve deeper into these observations.

4.1 Target Sensitivity to Intertraining

Considering Fig. 1 columns, we notice that for
some target datasets (e.g., ESNLI) intertraining
makes little difference, while for others (e.g.,
COPA) the impact is quite significant. We argue
that this target property can be predicted via an effi-
cient and straightforward method. Specifically, the
gains of one strong intermediate model should re-
semble the max-gains of a group of models. Indeed,
MNLI highly correlates both with the max-gain of
in-house models tested on the 22 targets in Fig. 1
(Spearman: 0.89, Pearson 0.99) and off-the-shelf
models tested on the 14 General targets (Spearman:
0.90, Pearson: 0.94, p < 0.01 for all). The repli-
cation on off-the-shelf models shows that this is a
general result and not a reflection of MNLI being
top of the in-house group. Overall, we find sensitiv-
ity is a characteristic of the target dataset separated
from the source factor.

4.2 Ranking Intermediate Models

Considering Fig. 1 rows, we notice that some inter-
mediate models — e.g., MNLI — provide relatively
high gains for many targets. We observe that this
is a general phenomenon — stronger models are
typically stronger for many datasets.

Identifying such models in advance could be
practically valuable, since for a new target, one
would consider only the highly ranked intermedi-

ate models (see §8). In the following, we propose
a simple yet efficient method to obtain such a static
ranking - which is made once, without account-
ing for the target. A more comprehensive ranking
alternative is described in App. §F.

Given an intermediate model m, we train a lin-
ear probe (LP) —i.e., train only the classification
head — over MNLI, and consider the gain, de-
noted LP(m, MNLI)?. Evidently, this gain is
a good proxy for the quality of m. Specifically,
let gy, 7 be the average gain of m over a set of tar-
get datasets. As depicted in Fig. 2, we observe
that LP(m, MNLI) and gy, are highly corre-
lated in the in-house models/targets experiment
(Spearman: 0.46, Pearson: 0.78, p < 0.01) and the
off-the-shelf models/targets experiment (Spearman:
0.51, Pearson: 0.66, p < 0.01). In other words, if
available intermediate models are ranked by LP on
one dataset LP(m, M N LI), highly ranked mod-
els represent the most promising starting points on
average. The high correlation means this connec-
tion holds not only for the top-ranked models, but
throughout. Moreover, the replication on off-the-
shelf models shows this is robust not only across
targets but across sources.

To further support this claim, we use this rank-
ing to find the most promising intermediate models.
For each target ¢, we consider the gain obtained by
the top-ranked model and the max-gain obtained by
one of the three top-ranked models, denoted gfl)

and g'E3), respectively. In comparison, we consider
the max-gain obtained while considering all avail-

able models, denoted g'E ) We further denote

mazy — 901y and 108§ = gh0, — g3).

In other words, loss} represents the potential gain
loss when using the top statically ranked model
versus using the best available model for the target
under consideration. Similarly, loss}, represents
the lost gain when using the best model out of the
top 3 ranked models versus using the best available
model. Note, that even in this latter case, finding
the best model involves finetuning only 3 models
over the target train data, which is far less demand-
ing compared to finetuning all available models.

max
loss! = gl(t

In Table 1, we report statistics for loss{ and
lossg over the in-house and off-the-shelf mod-
els/targets experiments. Although the ranking is
target-independent, the top 3 ranked models typ-

2MNLI is not unique, many datasets showed promising
results in initial trials.
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ically provide most of the potential intertraining
gain. For example, instead of checking all 66 avail-
able models, using this simple strategy of checking
the top 3 ranked models, each of the 14 targets lost
at most 1.62 points.

@Top Avg. Max # targets
Models s.t. losst, > 1
In-house losst  0.37 2.11 3/22

losst, 02 115 122

losst 233 120 8/14
Off-the-shelf | ) st 034 162 214

Table 1: Lost Gain (loss,,) is small when choosing the
n top-ranked models. Columns present the aggregation
across target datasets of the lost gain: average, max and
the number of targets that lose at least one point. Rows
present either in-house (22 models and 22 targets) or
off-the-shelf (66 models and 14 targets) experiments.

S Source and Target Interaction Analysis

Next, we analyse the interaction between the source
dataset and the target dataset. Obviously, such
interaction may impact the gain. On one extreme,
since finetuning on the same data twice does not
improve performance, intertraining is not valuable
when the source and target data are identical. On
another extreme, consider partitions of the same
data. Obviously, training over half the data as the
source would be beneficial for the other half, the
target. Thus, we do not question that interaction
may exist, but rather investigate how common and
strong it is.

Interaction between dataset groups. Our Gen-
eral dataset group consists of diverse datasets,
while the other groups share a domain (Twitter)
or a task (NLI). We analyze whether datasets that
share a domain or task with the target represent
better source datasets than others.

Table 2 depicts the average gain of each source
group vs. each target group. Comparing targets (ta-
ble columns), we find the models trained on similar
tasks, as a group, have a distinct behavior (ANOVA
p < 0.01). On average, using NLI intermediate
models on NLI targets, yields a gain of 0.63, com-
pared to a strong negative gain when using interme-
diate models from other groups. Similarly, there is
a same-group gain of 0.5 on Twitter.

Comparing sources (table rows), while NLI is
best improved by NLI models, NLI models im-

General NLI  Twitter
General -0.37 -2.68 -0.54
NLI 1.26 0.63 -0.03
Twitter -0.4 -2.39  0.53

Table 2: Intermediate models trained on sources from
the same domain (Twitter) or task (NLI) as the target,
yield greater gain. Numbers represent the average gain
of intermediate models of a source group (rows) on a
given target group (columns) .

prove General datasets even more than NLI ones.
Possibly, NLIs are just good intermediate models.
Twitter models, however, do seem to improve Twit-
ter targets more (ANOVA p < 0.01), by 1 point.
Hence, it seems the effects are mixed.

In summary, as a group, a similar source tends to
yield greater gains than an unrelated source. How-
ever, in the rest of this section, we find this effect is
of secondary importance to predicting model gains.
A similar source may be more beneficial than a ran-
dom one, but a well chosen source produces larger
benefits regardless of similarity.

Symmetry as a similarity bound. We consider
dataset similarity from another perspective. Sim-
ilarity is a symmetric relation. Hence, if source-
target similarity was a main reason for gains, we
would expect that when the source A helps the tar-
get B, the source B would help A as well. We
assess the symmetry of the in-house models/targets
experiment. We find that gains are far from sym-
metric (details in App. §G). Thus, (symmetric)
similarity seems like a weak explanation of which
source data would help which target.?

Regression. As additional support for the rela-
tively small impact of the source-target interaction,
we show that the interaction is hardly needed to pre-
dict the scores. Specifically, a simple regressor can
approximate the gain without considering such in-
teractions. The regression fits 3 sets of coefficients.
For each target two coefficients ¢;, t; — which one
may think of as capturing average gain and sensi-
tivity to inter-training, per target; and for each base
model b; — which one may think of as capturing av-
erage inter-training gain, per base model. We then
define gZz\in(basei, target;) = (b; +t;)t; where
7 and j are the base model and target indices, re-
spectively. Note that by construction, this regressor

Even if similarity was a strong indicator we would not
expect a full symmetry, as other factors such as sizes do matter.
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has 2N +n parameters, while trying to model N7
interactions; thus, it does not have enough degrees
of freedom to explicitly model all source/target in-
teractions. Still, it obtains satisfactory performance,
as shown next. As a baseline, we fit the same re-
gressor after randomly shuffling all the gains in the
experiment. This shuffling ensures no information
comes from the specific source and target, while
maintaining the gain value distribution. We mini-
mize Mean Squared Error (MSE) and fit with SGD
until convergence.

Before we present the results, it would be benefi-
cial to give some intuition on MSE. As MSE is the
square of the error, an average MSE of 4, means
that the average prediction was accurate up to 2
(v/4) points on average or more accurate than that
(as outliers have more effect on MSE than on the
average error rate).

We obtain an MSE of 4.2 on the in-house
models/targets experiment (3.3), versus 9.6, 0 =
0.9 when the gains are shuffled. Thus, know-
ing the source id and the target id provides
significant information about the expected gain,
with no need of keeping a designated parame-
ter for each source-target combination. We fur-
ther compare this regressor with two other re-
gressors, one that considers only base model in-

A~

formation (gain(base;,target;) = b;) and one
tth considers only target related information
(gain(base;, target;) = t;). The MSE fit is 10.4
and 8.2, respectively, compared to 10.8,0 = 0.4
on shuffled gains. This suggests both the source
and the target impact the intertraining gain, with po-
tentially somewhat stronger influence by the target.

In conclusion, our observations suggest that
when considering intertraining potential, loosely
speaking it is enough to consider two separate is-
sues — (i) choosing a base model; and (ii) determin-
ing the expected effect on the target.

6 Factors Contributing to Gains

So far, we showed the effects of the intermediate
models are largely separate from those of the target.
We proceed to examine how specific factors in each
contribute to intertraining gains.

6.1 Source and target sizes

Following the above observations, we ask what
makes a base model good, or a target sensitive?

3 —— ANU
MNLI

—— MultRC
— QQP

2

(Avg. Gain)

a?
b

50 100 200 400 800 1600 3200 Full
data

Source size

Figure 3: For good’ sources the average gain increase
as the source training size increases, while for "bad’
sources it decreases.

10.0 — B
MNLI
—— MultiRC
I — aap

50

25

g2? (Avg. Gain)

50 100 150 200 300 400 800 Full

data
Target size

Figure 4: The average gain across targets decreases as
the target training size increases.
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We examine the effects of architecture (§6.3) and
source score (§6.2), but start by examining the data
sizes effect on the gain: First, we identify effects of
the datasets sizes in controlled experiments. Next,
we assess the extent to which the effect of dataset
size is evident in previous experiments. For more
related analysis we refer to Phang et al. (2018a);
Pruksachatkun et al. (2020).

Effect of dataset size. We first control the source
dataset train size. We create intermediate mod-
els on 4 source datasets — the top 2 and lowest 2
in-house models, according to the static ranking
(§4.2). For each, we limit the training to 50 — 3200
samples and use the General group datasets as tar-
gets. Evidently, for good sources (ANLI, MNLI),
more training data yields greater gains (Fig. 3).
However, additional data decreases performance
for bad sources (MultiRC, QQP). We conclude that
the amount of source data amplifies the effect de-
termined by the type of data.

We experiment on the effect of target size, using
General sources and General targets with train data
of more than 1600 examples. We limit the target
train sizes to between 50 — namely, few-shot set-
ting — and 1600. As depicted in Fig. 4, the gain
decreases as the target training size increases, im-
plying larger potential for intertraining when the
target training data is limited. Interestingly, for
3 targets we see positive gains on small datasets,
which drops to negative gain as training data in-
creases, and then seem to rise again towards zero.
This *U-shape’ effect hints at two competing ef-
fects that should be better examined in future work
(c.f. App. H).

Training size effects in practice. We examine
whether the effect above is strong in comparison to
other unknown factors. Considering the in-house
models/targets experiment, the Pearson Correlation
between source training size and source average
gain is 0.75. Out of the 5 largest sources (ESNLI,
MNLI, QQP, ANLI, and QNLI), 3 are also the
source tasks with the highest average gain (MNLI,
ANLI and ESNLI) and QQP is the source dataset
with the second-lowest gain (negative). This is in
line with our previous observation that additional
source training data magnifies the positive or the
negative intertraining effect of the source data.

We observe no significant correlation between
target training size and target average gain, where

the average is taken across sources. Still, targets
with small training data seem to be more sensitive
to intertraining. Specifically, the 5 targets with the
smallest training data (CB, CoPA, WSC, WNLI,
RTE) are also those for which we observe the max-
imal gain difference across all sources.

6.2 Similar Source Score, Different Gain

One can expect that two models with similar perfor-
mance on a source dataset would also have similar
intertraining gains. Our results suggest otherwise.
We finetune 20 models over MNLI source and use
them as intermediate models on the General target
group. We compare the scores on the source test
data to the average score obtained on the target
datasets. Source task scores vary between 86.5 and
87.5 while General target average varies between
74.5 and 79, without correlation (c.f. App. I).

McCoy et al. (2019) found that finetuned models
that show similar performance on their test data,
still have different performance on out-of-domain
challenge sets, suggesting the models learnt differ-
ent generalizations schemes. Juneja et al. (2022a)
suggested that those models converged to different
basins in the loss space. They tagged models from
one basin that tend to generalize better as good, and
the rest as bad. We check whether good models
are also better intermediate models for other tasks.
We took their BERT models finetuned on MNLI as
intermediate models — 12 good and 12 bad models
— and used the General datasets as targets, finding
that good models are indeed better for intertraining
(3.65 avg. gain for good vs. 2.16 for bad).

The differences discussed above are due to using
different seeds. In App. 1.1 we show that hyper-
parameter selection can also impact the quality of
an intermediate model, regardless of the score ob-
served on the source test data.

In summary, similar training and/or similar per-
formance on the source test, do not translate to
similar intertraining gains on new target tasks.

6.3 Effect of different architectures

We validate our main conclusions across differ-
ent architectures. To that end, we repeat the in-
house models/targets experiment with BERT (De-
vlin et al., 2019) and T5 (Raffel et al., 2020) archi-
tectures. (see full tables in App. J).

We start by showing that the loose source-target
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coupling holds across architectures. We then show
that different source datasets rank differently across
architecture, but that target sensitivity is similar.

To show the source-target independence, we re-
peat the regression fit (§5). As before, the fit ex-
plains each architecture’s gains much better than
when data is shuffled (BERT MSE 10.5, random
30.1,0 = 4.17; TS MSE 8.11, random 13.51,0 =
1.5). Neither the average gain of intermediate mod-
els - trained over various sources, nor the average
gain for target tasks, correlate across different archi-
tectures. However, the target sensitivity, measured
by max-gain, is correlated across all architectures
(pairwise Pearson 0.6 — 0.94, p < 0.05). Thus, al-
though the source-target decoupling and the target
sensitivity are shared across architectures, a source
dataset that produces high gains in one architecture
might not do so in another.

A notable exception is the MNLI source dataset
which achieves the highest gain in all three archi-
tectures. Possibly, some data sources provide a
strong intermediate model regardless of PT, with
MNLI as a prominent example.

7 Related Work

Various works use intertraining, often following the
assumption of task alignment necessity (Ein-Dor
et al., 2022; Don-Yehiya et al., 2022a; Awasthy
et al., 2020), namely, that the source acts as weak
labeled data (Shnarch et al., 2018; Yu et al., 2021).
While we consider intertraining through finetun-
ing, adaptation to the target (Shnarch et al., 2022)
or the domain (Gururangan et al., 2020) was also
suggested. Such adaptation may be applied to any
base model, and is complementary to the choice
among base models. The need for alignment was
also previously debated in the context of pretrain-
ing tasks (Krishna et al., 2021; Rothe et al., 2021;
Zhang et al., 2020; Ram et al., 2021).

The properties of intertraining were studied in
other contexts. Phang et al. (2018a) suggested the
intertraining scheme. Pruksachatkun et al. (2020)
probed the linguistic knowledge changes after in-
tertraining, noting correlations to some target tasks,
and hypothesized why some source tasks are good
for intertraining. Mosbach et al. (2020); Chang and
Lu (2021) replicated the existence of good sources,
but rejected the hypothesis. Others tried to find
which tasks have an affinity to each other (Poth

et al., 2021; Bassignana et al., 2022a,b; Vu et al.,
2020), or when to prefer multitask (Weller et al.,
2022). We study a much larger number of sources
and targets, aiming to describe their natural distri-
bution (c.f. §9) and also find that while specific
choice may help, given enough models, it is safe to
identify the models that just excel generally.

Recent work focuses on fusing multiple base
models rather than picking just one (Choshen et al.,
2022; Matena and Raffel, 2021; Wortsman et al.,
2022; Yadav et al., 2023). We expect our under-
standing to aid in choosing a subset of models to
fuse as well.

Multi-task learning is another related field.
It studies finetuning on different tasks at once
(Aribandi et al., 2021; Aghajanyan et al., 2021)
and recently also a way to recycle models to do
so was proposed (Don-Yehiya et al., 2022b). In
contrast to our analysis, similarity between tasks
aids multi-task learning (Abnar et al., 2021).

Deciding which information should accompany
publications is an active research field, covering
datasets (Holland et al., 2018; Gebru et al., 2021),
human annotation sheets (Shimorina and Belz,
2022), and models (McMillan-Major et al., 2021;
Mitchell et al., 2019). Our work proposes to report
upon sharing a model the aspects shown to affect
its quality, such as LP (m, M N LI). For datasets,
we propose to report intertraining sensitivity.

8 Practical recommendations

Based on the observations (§4) and analysis (§5),
we propose a methodology for efficiently utilizing
intertraining in real-world settings. We suggest
to collaboratively rank all available base models
for intertraining and to utilize this list whenever
intertraining is applied to a new target.

New model. When a new model becomes avail-
able, we encourage practitioners to assess and share
its quality. This can be done efficiently by lin-
ear probing on MNLI (§4.2) or comprehensively
(App. §F) by finetuning on various datasets.

We created statically ranked lists for RoOBERTa-
base and T5-small in App. §E. Moreover, we apply
our methods to many architectures and 36 test sets
in an updating site , reporting the best models.
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New target. When considering intertraining on
a new task, we recommend checking the target
dataset sensitivity, and then choosing the base
model. Since the model’s rank hardly depends
on the target dataset, we suggest using the static
ranking. Specifically, we propose to finetune the
top-ranked model, and compare the results to those
obtained when finetuning the respective PT model.
Assuming the gain justifies it, one should consider
a few additional intermediate models, in descend-
ing order, according to the allocated resources.

9 Discussion

In §8, we highlighted our practical recommenda-
tions for intertraining. Those, together with a sys-
tematic analysis of what affects intertraining, cover
our main contributions. We hope this analysis
would also aid future work on interactions between
datasets; intertraining practices; and reusing fine-
tuned models.

Our experiments mainly characterize what is
probable rather than what is possible. We do not
create specific models or aim to improve a specific
task. Instead, we investigate what is likely to be
found in typical practical settings. Accordingly, our
findings are probabilistic in nature: Most models
are not beneficial as intermediate models, but there
are enough that are. Mostly, beneficial models are
beneficial for many targets.

As a side effect, we do identify specific strong
source models. MNLI was already considered a
beneficial source dataset (Phang et al., 2018a), a
finding which we corroborate in a comprehensive
manner. Furthermore, when considering off-the-
shelf models we find models that outperform it
(e.g., STS-B based for RoOBERTa, and Quora for
T5). To facilitate finding additional and better base
models we will continuously report in the website
website the best models per architecture.

10 Limitations

One obvious limitation is that our work is empir-
ical in nature. As such, we report observations,
sampled or common, with no theoretical guaran-
tees, and one should recognize the existence of
exceptions. Specifically, even though we have not
observed it — there might exist target tasks that
benefit greatly from a certain type of intermediate
models; or intermediate models that help greatly

in many targets while degrading performance in
others.

Moreover, while testing 22 source datasets,
many of which previously untested, we did not find
a new top source for intertraining. The best one
we found for ROBERTa was already known to be
good (MNLI; Phang et al., 2018b; Pruksachatkun
et al., 2020). With that, by checking dozens of off-
the-shelf models, we did uncover new intermediate
models that seem to outperform MNLI (e.g., STS-
B for RoBERTa and QQP for T5 — c.f. App. $E).
More work is needed to assess the potential inter-
training gain of the available datasets and models.

We ran thousands of finetuning experiments,
spanning a vast number of tasks and base mod-
els. Thus, while we believe it is unlikely that re-
producing our experiments will result in different
outcomes, the large scale of our experiments places
a heavy burden on trying to replicate our results.
Moreover, the off-the-shelf models used in our ex-
periments might not be hosted publicly in the fu-
ture.

Another limitation is that we could not upload
all of the models to a shared location. This project
was very computationally demanding, but more
than that, it was demanding in terms of disk space,
hence we had to delete many models along the way.

Finally, for practical reasons, our results are lim-
ited to classification tasks in English. We hope that
future work will aim to test our conclusions beyond
this scope. Overall, in the space of classification,
we see our results as robust, testing on 22 datasets
(about double the amount of previous works (Pruk-
sachatkun et al., 2020)). We hope the diversity of
targets brings large enough differences between
datasets that the results would hold in other scopes.
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A Task, Domain and Dataset

A task is defined by the input and the output. The
input in our context is a text instance. The out-
put could be, e.g., positive/negative/neutral for a
sentiment analysis task, entailed/not-entailed for a
textual entailment task, etc.

A domain is the type of text found in the ex-
amples, regardless of the labels. For example, a
domain may be financial or comments for twitter.

A dataset for our purpose is a set of examples
and their labels, divided into train, dev, and test
folds. Being such, each dataset has a domain (char-
acterizing its examples) and a task (for which its
labels are annotated). Hence, we consider a subset
of a dataset as an another dataset. Note that in the
literature those terms are often not well defined and
may even be interchangeable (Wang et al., 2019b).

B Hyperparameters

For RoBERTa, we train for 10 epochs with linear
learning rate 5e-5 with warm-up of 0.6% of train-
ing, batch size of 256, early stop epsilon 0.001
accuracy points, patience of 20 x 50 x 256 ex-
amples, validate every 50 x 256 examples, op-
timizer ADAMW (Loshchilov and Hutter, 2019),
with weight decay 0.01 or 0. For BERT-base-
uncased we use 2e-5 learning rate and never use
decay. For T5 we use le-4 learning rate and train
until early stopping occurs. We used A100 and
V100 GPUs. Finetuning times vary, but all end
within a couple of hours, most in less than an hour,
some up to 8 hours.

C Datasets used

All datasets could be downloaded from hugging-
face datasets. As we used groups of datasets we
report here the full list of datasets they contain.

General GLUE: CoLA (Warstadt et al., 2019),
SST2 (Socher et al., 2013), MRPC (Dolan and
Brockett, 2005), QQP (data.quora.com/First-
Quora-Dataset-Release-Question-Pairs),
MNLI (Williams et al., 2018), QNLI Rajpurkar
et al. 2016, RTE (Dagan et al., 2005; Bar-Haim
et al., 2006; Giampiccolo et al., 2007; Bentivogli
et al., 2009), WNLI (Levesque et al., 2011)

SuperGLUE: BoolQ (Clark et al., 2019), CB (de
Marneffe et al., 2019), CoPA (Roemmele et al.,

2011), MULTIRC (Khashabi et al., 2018), WIC
(Pilehvar and Camacho-Collados, 2019), WSC
(Levesque et al., 2012)

NLI: MNLI (Williams et al., 2018), QNLI Ra-
jpurkar et al. 2016, RTE (Dagan et al., 2005; Bar-
Haim et al., 2006; Giampiccolo et al., 2007; Ben-
tivogli et al., 2009), WNLI (Levesque et al., 2011),
ESNLI (Camburu et al., 2018), adversarial NLI
(Nie et al., 2020).

Twitter: Emolnt (Mohammad and Bravo-
Marquez, 2017), Emoji (Barbieri et al., 2018),
Irony (Van Hee et al.,, 2018), OffenseEval
(Zampieri et al., 2019), HatEval (Basile et al.,
2019) , Sentiment Analysis (Rosenthal et al., 2017)

Whenever the test set is held out (such as is
GLUE and SuperGLUE), we extracted 1K or 10%
of the training examples as test set, the smaller. We
did not experiment with the small Stance (Moham-
mad et al., 2016) Twitter dataset originally found in
TweetEval(Barbieri et al., 2020) to reduce noise. In
the TS5 experiment (§E) we used stance datasets as
well, to have a large group. For MNLI we use the
mismatched validation set as a test and the matched
as a validation set.

D In-house models/targets additional
information

We report in Table 3 the score of finetuning
RoBERTa without intertraining.

We also report the standard deviation for each
cell in the experiment, i.e., taking into account dif-
ferences due to finetuning the intermediate model
and target dataset in figure 5. For each seed, we
finetune the PT over the source dataset to produce
the base model, and use it to finetune the target task.
It means that each seed utilises a different base
model. Note that §6.2 suggest different seeds may
create base models with different quality. Note that
to assess the variability of the averages reported in
the main text (§4) the Standard Error of the Mean
is required, this is the STD divided by the square
of the number of seeds SE = STD/+/5.

E Models in the wild

E.1 Models used

We collected manually 66 RoBERTa-base models.
From their names most were finetuned from vanila
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Figure 5: Standard deviation of in-house models/targets experiment. Rows correspond to intermediate models,
generated based on 22 source datasets from the General, NLI and Twitter groups. Columns correspond to the same
datasets, now being used as target datasets. Each value indicates standard deviation over 5 seeds.
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Dataset Mean  Std
MultiRC 61.07 2.01
QQP 90.92 0.29
WSC 63.46 0.00
MRPC 87.70 0.95
CoLA 83.11 1.34
WIC 65.55 2.32
BoolQ 77.09 3.19
COPA 49.00 4.90
SST2 93.81 0.26
CB 70.36  3.11
QNLI 92.28 0.48
WNLI 56.34  0.00
RTE 7242 0.93
ESNLI 91.05 0.18
ANLI 51.67 0.36
MNLI 87.07 0.23
Twitter Hate 52.30 1.03
Twitter Offensive  84.67 0.41
Twitter Irony 70.84 2.53
Twitter Sentiment  70.59 0.34
Twitter Emoji 46.32 0.56
Twitter Emotion 82.08 0.58

Table 3: Scores of finetuning RoBERTa without inter-
training.

RoBERTa, but a few were trained from scratch.
They vary in hyperparameters and training details,
just as one can expect training approaches to vary
between different researchers. We supply the full
list of models in Tables 4,5 for RoOBERTa and T5
respectively.

E.2 Results and discussion

We report the full results in Fig. 6. TS5 models are
reported in §7 (off-the-sheld are on Twitter datasets
only, as most of General and NLI were part of T5’s
pretraining, in-house use t5.1.1). Seemingly, some
traits of the training that we did not account for
are important. It is exemplified by models that
are associated with the same datasets but differ
in their gains. For example cross-encoder imple-
mentations outperform other models and sentence-
transformers underperform them.

Notably, most models are not useful for inter-
training. Still, many models do.

The best model on average is MUPPET (Agha-
janyan et al., 2021) which is a massive multitask
learning approach. However, our results show

that finetuning only on STS-B (rather than on 40
datasets) yielded similar results. We note that un-
like MNLI which is known to be a good source
(Phang et al., 2018a), STS-B was previously only
considered as a target task only. The results sug-
gest, it might be a good source.

We gathered the models by manually searching
for 'TRoBERTA-base’ models, ignoring ones that
were working on languages other than English. It is
possible we have missed models that did not clearly
state their architecture as part of the model name.
We are already aware of such models, for which
the PT is not deducible from their title, for example
those lately released by Juneja et al. (2022b).

F Rank by Average over Targets

In §4.2 we show training one Linear Probe is
enough to rank base models. Although tested on
a large number of target datasets, presumably, this
method does not always achieve accurate predic-
tions. For example, the target domain might be
so different that MNLI would not be relevant. As
a more accurate alternative, one can use several
datasets to provide a more reliable picture. We
show that an average of finetuning gains over dif-
ferent datasets is a reliable way for choosing a base
model. As in the simpler case of LP, this supports
the decoupling.

We report in Table 6 the lost gain when choosing
the highest models, ranked by average gain over
the General group. This ranking method generalize
well; The 1 or 3 best-ranked models are close to
the best possible model overall for each target. For
example, only 2 targets lose more than 1 point by
choosing the top 3 models.

Practically, we suggest to rank either in this
method or by LP. If some use one method and
others choose another it might be hard to compare
the two rankings. Thus, we report that in our exper-
iments the best predictor of the average score by
the LP score is gm? = LP(m, MNLI)-0.0822 —
0.940

G Symmetry metric

To measure symmetry of a matrix M, we decom-
pose it to it its symmetrical and skew symmetrical
parts: M = S+ V where S = (M + M7) and
V =1(M—MT). S is symmetrical: S = ST and
V is skew-symmetrical: V = —V7. The measure
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set name avg. gain over General LP gain over MNLI

0 imdb _1 aychang/roberta-base-imdb -5.91 -12.62
1 sentence_4 sentence-transformers/stsb-roberta-base -5.84 2.59
2 models_1 textattack/roberta-base-ag-news -5.73 -17.09
3 twitter_10 lucaordronneau/twitter-roberta-base-sentiment-... -5.71 -9.76
4 sentence_S  sentence-transformers/roberta-base-nli-stsb-me... -5.58 2.59
5 finance_0 zhayunduo/roberta-base-stocktwits-finetuned -4.49 -12.60
6 sentence_2  sentence-transformers/msmarco-roberta-base-v3 -4.17 -8.82
7 twitter_8 cardiffnlp/twitter-roberta-base-emotion -4.17 1.00
8 sentence_1  sentence-transformers/roberta-base-nli-mean-to... -4.07 5.47
9 qa_3 navteca/roberta-base-squad2 -4.04 4.03
10 quora_0 cross-encoder/quora-roberta-base -3.61 8.35
11 scratch_0 neoyipeng/twitter-roberta-base-sentiment-mlm-c... -3.51 -3.13
12 models_5 neoyipeng/twitter-roberta-base-sentiment-mlm-c... -3.51 -3.13
13 sentence_0  sentence-transformers/nli-roberta-base -3.50 5.47
14 models_8 cointegrated/roberta-base-formality -3.29 -4.96
15 legal_1 saibo/legal-roberta-base -3.20 -1.76
16  twitter_12 cardiffnlp/twitter-roberta-base-stance-abortion -2.95 -8.89
17 sst2_0 Bhumika/roberta-base-finetuned-sst2 -2.77 -3.00
18 models_14  cestwc/roberta-base-unigram-ternary -2.73 -8.39
19  models_11 mariagrandury/roberta-base-finetuned-sms-spam-... -2.67 -5.90
20 qa_l nlpconnect/roberta-base-squad2-nq -2.57 3.67
21 twitter_13 bdotloh/twitter-roberta-base-finetuned-twitter... -2.47 -3.12
22 models_0 textattack/roberta-base-CoLA -2.38 247
23 twitter_6 cardiffnlp/twitter-roberta-base-dec2021 -2.31 -11.45
24 twitter_5 cardiffnlp/twitter-roberta-base-mar2022 221 -5.38
25 quora_l navteca/quora-roberta-base -2.13 8.35
26 models_16 hoanhkhoa/roberta-base-finetuned-ner -2.12 -6.82
27  twitter_3 cardiffnlp/twitter-roberta-base-2021-124m -2.05 -5.30
28 twitter_11 cardiffnlp/twitter-roberta-base-stance-climate -1.98 -6.29
29  legal O akdeniz27/roberta-base-cuad -1.90 -8.57
30 models_13  cardiffnlp/twitter-roberta-base-stance-feminist -1.86 -4.25
31 imdb_2 aypanl7/roberta-base-imdb -1.86 -3.50
32 models_2 ghanashyamvtatti/roberta-fake-news -1.81 -12.47
33 scratch_1 neoyipeng/twitter-roberta-base-sentiment-mlm-skep -1.71 -8.73
34  models_12  surrey-nlp/roberta-base-finetuned-abbr -1.65 -0.66
35  twitter_4 cardiffnlp/twitter-roberta-base-emoji -1.63 -2.76
36 models_4 textattack/roberta-base-rotten-tomatoes -1.61 3.73
37 legal 2 marshmellow77/roberta-base-cuad -1.53 -8.57
38 legal 3 Rakib/roberta-base-on-cuad -1.33 -2.48
39 twitter_7 cardiffnlp/twitter-roberta-base-sentiment -1.24 3.03
40  twitter_9 cardiffnlp/twitter-roberta-base -1.16 -1.49
41 models_15  thatdramebaazguy/roberta-base-wikimovies -1.11 -1.76
42 finance_1 vanadhi/roberta-base-figa-flm-sq-flit -1.09 -1.00
43 models_3 allenai/reviews -1.01 -1.17
44 models_7 princeton-nlp/sup-simcse-roberta-base -0.99 4.26
45 mrpe _1 ji-xin/roberta -0.94 -1.67
46  twitter_1 cardiffnlp/twitter-roberta-base-offensive -0.91 -2.79
47  sst2 _1 textattack/roberta-base-SST-2 -0.84 3.83
48  sentence_3 sentence-transformers/stsb-roberta-base-v2 -0.80 1.68
49  twitter_2 cardiffnlp/twitter-roberta-base-irony -0.69 0.46
50 imdb_0 textattack/roberta-base-imdb -0.40 -3.64
51 models_6 VictorSanh/roberta-base-finetuned-yelp-polarity -0.25 -0.66
52  models_10  gargam/roberta-base-crest -0.12 -4.21
53  twitter_0 bhadresh-savani/roberta-base-emotion -0.05 -4.61
54 qa_4 shahrukhx01/roberta-base-boolq 0.25 10.42
55 mrpe _0 textattack/roberta-base-MRPC 0.39 7.27
56 nli_3 textattack/roberta-base-RTE 0.42 14.82
57 nli_2 mujeensung/roberta-base_mnli_bc 0.48 23.43
58 qa_0 deepset/roberta-base-squad2-covid 0.50 -1.11
59 qa?2 csarron/roberta-base-squad-v1 0.99 3.38
60 stsb_0 textattack/roberta-base-STS-B 1.05 14.66
61 models_9 textattack/roberta-base-QNLI 1.10 6.49
62 nli_ 0 textattack/roberta-base-MNLI 2.09 34.39
63 nli_l cross-encoder/nli-roberta-base 2.77 34.09
64  stsb _1 cross-encoder/stsb-roberta-base 2.82 30.19
65 multitask_ 0  facebook/muppet-roberta-base 3.00 31.58

Table 4: RoBERTa models we used, collected from Hugging Face models hub. Models sorted by average gain over
the General targets.
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Figure 6: Results of the off-the-shelf models/targets experiment. Rows correspond to off-the-shelf RoOBERTa models
obtained by downloading from HuggingFace model hub. Columns correspond to the General datasets group. Each
value indicates intertraining gain w.r.t. using the PT model,
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Target Dataset

5 g g N g 5 g
QA3 771 465 1 -1.28
QA5 0.26 077
Summarization 9 173 0.00 0.25
Classification 2 -1.68 1.20 0.22
Sentiment 1 -1.68 1.20 022
Summarization 0 -1.16 0.14 -0.06
Classification 0 -1.18 -0.56 -0.03
Summarization 10 045 1.13 0.14
Summarization 3 052 0.77 023
Paraphrasing 1 846 0.21 034
Summarization 7 -1.02 077 0.36
Summarization 5 0.00 040
043

Source Dataset

aat - 020
QA2 087 0.63 062
Q6o 087 063 062
QA6 123 0.42 0.90
Surmarzatont 106 0%
Summarization 2 0.28 117
Summarization 4 035 1.36
Summarization 1 077 151
— 084 ™
Sentment 084 ™
Summarization 8 958 1.34 179
Paraphrasing 0 1.83 203
QA0 1.83 203
205

Figure 7: T5 off-the-shelf base models and targets. The intertrain gain over the pretrained model for each source

(row) and target (column) datasets.
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set name avg. gain across the General targets
0 QA_3 allenai/t5-small-squad2-next-word-generator-squad -1.28
1 QA_S allenai/t5-small-squad11 -0.77
2 Summarization_9 jazzisfuture/new_summary_t5_small -0.25
3 Classification_2 mrm8488/t5-small-finetuned-imdb-sentiment -0.22
4 Sentiment_1 mrm8488/t5-small-finetuned-imdb-sentiment -0.22
5 Summarization_0 furyhawk/t5-small-finetuned-bbc-headline -0.06
6 Classification_0 mrm8488/t5-small-finetuned-boolq -0.03
7 Summarization_10 aseda/t5-small-finetuned-xsum 0.14
8 Summarization_3 mengsay/t5-small-finetuned-gigaword 0.23
9 Paraphrasing_1 hetpandya/t5-small-tapaco 0.34
10 Summarization_7 bhuvaneswari/t5-small-text_summarization 0.36
11  Summarization_5 bochaowei/t5-small-finetuned-cnn-weil 0.40
12 QA_l allenai/unifiedqa-t5-small 0.43
13 QA_2 allenai/t5-small-squad2-question-generation 0.62
14 QG_0 allenai/t5-small-squad2-question-generation 0.62
15 QA_6 mrm8488/t5-small-finetuned-squadv2 0.90
16 ~ Summarization_6 stevhliu/t5-small-finetuned-billsum-ca_test 0.94
17 Summarization_2 furyhawk/t5-small-finetuned-bbc 1.17
18  Summarization_4 bochaowei/t5-small-finetuned-cnn-wei0 1.36
19  Summarization_1 Frederick0291/t5-small-finetuned-billsum 1.51
20  Classification_1 mrm8488/t5-small-finetuned-emotion 1.54
21  Sentiment_0 mrm8488/t5-small-finetuned-emotion 1.54
22 Summarization_8 airKlizz/t5-small-multi-combine-wiki-news 1.79
23 Paraphrasing/QA_0  mrm8488/t5-small-finetuned-quora-for-paraphrasing 2.03
24 Paraphrasing/QA_4  hetpandya/t5-small-quora 2.05

Table 5: TS5 models we used, collected from Hugging Face models hub. Models sorted by average gain over the

General targets.

Models @Top Avg. Max number of datasets
. with loss,, > 1
In-house loss; 037 211 3/22
loss3 0.2 1.15 1/22
lossy 141 12.0 3/14
Off-the-shell sy 020 144 2714

Table 6: Lost Gain per target is minimal when choosing
the highest models, ranked by average intertraining gain
on General datasets. Results are reported when selecting
top rank model or best of 3 top rank models (@Top
column). Columns represent the aggregation of the lost
gain: average, max and the number of target datasets
that lose at least one point. Rows represent two sets of
experiments, in-house (with 22 models and 22 target
datasets) or off-the-shelf (with 66 base modes and 14
target datasets).

of symmetry s of the matrix M, considers the rela-
tions between S and V, s = (|S|—|V])/(|S|+|V]),
s € [—1,1] if s is close to -1 it means that M is
almost skew-symmetric (or anti-symmetric), if it is
almost 1, it means that M is almost symmetric. If
it around zero, it means that it neither symmetrical
or skew-symmetric.

H U-shape

We analyse how the intertraining gains change
when more target data is available. We find that

while intertraining often improves results for small
data size, the effect is decreasing with the size.
Surprisingly, the decrease drops below zero and
at some size increases again. This suggests an
unexplained underlying behaviour, presumably of
two competing effects, one that decreases gains
with size and one that improves them (in general
or towards 0). We produce three examples of the
U-shape in Figures 8, 9, 10.
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Figure 8: Gains of QNLI from intertraining with differ-
ent amount of training data (X-axis) and different base
models (lines).
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Figure 9: Gains of SST?2 from intertraining with differ-
ent amount of training data (X-axis) and different base
models (lines).
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Figure 10: Gains of WIC from intertraining with differ-
ent amount of training data (X-axis) and different base
models (lines).

I Scores

We report the source and target scores of training
on MNLI datasets with 20 seeds. Target scores are
the average over the General datasets. In Fig. 11,
we present the results. Evidently the two are not
correlated.

I.1 Forgetting

If PT’s success comes from honing the parameters,
shifting from them and forgetting the knowledge
gained during pretraining is inadvisable in general
(Chen et al., 2020) and possibly for intertraining
(Pruksachatkun et al., 2020). With more training
data, comes also more forgetting. This may also
explain why most source models have a negative
gain and intertraining hurts. Despite that, we ob-
served in §6.1 that more source data empowers
intertraining and improves gains. Following that
observation, we analyze the importance of forget-
ting to the choice of a source model.

One common practice that causes forgetting is
weight decay (Hanson and Pratt, 1988; Loshchilov
and Hutter, 2019) — a regularization term added to
the model updates. The decay term penalizes large
weights, shrinking PT’s large weights that are not
necessary for the target objective.

For this experiment we use the following exper-
imental setup: ADAMW (Loshchilov and Hutter,
2019) optimizer with weight decay 1 for decay
and 0 (ADAM; Kingma and Ba, 2014) otherwise.
L2 regularization is 0.1, results with other rates
showed similar tendencies with effect size corre-
sponding to the rate.

We find intermediate models trained with weight
decay to be worse, but only if the pretraining did
not include weight decay. Specifically, RoOBERTa
had weight decay during pretraining and T5 had
not. We consider g},%;; the average gain when
source is MNLI and targets are General with and
without weight decay. With RoOBERTa as PT, the
gain with decay was slightly better than without,
by 0.02 points, while with TS5 decay lost 3.3 points.
These changes were not reflected on the source task
performance.

Second, we limit the forgetting by adding a reg-
ularization forcing the model not to be far from the
pretrained model. This can be seen as the comple-
ment of the previous method, rather than update to-
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Figure 11: Source (MNLI) score against average score on General datasets after intertraining. Each point represents
a different MNLI intermediate nodel trained on a different seed.
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ward zero update toward the pretrained model. We
find this method did not change much for MNLI (-
0.28), but for models that hurt overall performance
they prevented some performance loss, e.g. QQP
(4.3). We note that while this regularization did not
improve the top base model’s gain, it did hurt the
original finetuning on the source task (-5.2 points
on MNLI). We further address the effect of source
task score on base model quality in §6.2.

We also followed Kumar et al. (2022) method
that should reduce forgetting with LP, but it had
little effect.

All of the above findings imply that what deter-
mines a base model’s effectiveness may be hidden
in training hyperparameters. For example training
on the same data and achieving similar results on
the source, may still get quite different results on
the target, depending on whether weight decay was
used.

J Architectures

Figs. 12, 13 depict the gains of In-house mod-
els trained on General datasets over the General
datasets. In Fig. 7 we report the gains from train-
ing on off-the-shelf T5 models. Interestingly, QQP
which is known as a bad source for ROBERTa4, is
among the best intermediate models for T5. Pre-
sumably, this is due to different training, where TS
generates the paraphrases rather than picks between
several ones.

On a similar note, many of the top base models
train on non-classification tasks, such as paraphras-
ing and question answering. This implies that the
model weights converge to something quite general,
learning linguistic traits that are not all discarded
during finetuning. We say those are linguistic, in
the sense that the language, and perhaps common
knowledge are what makes the datasets similar, the
tasks are quite different.
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Figure 12: BERT General sources and targets. The intertrain gain over the pretrained model for each source (row)
and target (column) datasets.
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Figure 13: T5 General sources and targets. The intertrain gain over the pretrained model for each source (row) and
target (column) datasets.
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