
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 14536–14548
December 6-10, 2023 ©2023 Association for Computational Linguistics

API-Assisted Code Generation for
Question Answering on Varied Table Structures

Yihan Cao∗ Shuyi Chen∗ Ryan Liu∗

Zhiruo Wang Daniel Fried
Carnegie Mellon University

{yihanc,shuyic,ryanliu,zhiruow,dfried}@andrew.cmu.edu

Abstract

A persistent challenge to table question answer-
ing (TableQA) by generating executable pro-
grams has been adapting to varied table struc-
tures, typically requiring domain-specific logi-
cal forms. In response, this paper introduces a
unified TableQA framework that: (1) provides
a unified representation for structured tables
as multi-index Pandas data frames, (2) uses
Python as a powerful querying language, and
(3) uses few-shot prompting to translate NL
questions into Python programs, which are ex-
ecutable on Pandas data frames. Furthermore,
to answer complex relational questions with
extended program functionality and external
knowledge, our framework allows customized
APIs that Python programs can call. We ex-
periment with four TableQA datasets that in-
volve tables of different structures — relational,
multi-table, and hierarchical matrix shapes —
and achieve prominent improvements over past
state-of-the-art systems. In ablation studies, we
(1) show benefits from our multi-index repre-
sentation and APIs over baselines that use only
an LLM, and (2) demonstrate that our approach
is modular and can incorporate additional APIs.

1 Introduction

Tables are an important and widely used format for
storing and retrieving information. However, since
they are often constructed to present information
in a visually effective way, they consequently oc-
cur in diverse formats (Chen and Cafarella, 2013;
Nishida et al., 2017; Wang et al., 2021b). Thus, to
effectively answer questions about all tabular in-
formation, we must consider information stored in
relational (Pasupat and Liang, 2015), matrix, and
hierarchically indexed tables (Cheng et al., 2022),
and also address scenarios where multiple tables
are presented conjointly (Yu et al., 2018).

In the past, works have focused on achieving
strong results on datasets with particular table struc-

∗Equal contribution.

Illness
Cold Cancer

total percent total percent
All patients 10,000 2.5% 200 0.3%
 Elders 7,400 3.5% 126 0.9%
 Young 2,600 1.5% 74 0.2%

Who is more likely to have cancer, the elder
or the young?

compare_larger(
 [
 data.loc[(‘Illness’, ‘Cancer’, ‘percent’), (‘All patients’, ‘Elders’)],
 data.loc[(‘Illness’, ‘Cancer’, ‘percent’), (‘All patients’, ‘Young’)]
],
 [‘Elders’, ‘Young’]
)

larger

Python program

data.loc

API function

Code LM

Figure 1: Our approach answers questions about com-
plex tables by representing the tables as a Pandas multi-
index data frame, and using a code generation LM to
translate the question into a Python program that uses
assistant API functions to operate on the data frame.

tures and required tailoring logical forms to each
specific type of table structure (Wang et al., 2015;
Guo et al., 2019). These methods struggle to work
on tables with structures outside of their original
domain. For example, the neural-symbolic ma-
chine (NSM) approach designed for relational ta-
bles (Liang et al., 2017) only achieves 29.2% accu-
racy on the hierarchical matrix table dataset HiTab
(Cheng et al., 2022) due to the ineffectiveness of
its logical forms on hierarchical tables.

Our work focuses on developing a unified frame-
work to solve TableQA tasks across diverse table
structures using Python as an intermediate lan-
guage. In contrast with previous approaches that
use custom logical forms to query table data (Guo
et al., 2019; Cheng et al., 2022), we propose to
query entries and perform operations within the

14536

widely used Python Pandas library. This allows us
to leverage the strong few-shot Python generation
capabilities of large code generation models, whilst
saving costs by using only a few training exam-
ples. An overview of the framework is presented
in Figure 1, with more details in Figure 3. Our
framework consists of three main parts:

First, we transform tables with varied structures
into a unified multi-index data frame representation
adopted from the Python Pandas library (§3.1). The
multi-index objects can effectively retain the struc-
tural information in a wide range of table formats.
From the implicit first step illustration in Figure 1
and more detailed one in Figure 2c, we convert
tables from a hierarchical format to the multi-index
representation, which will enable generated code
to successfully query elements in the table.

Second, we translate TableQA questions into
Python programs as an executable intermediate lan-
guage by prompting code generation models (§3.2).
Specifically, we use a few-shot paradigm where we
provide the multi-index headers of the table, a few
rows of the table in textual form, the question, and
exemplar program annotations. As shown in Fig-
ure 1, the table and question are input to the code
generation model along with the few-shot prompt,
and the generated Python code uses the Pandas
data.loc function to query the appropriate cells.

Third, we introduce assistant API functions to
extend the capabilities of our framework beyond
Python Pandas and achieve broader coverage over
various TableQA tasks. These functions enable a
model-generated program to query external knowl-
edge and perform various additional operations on
the multi-index representation. In this paper, we
demonstrate the usage of two simple types of API
functions, Operation APIs and QA API (§3.3), and
show through ablations that they increase the per-
formance of our framework across various datasets.
For example in Figure 1, the model outputs code
using one of our API functions, compare_larger,
to solve the question.

We evaluate our method across relational, hier-
archical, and matrix tables, as well as multiple ta-
ble paradigms using the WikiTableQuestions (Wik-
iTQ) (Pasupat and Liang, 2015), HiTab (Cheng
et al., 2022), AIT-QA (Katsis et al., 2022), and
Spider (Yu et al., 2018) datasets (§4). For code
generation models, we use a more capable propri-
etary model, CODEX (Chen et al., 2021), and an
open-source model, STARCODER (Li et al., 2023).

We find that our framework surpasses the state-of-
the-art few-shot baselines on the HiTab, AIT, and
Spider datasets, achieving absolute improvements
of 24.5%, 26.2%, and 2.3%, respectively, while
retaining non-trivial performance on WikiTQ. Fur-
thermore, we perform an ablation study on the API
functions we introduced and find that they bring sig-
nificant improvements across datasets and models.
Our framework also allows the use of existing API
operations within Pandas in a modular way. For
example, we show that combining Pandas’ SQL
interface API with our multi-index representation
and APIs improves performance by 3.7–7.6% on
relational datasets.

2 Problem Setting and Datasets

In this section, we provide a formal description
of the TableQA tasks (§2.1) and describe the four
datasets used in our experiments, containing tables
of varied structures (§2.2).

2.1 Problem Statement
Each example in a TableQA task contains a table t
and a question q about the table, and aims to gener-
ate the correct answer a to the question. While both
q and a are textual sequences, the table t can vary
in structure — from relational tables (Figure 2a,
Figure 2b) to hierarchical matrix tables (Figure 2c).

The common symbolic approach to TableQA
generates an intermediate program p from a model
M using the table and question, p = M(q, t). The
program is then executed on t to yield the answer
a′ = exec(p, t). In traditional methods, tables are
serialized to text sequences by cell string concate-
nation, and programs are logical forms specifically
designed for certain domains. To preserve and
leverage more structural information, we represent
tables as Pandas multi-index objects, tm, and gen-
erate Python programs accordingly.

2.2 QA over Varied Table Structures
We use four diverse TableQA datasets to evaluate
our approach: WikiTQ (Pasupat and Liang, 2015),
HiTab (Cheng et al., 2022), AIT-QA (Katsis et al.,
2022), and Spider (Yu et al., 2018). As listed in
Table 1, these datasets cover a broad spectrum of
table structures and topical domains, thereby pre-
senting various challenges associated with different
table structures.

WikiTableQuestions (WikiTQ) WikiTQ (Pasu-
pat and Liang, 2015) contains relational tables with

14537

Dataset Size Table Info
dev test structure source

WikiTQ (Pasupat and Liang, 2015) 2,381 4,344 relational, single Wikipedia
HiTab (Cheng et al., 2022) 1,671 1,584 hierarchical matrix Stat. reports, Wikipedia
AIT-QA (Katsis et al., 2022) — 515 hierarchical Airline documents
Spider (Yu et al., 2018) 1,034 — relational, multiple College data, WikiSQL

* Spider has an undisclosed online test set.
** We treat the entire AIT-QA dataset as a single test set in our evaluations.

Table 1: Statistics and properties of the datasets we use to evaluate our approach, encompassing varied table
structures and sources.

relatively simple structures. All tables are collected
from Wikipedia articles. The questions usually in-
volve basic arithmetic operations, such as sum and
max, and sometimes require compositional reason-
ing over table entries. Since our method does not
require any training, we use the standard validation
set and test set with 2,381 and 4,344 samples.

HiTab (Cheng et al., 2022) involves hierarchical
matrix tables collected from statistical reports and
Wikipedia articles, covering diverse domains such
as economics, education, health, science, and more.
HiTab challenges existing methods with its broad
set of operations, complex table structures, and
diverse domain coverage. It contains 3,597 hierar-
chical tables with 10,672 questions. We evaluate
on their test set containing 1,584 samples.

relational
Year City Country Nations Table 1: instructor
1896 Athens Greece 14 id name department_id ...
1900 Paris France 24 001 Bob A1

... ...
2008 Beijing China 204 Table 2: department
2012 London UK 204 id name building ...

001 CS XX Hall

Illnese
Code Cancer

total percent total percent
10,000 2.5% 200 0.3%

 Elders 7,400 3.5% 126 0.9%
 Young 2,600 1.5% 74 0.2%

All patients

(a) A relational table.

Table 1: instructor

id name department_id ...

001 Bob A1

Table 2: department

id name building ...

001 CS XX Hall

foreign
key

primary
key

(b) A multi-table relation.

Top Root
/ Illnese

cancercold

Table

Elders

Illness
Cold Cancer

total percent total percent
All patients 10,000 2.5% 200 0.3%
 Elders 7,400 3.5% 126 0.9%
 Young 2,600 1.5% 74 0.2%

Left Root

……
Young

total percent total percent

Top Root: [
(Illnese, cold, total),
(Illnese, cold, percent),
(Illnese, cancer, total),
(Illnese, cancer,
percent)
]

Left Root: [
(All patients, Elders),
(All patients, Young)
]

Multi-index ObjectParsed Tree Structure

Original Table
⓵

⓶

(c) A hierarchical matrix table parsed into a multi-index object:
step (1) transforms table headers into a tree representation,
and step (2) creates a Pandas multi-index object.

Figure 2: Examples of diversely structured tables.

AIT-QA (Katsis et al., 2022) contains tables and
questions that particularly focus on the airline in-
dustry domain. It also contains tables with com-
plex structures such as hierarchical headers or bi-
dimensional matrix shapes. Both the complex struc-
ture and domain-specific terminology are challeng-
ing for TableQA tasks (Zhu et al., 2021; Katsis
et al., 2022). AIT-QA contains 515 questions that
are distributed across 116 tables. We use all 515
questions as the test set for evaluation purposes.

Spider (Yu et al., 2018) is a multi-domain text-
to-SQL benchmark with tables in a database for-
mat. It contains 200 databases across 138 differ-
ent domains. All “databases” in Spider consist of
multiple relational tables connected by primary /
foreign keys, which poses a unique challenge for
methods – the multi-table structure. Evaluations
on the hidden test set are supported by its online
benchmark which only accepts SQL programs. We
instead evaluate on the validation set containing
1,034 questions.

3 Method

We first describe our approach for representing var-
iously structured tables with a unified multi-index
format (§3.1). We then introduce our method to
answer TableQA questions by generating Python
programs (§3.2) from a code LLM. Lastly, we de-
tail the use of custom helper API functions (§3.3)
that are learned to be used by the LLM in context
(§3.4). Figure 3 gives an overview of our method.

3.1 Unifying Representation of Diverse Table
Structures with Multi-Index Parsing

To represent diverse table structures in a unified
way that is naturally compatible with Python pro-
grams, we propose to transform any table with vary-
ing structures, denoted as t, into a Pandas multi-

14538

Who is more likely to have cancer, the elder or the young?

Hierarchical Table

Title: Number and percentage of people who
are interviewed who have or have had illnesses.

Multi-index
representation

Prompt Code
generation

Few shot examples

Example 1

Example 2

Example n

……

Execute

The QA API
comp_l([
data.loc[(‘Illness’, ‘Cancer’, ‘Percent’), (‘All
Patients’, ‘Elders’)],
data.loc[(‘Illness’, ‘Cancer’, ‘Percent’), (‘All
Patients’, ‘Young’)],
[‘Elders’, ‘Young’]])

API calls if any

Python
Interpreter

Elder

Python code that may contain assistant APIs

Multi-index

parsing

Answer with external knowledge

Operation APIs
compare _larger([
data.loc[(‘Illness’, ‘Cancer’, ‘Percent’), (‘All
Patients’, ‘Elders’)],
data.loc[(‘Illness’, ‘Cancer’, ‘Percent’), (‘All
Patients’, ‘Young’)],
[‘Elders’, ‘Young’]])

Answer with Python execution

results

Illnese
Cold Cancer

total percent total percent

All patients 10,000 2.5% 200 0.3%

Elders 7,400 3.5% 126 0.9%

Young 2,600 1.5% 74 0.2%

Code LMs

Code LMs

Python
Interpreter

Figure 3: Our framework consists of three stages: (1) Multi-index parsing accepts one or more tables with diverse
table structures, and transforms them into a single hierarchical table, represented using a Pandas multi-index
representation m (a process described in §3.1). (2) We then provide a natural language question, in-context exemplar
annotations, and multi-index representation m as a prompt for pretrained code models like CODEX or STARCODER
for Python code generation, as described in §3.2 and §3.3. The prompt specifies examples of using our QA API and
operation APIs. (3) Finally, we execute the Python code, which could contain QA or operation APIs, on the Pandas
data frame, outputting the final results. Our API definitions are given in Figure 5 and Figure 4.

index representation,1 m. We denote this process as
multi-index parsing, which first converts a raw table
t to a bi-dimensional tree structure b = (T, L, V),
then parses it into a multi-index representation m.
The two steps are illustrated in Figure 2c.

First, we first transform a table t of any struc-
ture into a bi-dimensional tree representation b =
(T, L, V) as defined by Wang et al. (2021b). It
yields two coordinate trees: (i) the left tree L by
indexing the values V from the left header, and (ii)
the top tree T by indexing data cells V from the
top header. Specifically in the example Figure 2c,
T represents the deep blue area (i.e., two rows at
the top); L represents the first column to the left;
and V covers all the data cells from 10, 000 from
the top-left to 0.2% to the bottom right.

Next, we traverse the left and top trees and ex-
tract header path tuples from both header trees to
define the row indexes and column indexes in the
multi-index representation m, which can be used to
reconstruct the original table using Pandas seman-
tics. Specifically, we use a preorder traversal (as
illustrated in Algorithm 1) on both the top tree T
and the left tree L, and enumerate all paths starting
from the root node to each leaf header node. For
every such root-to-leaf path, we aggregate all cell
strings along the path into a tuple. For each header
tree, we collect all such tuples and correspondingly
define the row/column index list in the multi-index
representation m. For example, for the top header
in Figure 2c, Illness → Cold → total is one

1https://pandas.pydata.org/docs/reference/api/pandas.
MultiIndex.html

Algorithm 1 Preorder tree traversal for multi-
indexing.

result← list()
tempList← list()
procedure PREORDER(p: coordinate tree node,
result, tup)

if p is not tree root then
tempList← tempList+ (p.value,)

end if
if p.index is None then

results← results+ tempList
end if
for child in p.children do PRE-

ORDER(child, result, tempList)
end for
return result

end procedure

possible top header path, then we add (Illness,
Cold, total) to the column index list in m.

Note that this multi-index parsing process can
be readily applied to tables of diverse structures,
with a unified representation efficiently preserving
all structural information. In the special case of
simple-structured tables such as flat relational ta-
bles, both the top and left headers are represented
by single-layer trees and undergo a similar parsing
process as hierarchical structures. When dealing
with questions that involve multiple tables, we con-
vert all tables into multi-index objects, feed them to
the model, and let the model choose which parts it
will use to answer the question. For more detailed

14539

https://pandas.pydata.org/docs/reference/api/pandas.MultiIndex.html
https://pandas.pydata.org/docs/reference/api/pandas.MultiIndex.html

illustrations of this parsing process for tables of
different structures, please refer to §D.

3.2 Generating Python Programs

With table environments represented as multi-index
representation m, we generate Python programs p
to execute on m to yield the answer prediction a′.
Our method is general and not tied to any particular
code generation model, as long as the model has
sufficient natural language understanding and code
generation capability. As such, we validate our
approach using two code language models (code
LMs) for Python program generation: the propri-
etary CODEX model (Chen et al., 2021) and the
open-source STARCODER model (Li et al., 2023).

CODEX is a code LM based on GPT-3 (Chen
et al., 2021). We access it through OpenAI API
calls.2 We experiment with the strongest ver-
sion DAVINCI-002 with 175B parameters. STAR-
CODER is an open-source 15B code LM, which at
the time of this writing achieved top performance
among open-source models on many code gener-
ation benchmarks such as HumanEval (Li et al.,
2023). Both models are trained on a mixture of
natural language and code sequences. We gener-
ate code from both models using few-shot prompt-
ing (Brown et al., 2020), with prompts specifying
examples of the mapping from natural language
questions and tables to Python Pandas code. More
details follow in §3.4.

3.3 Incorporating Assistant APIs

We describe two types of API functions, Ques-
tion Answering (QA) APIs and Operation APIs,
to expand the ability of code LMs to incorporate
external knowledge and extra table operations.

Operation APIs Operation APIs are designed
to enhance the functionality of LM-generated pro-
grams. Since we use Python as the query language
and represent tables in Pandas, we are able to incor-
porate simple Python APIs into the solution. For
demonstration, we employ two simple comparison
APIs in this paper. We emphasize that our frame-
work is not tied to any specific operation API, and
therefore offers flexibility in designing customized
APIs for different datasets or question types.

The design of the comparison APIs is inspired
by the empirical observation that CODEX is better
at handling numerical questions, such as “what is

2One can call the CODEX model via API without knowing
the internal process or model parameters.

def compare_larger(values: list[float], args: list[str]) -> str:
 “““Return the argument associated with the larger value.”””
 return args[values.index(max(values))]

def compare_smaller(values: list[float], args: list[str]) -> str:
 “““Return the argument associated with the smaller value.”””
 return args[values.index(min(values))]

Figure 4: Illustration of the two comparison operation
APIs.

the age of Person A?”, than qualitative questions
like “which is higher, A or B?”. We design two
comparison APIs, as shown in Figure 4, to address
this issue. Each API takes a list of values and a list
of indices and returns the largest or the smallest
index according to the values. An example show-
ing how the comparison APIs are used is shown in
Figure 1. We find in §5 that the additional opera-
tions enabled by these APIs substantially improve
performance.

QA API Sometimes TableQA questions require
external knowledge which is not included in the
given table. The QA API, proposed by Cheng et al.
(2023), is designed to access external knowledge
when solving table QA tasks, by making calls to an
LLM.

def table_qa(table, question: str, values: list[float], args: list[str]) -> str:
”””Given a table, write code to answer the question”””
……
mapped_qa_column = question_answering([f“Is {i} a city in Canada?”

for i in table[‘cities'], values, args)
selected_columns = mapped_qa_column[mapped_qa_column==True]
……

def question_answering(question: list[str]):
“““Return the model answer.”””
Q = [f”Answer question with True or False. {q}” for q in question]
A = [call_generative_model_api(q) for q in Q]
return A

Figure 5: Illustration of the question answering API.

As illustrated in Figure 5, during the table ques-
tion answering stage, we prompt the LLM to write
questions itself. These generated questions will
direct the code parsing program to call the QA API
function. The QA API takes in this question and a
set of table indices as parameters. For each value
in the questioned column, we insert the value into
the generated question and prompt the model again
to give an answer to this question. Then, we select
the rows with true values in the returned column.
We include a real case from HiTab (Cheng et al.,
2022) in Figure 11 which requires geographical
knowledge to accurately answer the question.

14540

3.4 Learning APIs In Context

Building upon the in-context learning ability of
large language models (Brown et al., 2020), we use
examples of API usage as a few-shot context for
LM generation of programs. Our LM prompt is
designed to be a mixture of instructions and solu-
tion examples. The instructions specify API usage
guidelines and scenarios in which it should be used.
The solution examples incorporate a balanced mix
of examples, some of which utilize the assistant
API to perform tasks, while others tackle the ques-
tion with Pandas semantics directly. With this di-
versity of input examples, we aim to encourage
the usage of the assistant APIs in the code gener-
ated by the LMs, while avoiding over-reliance on
some APIs. Refer to §B for more complete prompt
templates we used for different datasets.

4 Experiments

In this section, we first introduce the experiment
(§4.1) and evaluation settings (§4.2), then present
our results and analysis (§4.3). We also test the
robustness of our method with different code mod-
els (§4.4) and intermediate query language forms
(§4.5).

4.1 Implementation Details

We use the STARCODER 16B and code-davinci-
002 (CODEX) models to generate Python programs.
We set the sampling temperature to 0.7 for both
models. For every question, we generate five model
predictions and select the candidate with the high-
est log probability. We include five shots in the
prompt for WikiTQ, HiTab, and Spider datasets,
and eight shots for the AIT dataset.

4.2 Evaluation Metrics

We evaluate performance using the Execution Ac-
curacy (EA) metric following Pourreza and Rafiei
(2023) and Cheng et al. (2023). EA measures the
percentage of questions for which our method pro-
duces programs that yield correct answers. We did
not include exact matching (EM) as the measure
to determine if the predicted query is equivalent
to the gold query, since it can lead to false nega-
tive evaluations when the semantic parser generates
novel syntax structures (Pourreza and Rafiei, 2023;
Yu et al., 2018). Moreover, as Python is our main
query and API function language and most datasets
do not provide golden queries in Python, EM is not
a practical measure in our case.

4.3 Experiment Results

Table 2 shows our main experiment results across
the datasets described in §2.2, encompassing varied
table structures, using the CODEX (code-davinci-
002) code LM. We compare our full method (Ours)
with an ablated version (CODEX) that only uses
few-shot prompting of the code LM, without includ-
ing our multi-index structure and API functions
(see §5.2 for details and more ablations). We also
give the performance of state-of-the-art baselines
for each dataset from past work.

Dataset HiTab Spider AIT-QA WikiTQ

Baseline
MAPO DIN-SQL RCI BINDER

40.7 61.5 51.8 54.8

Codex 59.6 61.2 77.8 41.7

w/ API 69.3 63.8 78.0 42.4(Ours)

Table 2: Execution accuracy on four TableQA dataset
with CODEX generated programs, in comparison to
state-of-the-art baselines: the MAPO (Liang et al., 2018)
baseline from HiTab (Cheng et al., 2022), DIN-SQL
(Pourreza and Rafiei, 2023) for Spider, RCI (Glass et al.,
2021) for AIT-QA, and BINDER (Cheng et al., 2023).3

Our approach, which uses a unified representa-
tion for tables and question semantics, typically
improves over past work despite their use of rep-
resentations tailored to individual datasets. In par-
ticular, our approach obtains an improvement of
28.6% over the past state-of-the-art training-based
method (Liang et al., 2018), and a 9.7% improve-
ment on plain few-shot prompted Codex models
for the HiTab dataset.

One exception is the WikiTQ dataset, where
our method underperforms the BINDER approach
(Cheng et al., 2023). We attribute this to the supe-
rior alignment of BINDER’s API with the question
characteristics of the WikiTQ dataset, which in-
cludes many questions that require external knowl-
edge.

Meanwhile, we find strong performance from us-
ing Python as a QA representation of the code LM
alone: in particular, on the HiTab dataset, we see
that the Codex model already achieves an 18.9%
improvement compared to previous training-based
methods (Liang et al., 2018).

3For a fair comparison with our approach, we use 5-shot
prompting for BINDER rather than the 12-shot experiments in
Binder et al. (2022), which decreases performance compared
to the results in their paper.

14541

4.4 Robustness to Code Generation Model
We next analyze method performance when using
the recently released open-source code generation
model STARCODER-16B (Li et al., 2023). The
findings are compiled and presented in Table 3.

While the base model performance with STAR-
CODER is lower than CODEX, we still observe an
improvement from our generated API across all
settings, with a substantial improvement on the
AIT-QA dataset, presumably because a large por-
tion of the questions in AIT-QA can be more easily
solved using our API functions. This indicates that
our approach is compatible with a range of code
generation LMs, and performance may scale with
future improvements in open-source code LMs.

Dataset HiTab AIT-QA WikiTQ

STARCODER 29.0 4.0 22.4
w/ API 30.1 26.1 23.2

Table 3: Execution accuracy on four TableQA datasets
with STARCODER generated programs.

4.5 Robustness to Intermediate Forms
One feature of our Python and Pandas-based
method for TableQA is that it is modular, and can
use existing API methods from other Python li-
braries when appropriate. In this section, we per-
form a case study where we use the SQL querying
API of the pandasql extension library for Pandas.4

We experiment with the WikiTQ dataset since all
tables within are relational types, the operations on
which can be readily covered by the SQL grammar.

Similarly to the in-context learning configuration
introduced in §3.2, we adapt our input to prompt
the model to generate SQL queries. An example
prompt is shown in Figure 6.

The generated SQL queries are executed on Pan-
das data frames and return Python objects, hence,
we can still retain our same API functions and
multi-index data frame representation. Please find
more details about the prompt and code in §C.

The experimental results with and without the
SQL API are presented in Table 4. We see that
SQL outperforms Python on the WikiTQ dataset,
which we suspect is because this relational dataset
affords short SQL queries, which are easier to gen-
erate than long Python functions for code LMs
trained on sufficient amounts of SQL. The primary

4https://pypi.org/project/pandasql/

WikiTQ SQL Prompt:
You are a helpful assistant in writing code to answer questions. Write sql query
behind "SQL:" to answer the given question correctly.
All column types are set to str by default. Please first convert needed columns to the
correct type if needed.
Please make sure all outputs are dataframes. Refer to these exaples:

[FEW SHOTS]

Parse the question into SQL based on the given table below.
CREATE TABLE data(

Year text,
……

Avg. Attendance text)
[3 EXAMPLE ROWS]
Q: what was the last year where this team was a part of the usl a-league?

Figure 6: An example prompt for a model to generate
SQL queries on the WikiTQ dataset.

Code Model Query Language
Python w/ API SQL w/ API

STARCODER 15.6 15.6 22.4 23.2
CODEX 41.7 42.4 45.4 46.7

Table 4: Execution accuracy on WikiTQ when generat-
ing Python and SQL programs.

reason for the need to generate very long Python
functions is to accommodate different data input
types. Nevertheless, we see improvements from
our API functions when applied on top of either
query language in nearly all settings.

5 Ablation Studies

We conduct ablation analyses on the HiTab dataset
to examine the improvements brought by assistant
API functions (§5.1) and multi-index parsing (§5.2).
We refer to multi-index parsing as w/ MI, and de-
note the opposing table flattening approach as w/o
MI in the result tables.

API Functions Multi-Index
QA Operation w/o MI w/ MI

✗ ✗ 59.6 56.0
✓ ✗ 57.4 58.7
✓ ✓ 59.1 69.4

Table 5: Comparing CODEX execution accuracy on
HiTab by removing multi-index parsing or helper API
functions. MI stands for Multi-Index parsing. For exper-
iments without MI, we employ the flattening approach
(Figure 7).

5.1 API Functions
We first study the improvement brought by API
functions of different types. As described in §3.3,
we provide the model with (i) the QA API, and (ii)

14542

https://pypi.org/project/pandasql/

Flattened Pandas dataframe

Flattening
Illness

Cold Cancer

total percent total percent

All patients 10,000 2.5% 200 0.3%

Elders 7,400 3.5% 126 0.9%

Young 2,600 1.5% 74 0.2%

Hierarchical table

Illness Cold_total Cold_percent Cancer_total Cancer_percent

All patients 10,000 2.5% 200 0.3%

Elders 7,400 3.5% 126 0.9%

Young 2,600 1.5% 74 0.2%

Figure 7: Representing a structured table by flattening hierarchical headers.

operation APIs. In comparison to the base setting
in which neither type of API is utilized, we add one
type of API at a time to examine their gains.

As shown in Table 5, both types of APIs are
helpful. Comparing the two API types, the opera-
tion API brings more marginal improvement than
that of the QA API. In particular, adding the QA
API increases performance by 2.7%, while further
adding the operation APIs improves by another
10.7%, compared to the full system without APIs.

5.2 Multi-Index Transformation
Next, we study the contribution of adopting multi-
index as a hierarchical table representation.

In comparison to our multi-index parsing base-
line, we experiment with an alternative table header
flattening approach that has been adopted for ta-
ble processing in many works (Parikh et al., 2020;
Liu et al., 2022; Wang et al., 2022). More specif-
ically, we flatten the top header hierarchy into a
single-row relational header by concatenating all
cell strings from the root to each leaf header node.
Note that this process ignores the header informa-
tion in dimensions other than the top and treats
them as normal table cells. This flattened represen-
tation is then integrated into our framework using
Python queries, code models, and API calls to fa-
cilitate the ablation study. An illustration of this
flattening process is shown in Figure 7.

As shown in Table 5, the execution accuracy
decreases by 3.6% with the multi-index approach
compared to the table flattening approach when no
API is included. However, as we involve QA and
operation APIs, the multi-index approach demon-
strates a 10.3% improvement over that without
multi-indexing. This indicates that the proposed
multi-index representation is essential in preserving
the rich structural information of hierarchical ta-
bles, and can be leveraged by our API operations.

6 Related Work

QA over Varied Table Structures Existing
methods for table QA face many challenges both

within specific table structures and across table
types. SQL queries perform well in solving ques-
tions with relational tables (Pasupat and Liang,
2015; Yu et al., 2018), but their grammar is often
unable to cover the entire spectrum of questions
(Guo et al., 2019). Domain-specific logical forms
are often favored when handling more complicated
table structures (Wang et al., 2021a; Katsis et al.,
2022), queries on text (Gupta et al., 2019), and
grounded environments such as visual question an-
swering (Andreas et al., 2016a,b; Johnson et al.,
2017). However, these specifically designed log-
ical forms do not support the operations needed
outside their intended domain (Cheng et al., 2022).
In contrast to previous methods which focus on
adapting their solutions to certain table structures,
we transform table structures using the multi-index
format and utilize the natural flexibility within the
Python language. Furthermore, we also introduce
the usage of custom API functions as a modular
approach to extend the framework.

Program generation and assistant functions
Several works have leveraged program generation
to answer questions or carry out planning tasks
(Singh et al., 2022; Liang et al., 2022) within other
environments such those involving visual modali-
ties (Subramanian et al., 2023; Surís et al., 2023;
Gupta and Kembhavi, 2023). Past work has also
proposed connecting natural and programming lan-
guages by adding textual QA abilities to programs
(Cheng et al., 2023) or adding programmatic opera-
tions to NL (Gao et al., 2022; Chen et al., 2022). In
comparison, we focus more on extending the lim-
ited built-in operations in programming languages
(e.g., Python), and incorporate helper API func-
tions to enable broader capabilities for TableQA
tasks. This is similar to the goal of extending func-
tions into a given programming language (Herzig
et al., 2020; Guo et al., 2019), however, our APIs
also benefit from being easily implemented as
Python functions themselves.

14543

7 Conclusion

We introduced a framework for solving general
TableQA tasks. This framework is built upon three
core components: a unifying multi-index represen-
tation, Python programs as the query language, and
code generation by prompting a large pretrained
code model. Using CODEX as the code model, we
demonstrate improvements over the state-of-the-art
performance for multiple datasets, each with its
unique table structures and challenges. Through
ablations, we show that our proposed multi-index
and API functions are both critical to the success
of the framework, with the largest improvements
on datasets involving hierarchical tables. We also
observe improvements in performance for an open-
source model, STARCODER, demonstrating the ef-
fectiveness of our approach with different code
models.

Limitations

We note that though our general framework con-
sistently improves performance across datasets,
we identify through ablations components in our
framework that, individually applied, adversely af-
fect performance on particular datasets. However,
these same components are able to improve perfor-
mance in combination with other features of the
framework, as well as across other datasets. Thus,
we consider these capabilities to be a step towards
solving general TableQA tasks.

One limitation of our current framework is its
manual definition of API functions, which may not
extend to other datasets with disparate table struc-
tures, or involve richer grounded settings. Thus,
a future direction for our work is to automate the
API generation for different QA datasets and ques-
tions. We envision an interactive framework that,
given feedback on its performance on a dataset,
constructs new API functions to solve question
types with lower performance.

References
Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and

Dan Klein. 2016a. Learning to compose neural net-
works for question answering. In NAACL.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and
Dan Klein. 2016b. Neural module networks. In
CVPR, pages 39–48.

Arne Binder, Leonhard Hennig, and Bhuvanesh Verma.
2022. Full-text argumentation mining on scientific
publications. In Proceedings of the first Workshop on
Information Extraction from Scientific Publications,
pages 54–66, Online. Association for Computational
Linguistics.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Advances in Neural Information Processing Systems,
volume 33, pages 1877–1901.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W Cohen. 2022. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588.

Zhe Chen and Michael Cafarella. 2013. Automatic web
spreadsheet data extraction. In Proceedings of the
3rd International Workshop on Semantic Search over
the Web, pages 1–8.

Zhoujun Cheng, Haoyu Dong, Zhiruo Wang, Ran Jia,
Jiaqi Guo, Yan Gao, Shi Han, Jian-Guang Lou, and
Dongmei Zhang. 2022. HiTab: A hierarchical table
dataset for question answering and natural language
generation. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1094–1110, Dublin,
Ireland. Association for Computational Linguistics.

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu
Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong,
Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer,
Noah A. Smith, and Tao Yu. 2023. Binding language
models in symbolic languages. In The Eleventh Inter-
national Conference on Learning Representations.

14544

https://aclanthology.org/2022.wiesp-1.7
https://aclanthology.org/2022.wiesp-1.7
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/2022.acl-long.78
https://doi.org/10.18653/v1/2022.acl-long.78
https://doi.org/10.18653/v1/2022.acl-long.78
https://openreview.net/forum?id=lH1PV42cbF
https://openreview.net/forum?id=lH1PV42cbF

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2022. Pal: Program-aided language
models. arXiv preprint arXiv:2211.10435.

Michael Glass, Mustafa Canim, Alfio Gliozzo, Sa-
neem Chemmengath, Vishwajeet Kumar, Rishav
Chakravarti, Avi Sil, Feifei Pan, Samarth Bharadwaj,
and Nicolas Rodolfo Fauceglia. 2021. Capturing row
and column semantics in transformer based question
answering over tables. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 1212–1224, Online.
Association for Computational Linguistics.

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-
Guang Lou, Ting Liu, and Dongmei Zhang. 2019. To-
wards complex text-to-SQL in cross-domain database
with intermediate representation. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4524–4535, Florence,
Italy. Association for Computational Linguistics.

Nitish Gupta, Kevin Lin, Dan Roth, Sameer Singh, and
Matt Gardner. 2019. Neural module networks for rea-
soning over text. arXiv preprint arXiv:1912.04971.

Tanmay Gupta and Aniruddha Kembhavi. 2023. Vi-
sual programming: Compositional visual reasoning
without training. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pages 14953–14962.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Müller, Francesco Piccinno, and Julian Eisenschlos.
2020. TaPas: Weakly supervised table parsing via
pre-training. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4320–4333, Online. Association for Computa-
tional Linguistics.

Justin Johnson, Bharath Hariharan, Laurens van der
Maaten, Judy Hoffman, Li Fei-Fei, C. Lawrence Zit-
nick, and Ross Girshick. 2017. Inferring and execut-
ing programs for visual reasoning. In Proceedings
of the IEEE International Conference on Computer
Vision (ICCV).

Yannis Katsis, Saneem Chemmengath, Vishwajeet Ku-
mar, Samarth Bharadwaj, Mustafa Canim, Michael
Glass, Alfio Gliozzo, Feifei Pan, Jaydeep Sen,
Karthik Sankaranarayanan, and Soumen Chakrabarti.
2022. AIT-QA: Question answering dataset over
complex tables in the airline industry. In Proceed-
ings of the 2022 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies: Industry
Track, pages 305–314, Hybrid: Seattle, Washington
+ Online. Association for Computational Linguistics.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim,
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo,

Thomas Wang, Olivier Dehaene, Mishig Davaadorj,
Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko,
Nicolas Gontier, Nicholas Meade, Armel Zebaze,
Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu,
Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo
Wang, Rudra Murthy, Jason Stillerman, Siva Sankalp
Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey,
Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya,
Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo
Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel
Romero, Tony Lee, Nadav Timor, Jennifer Ding,
Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri
Dao, Mayank Mishra, Alex Gu, Jennifer Robinson,
Carolyn Jane Anderson, Brendan Dolan-Gavitt, Dan-
ish Contractor, Siva Reddy, Daniel Fried, Dzmitry
Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis,
Sean Hughes, Thomas Wolf, Arjun Guha, Leandro
von Werra, and Harm de Vries. 2023. Starcoder: may
the source be with you!

Chen Liang, Jonathan Berant, Quoc Le, Kenneth D. For-
bus, and Ni Lao. 2017. Neural symbolic machines:
Learning semantic parsers on Freebase with weak
supervision. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 23–33, Vancouver,
Canada. Association for Computational Linguistics.

Chen Liang, Mohammad Norouzi, Jonathan Berant,
Quoc Le, and Ni Lao. 2018. Memory augmented pol-
icy optimization for program synthesis and semantic
parsing. In Proceedings of the 32nd International
Conference on Neural Information Processing Sys-
tems, NIPS’18, page 10015–10027, Red Hook, NY,
USA. Curran Associates Inc.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol
Hausman, Brian Ichter, Pete Florence, and Andy
Zeng. 2022. Code as policies: Language model
programs for embodied control. arXiv preprint
arXiv:2209.07753.

Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi
Lin, Weizhu Chen, and Jian-Guang Lou. 2022.
TAPEX: Table pre-training via learning a neural SQL
executor. In International Conference on Learning
Representations.

Kyosuke Nishida, Kugatsu Sadamitsu, Ryuichiro Hi-
gashinaka, and Yoshihiro Matsuo. 2017. Understand-
ing the semantic structures of tables with a hybrid
deep neural network architecture. In Proceedings of
the Thirty-First AAAI Conference on Artificial Intelli-
gence, page 168–174.

Ankur Parikh, Xuezhi Wang, Sebastian Gehrmann, Man-
aal Faruqui, Bhuwan Dhingra, Diyi Yang, and Dipan-
jan Das. 2020. ToTTo: A controlled table-to-text
generation dataset. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1173–1186, Online. As-
sociation for Computational Linguistics.

Panupong Pasupat and Percy Liang. 2015. Composi-
tional semantic parsing on semi-structured tables. In

14545

https://doi.org/10.18653/v1/2021.naacl-main.96
https://doi.org/10.18653/v1/2021.naacl-main.96
https://doi.org/10.18653/v1/2021.naacl-main.96
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2022.naacl-industry.34
https://doi.org/10.18653/v1/2022.naacl-industry.34
http://arxiv.org/abs/2305.06161
http://arxiv.org/abs/2305.06161
https://doi.org/10.18653/v1/P17-1003
https://doi.org/10.18653/v1/P17-1003
https://doi.org/10.18653/v1/P17-1003
https://openreview.net/forum?id=O50443AsCP
https://openreview.net/forum?id=O50443AsCP
https://doi.org/10.18653/v1/2020.emnlp-main.89
https://doi.org/10.18653/v1/2020.emnlp-main.89
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.3115/v1/P15-1142

Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1470–
1480, Beijing, China. Association for Computational
Linguistics.

Mohammadreza Pourreza and Davood Rafiei. 2023.
Din-sql: Decomposed in-context learning of
text-to-sql with self-correction. arXiv preprint
arXiv:2304.11015.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit
Goyal, Danfei Xu, Jonathan Tremblay, Dieter
Fox, Jesse Thomason, and Animesh Garg. 2022.
Progprompt: Generating situated robot task plans
using large language models. arXiv preprint
arXiv:2209.11302.

Sanjay Subramanian, Medhini Narasimhan, Kushal
Khangaonkar, Kevin Yang, Arsha Nagrani, Cordelia
Schmid, Andy Zeng, Trevor Darrell, and Dan Klein.
2023. Modular visual question answering via code
generation.

Dídac Surís, Sachit Menon, and Carl Vondrick. 2023.
Vipergpt: Visual inference via python execution for
reasoning. arXiv preprint arXiv:2303.08128.

Fei Wang, Kexuan Sun, Muhao Chen, Jay Pujara, and
Pedro Szekely. 2021a. Retrieving complex tables
with multi-granular graph representation learning. In
Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, SIGIR ’21, page 1472–1482, New
York, NY, USA. Association for Computing Machin-
ery.

Yushi Wang, Jonathan Berant, and Percy Liang. 2015.
Building a semantic parser overnight. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1332–1342, Beijing,
China. Association for Computational Linguistics.

Zhiruo Wang, Haoyu Dong, Ran Jia, Jia Li, Zhiyi Fu,
Shi Han, and Dongmei Zhang. 2021b. Tuta: Tree-
based transformers for generally structured table pre-
training. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining,
pages 1780–1790.

Zhiruo Wang, Zhengbao Jiang, Eric Nyberg, and Gra-
ham Neubig. 2022. Table retrieval may not necessi-
tate table-specific model design. In Proceedings of
the Workshop on Structured and Unstructured Knowl-
edge Integration (SUKI), pages 36–46, Seattle, USA.
Association for Computational Linguistics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018

Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3911–3921, Brussels, Bel-
gium. Association for Computational Linguistics.

Fengbin Zhu, Wenqiang Lei, Youcheng Huang, Chao
Wang, Shuo Zhang, Jiancheng Lv, Fuli Feng, and
Tat-Seng Chua. 2021. Tat-qa: A question answering
benchmark on a hybrid of tabular and textual content
in finance. arXiv preprint arXiv:2105.07624.

14546

https://arxiv.org/pdf/2304.11015
https://arxiv.org/pdf/2304.11015
http://arxiv.org/abs/2306.05392
http://arxiv.org/abs/2306.05392
https://doi.org/10.1145/3404835.3462909
https://doi.org/10.1145/3404835.3462909
https://doi.org/10.3115/v1/P15-1129
https://doi.org/10.18653/v1/2022.suki-1.5
https://doi.org/10.18653/v1/2022.suki-1.5
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425

A Few-shot Results

We further conduct experiments on WikiTableQues-
tions and HiTab datasets to study the influence of
different shots in the prompt. Results are shown in
Table 6.

Dataset 5 shots 12 shots

HITAB 69.3 70.0
WIKITQ 42.4 42.8

Table 6: Execution accuracy on HITAB and WIKITQ
with different number of prompts.

B Prompt Templates

Below we show the templates that we used to
prompt code generation models to give answers.

HiTab and AIT-QA Prompt:
Generate Python code given the table and a question about it.

[FEW SHOTS]

Table title: Number and percentage of people interviewed who have illness.
top_root = [(Illnese, cold, total), (Illnese, cold, percent), (Illnese, cancer, total),
(Illnese, cancer, percent)]
left_root = [(All patients, Elders), (All patients, Young)]
df = pd.DataFrame(data_matrix, index=left_root, columns=top_root)

[3 EXAMPLE ROWS]

Question: Who is more likely to have cancer, the elder or the young?

Figure 8: An prompt example for hierarchical table
question answering problems.

C Incorporating SQL into Python Pandas

The prompt template we use for SQL querying in
shown in Figure 9a and Figure 9b. The generated
SQL query is wrapped in pandasql5 queries and
executed using Python SQLite tools. The return
value for these queries is pandas data frames, upon
which our self-designed APIs will take effect. This
way of combining SQL and Python makes it possi-
ble to directly apply our Python API functions to
SQL-returned results.

D Examples for Multi-Index Parsing

See examples of multi-index parsing in both hierar-
chical table and flat tables in Figure 10.

5https://pypi.org/project/pandasql/

14547

https://pypi.org/project/pandasql/

Spider SQL Prompt:
You are a helpful assistant in writing code to answer questions. Write sql query
behind "SQL:" to answer the given question correctly. You will need to first choose
the correct tables to use, and then write the query.
All column types are set to str by default. Please first convert needed columns to the
correct type if needed.
Please make sure all outputs are dataframes. Refer to these exaples:

[FEW SHOTS]

Parse the question into SQL based on the given table below.
CREATE TABLE [TABLE_1_TITLE](

[TABLE 1 SCHEMA])

CREATE TABLE [TABLE_2_TITLE](
[TABLE_2_SCHEMA])

…

CREATE TABLE [TABLE_N_TITLE](
[TABLE_N_SCHEMA])

Q: what was the last year where this team was a part of the usl a-league?

(a) An prompt example for the Spider dataset.

WikiTQ SQL Prompt:
You are a helpful assistant in writing code to answer questions. Write sql query
behind "SQL:" to answer the given question correctly.
All column types are set to str by default. Please first convert needed columns to the
correct type if needed.
Please make sure all outputs are dataframes. Refer to these exaples:

[FEW SHOTS]

Parse the question into SQL based on the given table below.
CREATE TABLE data(

Year text,
……

Avg. Attendance text)
[3 EXAMPLE ROWS]
Q: what was the last year where this team was a part of the usl a-league?

(b) An prompt example for the WikiTQ dataset.

Figure 9

Source and mechanism All full-time graduate
students

Master’s

Total Percent All Percent
All full-time 433916 100.0 209221 100.0

Self-support 161641 37.3 139373 66.0
All sources of support 272275 62.7 69848 33.4

Federal 65999 15.2 10736 5.1
Institutional 182135 42.0 52319 25.0

All mechanisms of support 272275 62.7 69848 33.4

top_root: [
(Source…, full-time…, total),
(Source…, full-time…, percent),
(Source…, Master’s, All),
(Source…, Master’s, Percent)
]

left_root: [
(full-time,self-support,None),
(full-time, All sources of
support, None),
…
]

Table

Original Hierarchical Table Hierarchical Tree from HiTab Multi-index Object

① Binary
Tree Rep. ② Alg. 1 df = pd.DataFrame(

data_matrix,
index= top_root,
columns= left_root
)

Top Root

Source and
mechanism

Graduate Master

Total
Percent

All Percent

Left Root

All full-time

……

(a) A hierarchical table example adapted from HiTab

Table 1
top_root: [
(id, name), (id, building),
(id, budget), …]

left_root: [
(1), (2), …
]

Table

Top Root

id (primary
key)

name building

Parsed Tree from Spider
(Table 1 as an example)

Multi-index Objects

id (primary key) name building budget …

1 Robert A 10,000 …

2 Bill B 20,000 …

… … … … …

id (primary key) name department_id salary …

1 Robert 01 5,000 …

2 Bill 02 2,000 …

… … … … …

Table 1: department

Table 2: instructor

Original multi-table dataset

Table 2
top_root: [
(id, name), (id,
department_id), (id,
salary), …]

left_root: [
(1), (2), …
]

Left Root

……1
① Binary
Tree Rep. ② Alg. 1

df1 =
pd.DataFrame(
data_matrix,
index= top_root,
columns= left_root
)

df2 =
pd.DataFrame(
data_matrix,
index= top_root,
columns=left_root
)

(b) A multi-table example adapted from Spider

Figure 10: Illustration of multi-index parsing with two datasets. We first transform the original table(s) into parsed
hierarchical tree(s), similar to HiTab (Cheng et al., 2022). Then we parse the hierarchical tree(s) using depth-first
traversal to form the multi-index lists. In Figure 10a, the top root is Source and mechanism, whose children define
different kinds of source and mechanism of the participants, while the left root is All full-time, whose children
consist of different kinds of full-time jobs. With the final output of the multi-index representation, all cells can be
uniquely identified, and thus can reconstruct the table using a simple Pandas code. We also present an example of
flat tables in Figure 10b, demonstrating the general applicability of our method.

Province
Cold Cancer

total percent total percent

Canada 10,000 2.5% 200 0.3%

Newfoundland and Labrador 7,400 3.5% 126 0.9%

Prince Edward Island 2,600 1.5% 74 0.2%

Winnipeg 1,600 5.5% 92 0.4%

Rest of Manitoba 2,600 2.5% 14 0.2%

… … … … …

Figure 11: The table is the distribution of new immigrants in different regions/provinces of Canada adapted from
HiTab. One question related to this table is “how much percentage point has Manitoba rose when it comes to
immigrants intended landing destination”. However, the information that Winnipeg is a city of Manitoba is not
included in the table itself. In such case, no method we tested could give the correct answer, which should contain
a numerator that adds up "Winnipeg" and "Rest of Manitoba". In contrast, by calling QA API qa("Manitoba?",
left root, 1) to Codex, which returns an answer yes to both "Winnipeg" and "Rest of Manitoba", code models
could return the accurate answer to this question.

14548

