
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 14384–14396
December 6-10, 2023 ©2023 Association for Computational Linguistics

14384



mitigate these issues, a natural solution is distilling
the knowledge from LLMs (i.e. teacher models)
into smaller, more efficient models (i.e. student
models). The majority of prior research has em-
phasized using the "explanation" component of the
CoT approach as the distilled knowledge (Ho et al.,
2022; Li et al., 2022a; Shridhar et al., 2022b; Magis-
ter et al., 2022). Nonetheless, these methodologies
exhibit certain limitations. Firstly, small student
models may struggle to understand CoT explana-
tions, potentially impeding their learning efficacy.
Evidence from (Wei et al., 2022b,a) indicates that
only exceptionally large language models possess
the capability to perform CoT during reasoning.
As a result, many student models (Ho et al., 2022;
Li et al., 2022a; Magister et al., 2022) trained on
explanations do not attain satisfactory accuracy in
MWP-solving tasks. Secondly, those distillation
processes lack feedback from the student model to
the LLM teacher, and thus, neglect to consider the
knowledge acquisition state of the student.

In this paper, we also concentrate on harness-
ing the strengths of LLMs to coach smaller, more
efficient MWP solvers, but introduce a novel
method for addressing the limitations of previ-
ous approaches: Customized Exercise for MAth
Learning (CEMAL). We reframe the problem by
shifting our focus from providing explanations for
existing exercises (i.e., training set) to identifying
the student model’s learning needs and generat-
ing new exercises tailored to them. Our CEMAL
methodology offers a new perspective on knowl-
edge distillation with LLMs by focusing on cus-
tomized exercise generation, based on the student
models’ current learning state. This enables more
effective and adaptive learning, addressing limita-
tions in prior approaches that rely heavily on gen-
erating more high-quality explanations to existing
datasets. This approach offers several advantages:
(1) it does not impose CoT ability requirements on
small models, allowing them to learn more effec-
tively, (2) it takes into account the learning status
of the student model during training.

In fact, our approach CEMAL seamlessly aligns
with two fundamental tasks in educational sci-
ence: knowledge tracing and personalized learn-
ing. Knowledge tracing pertains to monitoring and
modeling a student’s evolving knowledge state over
time (Corbett and Anderson, 1994; Abdelrahman
et al., 2023). This process enables the identifica-
tion of a learner’s strengths and weaknesses, usu-

ally by exercises, thereby facilitating the genera-
tion of tailored educational experiences. Person-
alized learning is also of vital importance (Hattie
and Timperley, 2007; Grant and Basye, 2014). Be-
ing cognizant of the student model’s learning sta-
tus ensures the optimally designed exercises are
generated to address the model’s specific weak-
nesses. By monitoring the learning progress, our
proposed method can dynamically adapt to the stu-
dent model’s evolving knowledge state, fostering
more effective learning outcomes. In our method,
we integrate knowledge tracing and learning status
into the distillation process to establish a robust
connection between the LLM teacher and the stu-
dent model, yielding a more interactive and cus-
tomized learning experience. Consequently, this ap-
proach substantially enhances the student model’s
problem-solving capabilities. As illustrated in Fig-
ure 1, our knowledge distillation approach achieves
competitive accuracy on the SVAMP dataset, but
employs significantly fewer parameters compared
to state-of-the-art LLMs, such as GPT-3+CoT and
PaLM+CoT with few-shot prompting (Wei et al.,
2022b).

Our contribution can be summarized as follows:

• We propose a novel method named CEMAL
that utilizes LLMs to generate additional data
in the form of targeted practice problems, ad-
dressing the student model’s weak areas.

• Our approach is evaluated on multiple MWP
datasets, including both in-distribution (ID)
and out-of-distribution (OOD) tests (Koncel-
Kedziorski et al., 2016; Miao et al., 2020; Pa-
tel et al., 2021). We show that our method
is significantly effective in improving student
models under the OOD setting.

• The experimental results demonstrate that our
method achieves state-of-the-art accuracy, sig-
nificantly outperforming fine-tuned baselines.
Notably, the student model trained with our
method even surpasses LLMs with few-shot
CoT prompting, despite having significantly
fewer parameters.

2 Related Work

2.1 Math Word Problem Solving
After many years of research on rule-based algo-
rithms (Hosseini et al., 2014; Mitra and Baral,
2016) and semantic parsing methods (Shi et al.,
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2015; Huang et al., 2017), deep learning has
become the predominant technique for solving
MWPs, thanks to its superior performance and
better generalization ability. Deep neural solver
(DNS) (Wang et al., 2017) was among the first to
apply Seq2Seq models with RNN encoder and de-
coder for MWP solving, and subsequent research
has mainly explored different structures of RNN-
to-RNN solvers (Wang et al., 2018; Liu et al.,
2019a; Xie and Sun, 2019; Li et al., 2019; Zhang
et al., 2020; Liu et al., 2021). More recently, pre-
trained language models such as BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019b) have
demonstrated remarkable language understanding
abilities, leading researchers to replace MWP en-
coders with these models (Li et al., 2022b; Huang
et al., 2021; Shen et al., 2021; Patel et al., 2021;
Liang et al., 2022a), resulting in significant accu-
racy improvements. Recently, LLMs have shown
great success in MWP solving, with much superior
accuracy compared to fine-tuned baselines, simply
by being provided with a few CoT examples of
the problem-solving processes. Interestingly, re-
searchers also found that LLMs can reason with
zero-shot prompts such as "Let’s think step by step"
(Kojima et al., 2022). Currently, numerous studies
have been conducted to improve the performance
of LLMs, including recent works by (Wang et al.,
2023; Chen et al., 2022; Zhou et al., 2023; Diao
et al., 2023; Liang et al., 2023).

In this paper, we leverage the great success of
LLMs to facilitate the training of the student solver.
Our approach utilizes an efficient fine-tuned solver
as its backbone and yields even superior perfor-
mance to LLMs, further pushing the limit of deep
learning methods in MWP solving.

2.2 Large Language Models for Knowledge
Distillation and Data Generation

In recent years, there has been a surge of interest in
knowledge distillation from LLMs to smaller mod-
els. Due to the unavailability of model structure for
LLMs, their application is often limited to prompt
design and subsequent data generation. There-
fore, data generation has become an integral part
of knowledge distillation in the context of LLMs.
Several studies have investigated the potential of
LLMs in knowledge distillation and data genera-
tion. For instance, PromDA (Wang et al., 2022)
applies prompt-based data augmentation to low-
resource natural language understanding tasks, and

AugESC (Zheng et al., 2022) leverages the GPT-J
(Wang and Komatsuzaki, 2021) model and utilizes
publicly available dialog posts to trigger conversa-
tions on various topics. Then, West et al. (2022) em-
ploys a generalized LLM to create common sense
knowledge graphs, while WANLI (Liu et al., 2022)
combines LLM-generated examples with human
evaluation to establish diverse natural language in-
ference datasets. Additionally, ZeroGen (Ye et al.,
2022b) proposes a zero-shot learning approach by
generating datasets using pre-trained LLMs, Pro-
Gen (Ye et al., 2022a) uses the quality of generated
samples as feedback to LLMs to improve the data
generation, and Shao et al. (2023) feeds chain-of-
thought demonstrations to LLMs and targets gener-
ating more exemplars for in-context learning.

In the domain of MWP solving, several stud-
ies have also been conducted with the objective
of distilling the reasoning capability of LLMs into
smaller solvers by employing chain-of-thought ex-
planations. (Ho et al., 2022) introduces Fine-tune-
CoT, which uses LLMs to generate reasoning step
instances, subsequently facilitating the fine-tuning
of smaller models. (Li et al., 2022a) explores three
explanation generation strategies and incorporates
them into a multi-task learning framework tailored
for compact models. (Magister et al., 2022) as-
sesses the efficacy of chain-of-thought explanations
in the training of a small model across three dis-
parate tasks, namely arithmetic reasoning, com-
monsense reasoning, and symbolic reasoning. Fur-
thermore, (Shridhar et al., 2022b) presents Decom-
positional Distillation, an approach that segments
the problem into subproblems to enhance smaller
models’ performance.

In contrast to these existing works, our proposed
knowledge distillation approach in MWP solving
is unique in that it does not focus on the chain-of-
thought explanation and it takes into account the
learning status of the student model and generates
exercises that tailor to the specific weaknesses of
the student. Our approach bridges the gap between
knowledge distillation and data augmentation in
the context of math word problem solvers, allowing
student models to improve their problem-solving
capabilities more effectively.

3 Approach

3.1 Problem Definition

Our objective is to train a student Math Word Prob-
lem (MWP) solver with the assistance of large lan-
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RoBERTa-base, and RoBERTa-large (Liu et al.,
2019b) to demonstrate the backbone-agnostic na-
ture of our approach.

3.4 Exercise Generation

Our method generates targeted exercises and their
answers based on a given source problem-answer
pair (W and A), which is similar to data augmen-
tation. Following a previous paper on analogical
reasoning (Liang et al., 2022b), the generation of
exercise targets to reach two kinds of analogies to
W and A - problem analogy and solution analogy -
that help models better understand MWPs.

For problem analogy, we generate problems with
similar problem descriptions but different solutions.
Our method perturbs not only questions but also
considers the context, and we prompt LLMs with
few-shot examples to generate MWP variants. In
contrast to previous studies that used human anno-
tators (Patel et al., 2021; Yang et al., 2022), our
approach is automated and scalable. For solution
analogy, we generate problems with different key-
words in the problem description but a similar solu-
tion to the source MWP. Interestingly, we find that
LLMs can achieve this generation in a zero-shot
manner by simply prompting them to generate prob-
lems similar to the source problem. Our prompt
design is located in the appendix.

This exercise generation is deployed at two dif-
ferent steps in our proposed training framework.
First, we generate an exercise book by augmenting
the entire training set (lines 4-6 in Alg. 1), which
serves as a validation set to identify the weaknesses
of the student solver. We do not directly use the
training set to validate the student solver because
we want a more diverse validation set to compre-
hensively evaluate the student model. Additionally,
the solver may memorize the MWPs in the training
set instead of fully understanding them, as previous
research has found that slightly perturbed training
MWPs can cause a solver to fail (Liang and Zhang,
2021). Therefore, validation on the exercise book,
which contains many variants of the training set,
provides a more robust evaluation.

Secondly, after identifying the problems that the
student solver cannot solve from the exercise book,
we use them as the source to generate customized
exercises and add them to the previous training set
(lines 12-16 in Alg.1). In this way, the training set
grows progressively and covers more knowledge,
leading to a stronger student MWP solver.

The exercise problems generated by LLMs may
be of low quality, in a wrong format, or repetitive
(a case study including correct and incorrect exam-
ples is presented in Section 4.7). To alleviate the
impact of these low-quality exercise problems, we
filter out about 30% of problems with the wrong
formats during the generation process by checking
whether the generated problem is repetitive and the
generated answer is a valid mathematical equation.

3.5 Targeted vs. Random Generation

The generation of targeted exercises to address
MWPs that the student model has previously failed
to solve significantly improves the model’s capacity
to process problem and answer analogies. To eval-
uate the efficacy of this approach, it is insightful
to consider a baseline generation strategy, namely
random generation (referenced in lines 17-18 of
Alg. 1). We introduce a probability threshold λ
to control the employment of generation strategy
when augmenting the training set (lines 13-18 in
Alg. 1). λ =0 favors random generation, whereas λ
=1 mandates the utilization of targeted generation.
A detailed analysis on the impact of λ can be found
in Section 4.4.

4 Experiments

4.1 Datasets

MAWPS The MAWPS dataset (Koncel-
Kedziorski et al., 2016) is an aggregation of
2,373 English Math Word Problems (MWPs)
from various sources, including AddSub (Hos-
seini et al., 2014), SingleOp (Roy et al., 2015),
MultiArith (Roy and Roth, 2015), SingleEq
(Koncel-Kedziorski et al., 2015), and SimulEq
(Kushman et al., 2014). We employ a 5-fold
cross-validation for the evaluation on this dataset.

ASDiv-a ASDiv (Miao et al., 2020) is an English
MWP dataset designed to exhibit a more diverse
range of language patterns and problem types, com-
prising 2,305 MWPs. In accordance with prior
studies (Patel et al., 2021; Lan et al., 2022), we se-
lect the arithmetic subset, ASDiv-a, which contains
1,218 MWPs and utilizes a 5-fold cross-validation
method for evaluation.

SVAMP The SVAMP dataset is a test-only
dataset (Patel et al., 2021), consisting of 1,000 En-
glish MWPs generated by introducing challeng-
ing variations to existing problems. We adopt the
two evaluation settings proposed in (Patel et al.,
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MAWPS (ID) ASDiv-a (ID) SVAMP (ID) SVAMP (OOD)
Prior best (Fine-tuning) 92.0/121Ma 82.2/144M b 65.0/144M b 47.3/121Ma

Prior best (Knowledge Distillation) 94 .5/11.3Bc − − 20.7/6.7Bd

Few-shot CoT (Wei et al., 2022b) 93.3/540B 93 .1/175B∗ 79.0/540B 79.0/540B

Without

CEMAL

LSTM (20M) 82.6 71.4 45.0 30.8

Base (144M) 88.5 81.2 69.2 41.0

Large (377M) 90.4 87.6 78.5 49.5

CEMAL

(Our Solvers)

LSTM (20M) 92.0 86.9 67.1 53.4

Base (144M) 93.9 90.9 81 .5 68.6

Large (377M) 94.7 93.3 85.4 76 .4

Table 1: We compare the accuracy and number of parameters on 4 benchmarks in the format of (accuracy/number
of parameters). Prior best baselines are the following. a: (Jie et al., 2022), b: (Patel et al., 2021), c: (Magister
et al., 2022), d: (Ho et al., 2022). On each dataset, the best performance is bolded and the second best is in
italics . ∗: This accuracy is calculated on the ASDiv-a subset out of ASDiv based on the results in https://
github.com/jasonwei20/chain-of-thought-prompting. ID denotes the in-distribution test and OOD denotes
the out-of-distribution test.

2021). The first setting employs a 5-fold cross-
validation approach on the 1,000 MWPs, incorpo-
rating MAWPS (Koncel-Kedziorski et al., 2016)
and ASDiv-a (Miao et al., 2020) as additional
training data for each fold. In the second setting,
MAWPS and ASDiv-a serve as the training set,
while SVAMP is used as the testing set.

Evaluation Setting We categorize the evalua-
tions on MAWPS, ASDiv-a, and the first setting
on SVAMP as in-distribution (ID) tests, as they all
involve 5-fold cross-validation on a specific dataset.
Conversely, the second setting on SVAMP is con-
sidered an out-of-distribution (OOD) test, given
that the training and testing sets originate from dis-
tinct sources.

4.2 Implementation

The backbone of our pre-trained encoder is a
RoBERTa model (Liu et al., 2019b). For LLM,
we use the ChatGPT gpt-3.5-turbo API to perform
problem generation. To encourage a more diverse
generation, we set the temperature to 1.25. All the
experiments in this paper can be conducted with a
cost lower than 100 dollars on OpenAI API calls.
For evaluation, we use the accuracy of answer value
as our evaluation metric following all the baselines.
Since the answer value can be calculated from dif-
ferent equations, it is more reasonable to check
if the value is correct, rather than checking the
element-wise equivalence of a generated equation
and the corresponding ground truth equation.

We conducted all experiments using an NVIDIA

RTX A6000 graphics card, implemented in Python
using the PyTorch framework. The training was
performed for 50 epochs with a batch size of 16, us-
ing the AdamW (Kingma and Ba, 2015; Loshchilov
and Hutter, 2018) optimizer with an initial learn-
ing rate of 8e-6 for the pre-trained model part (i.e.
RoBERTa) and 5e-4 for the GTS decoder, which
was halved every 20 epochs. The weight decay
during training was set to 0.01, and a dropout rate
of 0.25 was applied to the decoder to prevent over-
fitting. The training set will be augmented during
epoch 10 and epoch 20, i.e., lines 8-18 in Alg. 1
will only be executed at epoch 10 and 20. m and n
in Section 3.2 are set to 20 and 4, respectively, with
the aim of pushing the limit of small math word
problem solver accuracies and achieving higher per-
formance. This is orthogonal to the contribution of
this paper because our proposed customized gener-
ation strategy and exercise book are demonstrated
to be effective in Sections 4.4 and 4.5. Although we
understand that further increasing the occurrences
of validation and augmentation will further boost
our accuracy, we limit their magnitude for better
efficiency and lower cost on API calls. During val-
idation, we generate 2 zero-shot and 2 few-shot
similar problems for each source problem in the
exercise book, therefore k = 4 in Alg. 1.

4.3 Comparison with Baselines

In order to demonstrate the effectiveness of our
knowledge distillation approach, we compare our
method with several strong baselines, including the
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Dataset Backbone
In-Distribution

Random Half Target

ASDiv-a
GTS 77.5 77.8 79.0

RoBERTa-base 84.3 85.2 84.6
RoBERTa-large 90.1 90.3 90.6

MAWPS
GTS 89.2 88.9 89.3

RoBERTa-base 90.3 90.3 91.0
RoBERTa-large 91.4 92.3 92.8

SVAMP
GTS 47.7 49.6 50.3

RoBERTa-base 72.1 72.8 73.3
RoBERTa-large 80.8 79.9 80.9

Dataset Backbone
Out-of-Distribution

Random Half Target

SVAMP
GTS 33.6 36.3 38.2

RoBERTa-base 50.1 50.8 55.3
RoBERTa-large 62.9 63.1 65.0

Table 2: Results of different problem generation strate-
gies on three datasets under in-distribution and out-of-
distribution (OOD) testing. Boldface indicates the best
result among the three strategies.

best fine-tuned baseline, the best LLM-enhanced
knowledge distillation baseline, and few-shot chain-
of-thought (CoT) prompting (Wei et al., 2022b),
using the MAWPS, ASDiv-a, and SVAMP datasets.
The results presented in Table 1 show that our
approach outperforms all the baselines on the
MAWPS and ASDiv-a datasets, achieving 94.7%
and 93.3% solving accuracy, respectively. For
the SVAMP dataset, our approach outperforms the
best LLM-enhanced knowledge distillation base-
line, achieving 85.4% accuracy on the SVAMP
(ID) dataset, which is a significant improvement
over the prior best accuracy of 65.0% achieved by
fine-tuning. On the SVAMP (OOD) dataset, our
approach achieves a solving accuracy of 76.4%,
which is lower than CoT-based LLMs, but much
higher than the fine-tuned baselines. We also show
the original performance of backbone solvers with-
out any additional exercises. To obtain best per-
formance in Table 1, our solvers use about 20x
more MWPs than the original training set to train.
Overall, our results indicate that our knowledge dis-
tillation approach achieves superior performance
with much fewer parameters than the prior state-of-
the-art LLMs, and outperforms the best fine-tuning
and knowledge distillation baselines on all datasets.

Training set
as exercise book

Same size
as training set

n = 2 n = 4

Base 54.6 59.8 60.4 65.2
Large 64.7 69.8 70.2 72.7

Table 3: Performance comparison of using training set
and different sizes of exercise book for validation on
SVAMP dataset.

4.4 Analysis on Generation Strategy

The performance of student solvers can be signif-
icantly impacted by the generation strategies em-
ployed to create the exercise problems. In this anal-
ysis, we explore the effectiveness of three different
generation strategies: random, half, and target (us-
ing threshold values of λ = 0, 0.5, 1, respectively)
on three datasets, in both in-distribution and out-
of-distribution settings. Our goal is to identify the
best strategy for maximizing the student model’s
performance. We remove the initial augmentation
(setting m = 0) and lower the number of genera-
tions in this analysis to improve the efficiency of
the experiments. Therefore, the results presented in
Table 2 differ from our best results in Table 1. Our
analysis reveals that the targeted generation strat-
egy mostly outperforms the other two strategies.
This suggests that our proposed targeted generation
is an effective approach for identifying the weak
areas of student solvers and improving them in a
customized way.

Moreover, we can clearly see that the improve-
ment is more noticeable in the OOD scenario. A
possible reason for this could be that in the ID situ-
ation, where the training and testing sets have some
shared knowledge components, using random gen-
eration for the source problems in the training set
also helps to enhance the performance on the test-
ing set. On the other side, in the OOD scenario,
where there’s a large gap between the training and
testing sets, our approach of creating tailored ex-
ercises specifically targets the weak points of the
student model, leading to a more effective boost in
its accuracy.

4.5 Analysis on Exercise Book

We conducted an experiment to demonstrate the
effectiveness of our proposed exercise book by re-
placing the original training set with the exercise
book and changing the size m. As illustrated in
Table 3, the performance of generating a same-size
exercise book is significantly better than that of us-
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4.7 Case Study

In Table 4, we present several example problems
generated by our method, comprising both high-
quality and problematic outputs. The first case
demonstrates the LLM’s ability to produce a math-
ematically equivalent problem using distinct key-
words. The second successful instance yields a sub-
problem derived from the source problem, which
has been proven to facilitate a better understand-
ing of mathematical word problems for models
(Shridhar et al., 2022a). However, not all generated
problems are ideal. As illustrated in the third exam-
ple, our method occasionally generates MWPs with
incorrect formatting, rendering them unsuitable for
training our solver. As a result, we filter out such
outputs to maintain the quality and accuracy of our
training data, by checking if the generated answer
is a valid mathematical equation.

5 Conclusion

In this work, we present a novel approach CEMAL
to use large language models to facilitate knowl-
edge distillation in math word problem solving.
Our method first generates an exercise book to eval-
uate student models and then provides additional
training exercises that are customized to the learn-
ing needs of the student model, thereby improving
the student solver’s ability to solve MWP. Our ex-
tensive experimental results demonstrate that our
proposed approach outperforms all fine-tuned and
knowledge distillation baselines on all datasets,
while achieving competitive performance against
LLMs with significantly fewer parameters. Addi-
tionally, we explore different selection generation
strategies, revealing that our proposed customized
generation strategy is the most effective method,
especially in the in-distribution setting. In our fu-
ture work, we aim to extend this approach to other
NLP tasks to evaluate its generalization capability.

Limitations

Firstly, our approach necessitates meticulous
prompt design to generate exercises, which in-
evitably entails human intervention. This aspect
could introduce potential bias or variability and
may not scale efficiently.

Secondly, we have not explicitly addressed the
quality and correctness of the generated problems.

Codes and data are available at https://github.com/
Zhenwen-NLP/CEMAL.

Our current filtering process only eliminates prob-
lems with incorrect formatting. Thus, there exists a
significant opportunity for enhancing the effective-
ness of our approach by incorporating mechanisms
for evaluating and ensuring the quality and correct-
ness of the generated exercises.
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