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Abstract
Open-world Relation Extraction (OpenRE) has
recently garnered significant attention. How-
ever, existing approaches tend to oversimplify
the problem by assuming that all instances of
unlabeled data belong to novel classes, thereby
limiting the practicality of these methods. We
argue that the OpenRE setting should be more
aligned with the characteristics of real-world
data. Specifically, we propose two key improve-
ments: (a) unlabeled data should encompass
known and novel classes, including negative in-
stances; and (b) the set of novel classes should
represent long-tail relation types. Furthermore,
we observe that popular relations can often be
implicitly inferred through specific patterns,
while long-tail relations tend to be explicitly
expressed. Motivated by these insights, we
present a method called KNoRD (Known and
Novel Relation Discovery), which effectively
classifies explicitly and implicitly expressed re-
lations from known and novel classes within
unlabeled data. Experimental evaluations on
several Open-world RE benchmarks demon-
strate that KNoRD consistently outperforms
existing methods, achieving significant gains.

1 Introduction

Relation extraction (RE) is a fundamental task in
natural language processing (NLP), aiming to ex-
tract fact triples in the format ⟨head entity, rela-
tion, tail entity⟩ from textual data. Open-world
RE (OpenRE) is a related research area that fo-
cuses on discovering novel relation classes from
unlabeled data. Recent advancements in OpenRE
have demonstrated impressive results by integrat-
ing prompting techniques with advanced clustering
methods (Zhao et al., 2021; Li et al., 2022b; Wang
et al., 2022a). However, current OpenRE meth-
ods face limitations due to assumptions about unla-
beled data that do not align with the characteristics
of real-world datasets. These assumptions include:

∗Corresponding author

(1) the presumption that unlabeled data solely con-
sists of novel classes or is pre-divided into sets of
known and novel instances; (2) the absence of neg-
ative instances; (3) the random division of known
and novel classes in a dataset; and (4) the availabil-
ity of the ground-truth number of novel classes in
unlabeled data.

In this work, we critically examine these assump-
tions and align the task of OpenRE within a real-
world setting. We dispose of simplifying as-
sumptions in favor of new assumptions that align
with characteristics of real-world unlabeled data in
hopes of increasing the practicality of these meth-
ods. We call our setting Generalized Relation Dis-
covery and make the following claims:

(a) Unlabeled data includes known, novel, and
negative instances: Unlabeled data, by defi-
nition, lacks labels; we cannot assume it only
consists of novel classes or is pre-divided into
sets of known and novel instances. Our chal-
lenge is to accurately classify known classes
and discover novel classes within unlabeled
data. Additionally, many sentences with an
entity pair do not express a relationship (e.g.,
negative instances, or the no relation class)
(Zhang et al., 2017a). Neglecting negative in-
stances in training leads to models with a posi-
tive bias, reducing their effectiveness in identi-
fying relationships in real-world data. Hence,
we opt to include negative instances in our
setting.

(b) Novel classes are typically rare and belong
to the long-tail distribution: To define known
and novel classes, we base our selection pro-
cess on the intuition that known classes are
more likely to be common, frequently appear-
ing relationships. In contrast, unknown, novel
classes are more likely to be rare (i.e., long-
tail) relationships. Instead of randomly choos-
ing the set of novel classes, we construct data
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Prompt model inference

Prompt model training

• In 1953, five years after the state was established, the JNF was dissolved. JNF [mask] 1953       →   dissolved
• Overgrowth of escherichia coli causes IBS symptoms. escherichia coli [mask] IBS       →   causes
• The parade took place in Philadelphia, Pennsylvania.  Philadelphia [mask] Pennsylvania   →   located in
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 Prompt template: sentence + head entity + [mask] + tail entity → predicted relation class

Unconstrained, all vocabulary predictions 
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Sample input: Bill graduated with a Master’s degree from Auburn University. Bill [mask] Auburn University

  graduated, degree, Master’s attended, represented, member
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Weak Labels
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Figure 1: In KNoRD, we use labeled data to train a prompt model to predict relation class names. That model is
then used to generate constrained (in-sentence) and unconstrained (all vocabulary) predictions. We average and
concatenate representations from the top three constrained and unconstrained predictions. Representations are
clustered using Gaussian Mixture Models (GMM) and bifurcated into sets of known and novel instances via a
majority-vote. Novel-identified clusters provide weak labels in a cross-entropy training objective.

splits based on class frequency. Although it is
possible for frequently appearing classes to be
unknown, we deliberately select rare classes
for our novel classes to create a more chal-
lenging setting. Lastly, without labels, it is
impossible to know a priori the ground truth
number of novel classes contained within un-
labeled data; we do not assume we can access
this information in our setting.

Our experimental results show that our proposed
setting makes for a difficult task, ripe for advance-
ments and future work.

State-of-the-art approaches in relation discovery
leverage a prompt-learning method to predict rela-
tion class names which are then embedded into a
latent space and grouped via clustering (Zhao et al.,
2021; Li et al., 2022b; Wang et al., 2022a). In addi-
tion to making simplifying assumptions about un-
labeled data, past works use unconstrained predic-
tions for relation class names—that is, the prompt
model can predict any word in its vast vocabu-
lary as a relation class name. We observe that
relationships in text can be expressed either ex-
plicitly or implicitly. Explicit instances contain
class-indicative words, and implicit relationships
are inferred via lexical patterns (see Appendix
A.1 for examples). In this work, we illustrate
the effectiveness of designing a prompt method
that optimizes for explicit and implicit relation-
ships by predicting relation class names in two
settings: (1) constrained to words found within an

inputted instance; and, (2) unconstrained, where
the model can predict any word within its vocabu-
lary. Constrained predictions optimize for explic-
itly expressed relationships while unconstrained
predictions optimize for implicitly expressed re-
lationships. This prompt method forms the back-
bone of our proposed method, Known and Novel
Relation Discovery (KNoRD), which can effec-
tively classify explicitly and implicitly expressed
relationships of known and novel classes from un-
labeled data.

Another key aspect of our method is that it clusters
labeled and unlabeled data within the same feature-
space. Each labeled instance serves as a “vote” for
a cluster belonging to the set of known classes. We
effectively bifurcate clusters into sets of known and
novel classes by employing a majority-vote strat-
egy. Novel-identified clusters are then utilized as
weak labels, in combination with gold labels, to
train a model via cross-entropy (see Figure 1). This
methodology presents an innovative approach to re-
lation discovery in open-world scenarios, offering
potential applications across various NLP domains.

The main contributions of this work are:

• We critically examine the assumptions made in
OpenRE and carefully craft a new setting, Gener-
alized Relation Discovery, that aligns with char-
acteristics of real-world data.

• We propose an innovative method to classify
known and novel classes from unlabeled data.
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• We illustrate the effectiveness of modeling im-
plicit and explicit relations via prompting.

• We openly provide all code, experimental set-
tings, and datasets used to substantiate the claims
made in this paper.1

2 Related Work

Traditionally, RE methods have focused on a
closed-world setting where the extracted relations
are predefined during training (Califf and Mooney,
1997; Mintz et al., 2009; Zhang and Wang, 2015;
Peng et al., 2017; Qin et al., 2021). However,
datasets used for training are rarely complete, and
traditional RE cannot capture new relation classes
as additional data becomes available. Researchers
have proposed various approaches to discover emer-
gent classes to address this issue.

Open-world RE: Open-world RE seeks to dis-
cover new relation classes from unlabeled data. In-
stances of relations are typically embedded into a
latent space and then clustered via K-Means. These
works often simplify the task by assuming all in-
stances of unlabeled data belong to the set of novel
classes and that unlabeled data contains no nega-
tive instances (Elsahar et al., 2017; Hu et al., 2020;
Zhang et al., 2021). More recently, some OpenRE
methods have been proposed to predict known and
novel classes from unlabeled data (Zhao et al.,
2021; Wang et al., 2022a; Li et al., 2022b). How-
ever, these works assume unlabeled data comes
pre-divided into sets of known and novel instances,
that negative instances are removed, and that the
number of novel classes is known.

Open-world semi-supervised learning: The set-
ting we propose for relation discovery is inspired by
open-world semi-supervised learning (Open SSL)
proposed by Cao et al. (2022) where the authors
use a margin loss objective with adaptive uncer-
tainty to predict known and novel classes from a
set of unlabeled images. Besides the difference
in domains, their setting differs from ours in that
they assume unlabeled data has an equal number
of known and novel instances—an assumption we
cannot make when working with relation extrac-
tion datasets which often have imbalanced, long-
tail class distributions (Zhang et al., 2017b; Stoica
et al., 2021; Yao et al., 2019; Amin et al., 2022).
Furthermore, Cao et al. (2022) assumes unlabeled
data only contains positive instances, which does

1https://github.com/wphogan/knord
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Traditional RE × × × × Only predicts classes
seen in training

ZeroShot RE × × × × Du only contains
novel classes

Gen. ZeroShot RE ✓ × × × Novel classes require
definitions

Continual RE ✓ × × × Novel classes require
human annotation

Open RE ✓ × × × Du is pre-divided into
known/novel instances

Open SSL ✓ × ✓ × No negative instances;
rand. novel classes

Gen. Rel. Discovery ✓ ✓ ✓ ✓ —

Table 1: A comparison between our proposed setting,
Generalized Relation Discovery, and the existing set-
tings. We remove simplifying assumptions about unla-
beled data (Du) to align the task to the characteristics
of real-world data.

not transfer to our task where a prevalence of sen-
tences do not express a relationship (Zhang et al.,
2017b).

The setting proposed in Li et al. (2022c) is similar
to ours however, negative instances are removed
and their known/novel class splits are done ran-
domly instead of by class frequency. Furthermore,
their method relies on active learning where human
annotators annotate instances of novel classes. The
annotations are then used to train a classifier. In
contrast, our model and the baselines we evaluate
do not require human annotation for novel classes.

Table 1 qualitatively compares our proposed setting,
Generalized Relation Discovery, to related settings.
Additional related works are discussed in Appendix
A.2.

3 Problem Statement

The task of Generalized Relation Discovery is to
simultaneously classify instances of known relation
classes and discover novel relation classes from
unlabeled data, given a labeled dataset with a set
of known classes.

We construct a transductive learning setting where
we assume both labeled data Dl = {xi, yi} , yi ∈
CK and unlabeled data Du = {xi} are given as
inputs. All classes in Dl are considered known
classes CK = {c1k, ..., cik} where i = |CK | is the
number of known relation classes. Du consists of
instances from CK as well as instances of novel
classes CN = {c1n, ..., cjn} where j = |CN | is the
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number of novel relation classes. The known and
novel relation class sets are constructed as non-
intersecting sets (i.e., CK ∩ CN = ∅). Following
Cao et al. (2022), we assume there is no distribution
shift between the labeled and unlabeled data (i.e.,
known relation classes found in labeled data also
occur in the unlabeled data).

We formulate our task in the following way:

Y =
{
ycij , y

′c′i
j | xj

}
, ci ∈ CK , c′i ∈ CN , xj ∈ Du

where xj are unlabeled instances (e.g, sentences), y
and y′ denote known and novel predictions, c and c′

denote known and novel classes, respectively, and
Y is the set of all predictions for instances in Du.
Each sentence xj contains an entity pair—a head
entity e1 and a tail entity e2—and the predicted
relationship yj links the two entities, producing a
fact triplet ⟨e1, yj , e2⟩.

4 Method

KNoRD consists of four discrete stages:
(1) prompt-based training, (2) constructing
semantically-aligned relation representations, (3)
clustering with majority-vote bifurcation, and (4)
classification. We describe each stage in detail in
the following subsections.

4.1 Prompt-based Training
We leverage the instances of labeled data to train
a language model to predict the linking relation-
ship between an entity pair found in a sentence via
prompting. Specifically, given a sentence xj , we
construct a prompt template T (·) = ⟨e1⟩ [MASK]
⟨e2⟩ where e1 and e2 are two entities in xj .2 The
template is appended to xj to obtain contextual-
ized relation instance. Then, a masked language
model (e.g., BERT (Devlin et al., 2019)) learns to
predict the masked tokens between two entities. To
alleviate the model overfitting on the relation token
vocabulary, we randomly mask 15% of tokens in
xj , and the model is jointly trained to predict the
masked tokens in sentences and masked relation
names.

During inference, we feed the contextualized re-
lation instance with only masked relations3 to the
model and predict the masked token. Top-ranked
tokens predicted for [MASK] from the model are

2The number of [MASK] tokens is the same as the number
of tokens in the relation name.

3We use only one [MASK] between entities for inference.

used to create semantically-aligned representations
in the subsequent stage.

4.2 Semantically-aligned Representations
Leveraging our observation that relationships are
expressed explicitly or implicitly, we construct
two settings for our prompt model: constrained
and unconstrained predictions. Constrained predic-
tions are [MASK] predictions (yi) constrained to
words found within the inputted instance xi, i.e.,
yi ∈ xi where xi is the input sentence with words
{w1, . . . , wn}. In this setting, top tokens in the
inputted instance are used to optimize for explic-
itly expressed relationships. In the unconstrained
setting, we allow the model to use any word in its
entire vocabulary (V) to predict the name of the
relationship, i.e., yi ∈ V , optimizing for implicitly
expressed relationships.

We use the hidden representations of the top three
tokens in each setting to construct the following
representations:

r̄iconstrained =
1

n

n∑

j=1

zyj , yj ∈ xi (1)

r̄iunconstrained =
1

n

n∑

j=1

zyj , yj ∈ V (2)

where n = 3 and zyj is the jth embedded represen-
tation (zyj ∈ RD) of the prediction corresponding
to instance xi from a phrase embedding model (Li
et al., 2022a). Note, we do not use the prompting
model to produce z because this model is trained on
only known classes and tends to overfit on known
classes even if random tokens are masked and pre-
dicted in xi during training.

Our final relationship representation is constructed
by combining the constrained and unconstrained
representations:

ri = ⟨r̄iconstrained, r̄iunconstrained⟩ (3)

where ⟨, ⟩ represents concatenation. The combined
representation ri models explicitly and implicitly
expressed relationships in sentence xi.

4.3 Clustering with Majority-vote Bifurcation
Relationship representations from Equation 3 are
clustered via Gaussian Mixture Models (GMM).
To improve the quality of clusters, we adjust the
cluster member according to their entity meta-type
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pairs (e.g. [human, organization], etc.). Specifi-
cally, we select the top 30% of relation instances in
each cluster and use the major entity meta-type pair
of them as the meta-type of the cluster. Then, all
relation instances are adjusted to the nearest cluster
with the same meta-type.

We cluster instances from both labeled and unla-
beled data into the same feature-space. Intuitively,
since all labeled instances are instances of known
classes, each labeled instance acts as a “vote” vot-
ing for a cluster that corresponds to a known class.
We tally the votes of all the labeled instances and
use the results to bifurcate the set of clusters into
two subsets of known-class clusters GK and novel
class clusters GN such that GK ∩ GN = ∅. We
call this method “majority-vote bifurcation” and
use the novel-identified clusters GN as weak labels
for the subsequent classification module.

4.4 Relation Classification

In the final stage of KNoRD, we use gold labels
from labeled data and weak labels generated from
the method described in Section 4.3 to train a rela-
tion classification model.

Since the clusters generate weak labels of varying
degrees of accuracy, we select the top P% of weak
labels for each cluster in GN . In our model, we set
P = 15. We retrospectively explore the effects of
different P values and report the performance in
Appendix A.5. We observe that the optimal value
for P varies across datasets. We leave developing
an advanced method of determining P for future
work.

For each relationship instance, we follow Soares
et al. (2019) and wrap head and tail entities with
span-delimiting tokens. We construct entity and
relationship representations following Hogan et al.
(2022). For sentence xi, we use a pre-trained lan-
guage model, namely DeBERTa (He et al., 2021),4

as an embedding function to obtain feature repre-
sentations for relationships.

We encode xi and obtain the hidden states
{h1,h2, . . . ,h|xi|}. Then, mean pooling is applied
to the consecutive entity tokens to obtain repre-
sentations for the head and tail entities (e1 and e2,
respectively). Assuming nstart and nend are the
start and end indices of entity e1, the entity repre-

4https://huggingface.co/microsoft/
deberta-base

sentation is:

me1 = MeanPool(hnstart , . . . ,hnend
) (4)

To form a relation representation, we concate-
nate the representations of two entities e1 and
e2: re1e2 = ⟨me1,me2⟩. The relation represen-
tations are sent through a fully-connected linear
layer which is trained using cross-entropy loss:

LCE = −
N∑

i=1

yo,i · log (p (yo,i)) (5)

where y is a binary indicator that is 1 if and only
if i is the correct classification for observation o,
p(yo,i) is the Softmax probability that observation
o is of class i, and N is the number of classes.
Predictions from Equation 5 are mapped to ground-
truth classes using the Hungarian Algorithm (Kuhn,
1955) (see Appendix A.6.2 for more details).

Li et al. (2022b) show that setting the number of
novel classes to a large number corresponds to fine-
grained novel class predictions which, depending
on the task and desired outcome, can be grouped
into more general classes via abstraction. Since we
do not assume the ground-truth number of novel
classes is available, we use a relatively high num-
ber of novel classes equal to twice the number of
known classes (2× |CK |), where |CK | is the num-
ber of known classes found in the labeled data. The
N in Equation 5 is set to |CK | + (2 × |CK |). We
leave developing an automated method for class
abstraction for future work.

5 Datasets

We evaluate KNoRD on three RE datasets: TA-
CRED (Zhang et al., 2017b), ReTACRED (Stoica
et al., 2021), and FewRel (Han et al., 2018). For
each dataset, we first construct splits of known and
novel classes based on class frequency, assigning
the top 50% most frequent relation classes to the
set of known classes (CK) and the lower 50% to
the set of novel classes (CN ) (see Figure 2). Since
FewRel is a balanced dataset with relationships de-
fined from a subset of Wikidata relationships, we
obtain real-world class frequencies based on their
frequency within Wikidata. For more details on our
FewRel pre-processing steps, see Appendix A.3.

All instances of novel classes are combined with a
random sample of 15% of known-class instances
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Figure 2: Data splits used in our Generalized Relation Discovery setting. Given n total classes in a dataset, the set
of known classes are the top ⌊n/2⌋ most frequent classes. Remaining classes are placed into the set of novel classes.
Labeled data consists of 85% of instances from known classes. Unlabeled data contains 15% of instances of known
classes and 100% of the instances from novel classes (*numbers do not include negative instances, †since FewRel
has no annotated negative instances, we augment the dataset using negative instances from ReTACRED5).

to form the unlabeled dataset Du. The remaining
85% of known-class instances are used to create
the labeled dataset Dl.

We include two versions of each dataset: with and
without negative instances (e.g., the no relation
class). The setting with negative instances best mir-
rors real-world data; however, as our experiments
show, discovering novel classes in a sea of negative
instances is difficult. We include results from both
settings and the setting with negative instances will
be ripe for advancement and future work.

Our focus is to evaluate methods on data with
no distribution drift (i.e., known classes from
training occur in the unlabeled data along with
novel classes). We leave an evaluation on out-of-
distribution datasets (Gao et al., 2019; Bassignana
and Plank, 2022) to future work.

6 Experiments

We compare KNoRD to state-of-the-art OpenRE
baselines: (1) RoCORE (Zhao et al., 2021), (2)
MatchPrompt (Wang et al., 2022a),6 (3) TABs (Li
et al., 2022b). Since OpenRE methods cannot natu-
rally operate within the Generalized Relation Dis-
covery setting, we extend the OpenRE baselines in
the following ways:

(i) RoCORE′, MatchPrompt′, TABs′: Given
that OpenRE methods cannot identify previ-
ously seen (known) classes mixed with novel
classes in unlabeled data, we evaluate their
performance on novel classes and propose a
method to adapt them for seen classes. To
achieve this, we treat all classes as novel
classes, enabling these methods to effectively
cluster the unlabeled data. Subsequently,

5See Appendix A.3 for more details.
6At the time of writing, the authors of MatchPrompt have

not released the code for their method. The method used in
this paper is from our own implementation.

we employ the Hungarian Algorithm (Kuhn,
1955) to match some discovered classes to
known classes from labeled data, facilitating
performance evaluation on the known classes.

(ii) RoCORE†, MatchPrompt†, TABs†: Many
leading OpenRE models assume unlabeled
data comes pre-divided into sets of known
and novel instances (Zhao et al., 2021; Li
et al., 2022b; Wang et al., 2022a). A natu-
ral extension of these methods is to prepend
a module that segments unlabeled data into
known and novel instances. We pre-train mod-
els on known classes and then generate confi-
dence scores for each unlabeled instance. We
use the softmax function as a proxy for con-
fidence (Hendrycks and Gimpel, 2016) and
set the confidence threshold equal to the mean
confidence from labeled instances of known
classes. Instances with confidence scores be-
low the threshold are assigned to novel classes.
We report the accuracy of this method in bi-
furcating unlabeled data in Appendix A.4.4.

ORCA: We include OCRA (Cao et al., 2022), a
computer vision model developed for a similar gen-
eralized open-world setting. OCRA is the only
model architecture in our experiments that can pre-
dict known and novel classes from unlabeled data
and, thus, requires no modification, beyond adapta-
tion to the RE task, to function within our proposed
setting. For more details about adapting ORCA to
predict relationships, see Appendix A.4.5.
GPT 3.5: Given the zero-shot learning capabilities
of Large Language Models (Kojima et al., 2022),
we also include GPT 3.5 (OpenAI, 2021)7 as a base-
line. To assess GPT 3.5, we leverage in-context
learning—we provide examples of extracted rela-
tionships and a list of known relation classes. We

7We use the gpt-3.5-turbo-0301 version of ChatGPT via
OpenAI’s API.
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instruct the model to predict the most appropri-
ate relation class name or suggest a novel class
name when an instance does not fit within the set
of known classes (see Appendix A.4.1 for details).
GPT 3.5 +cos: Since responses from GPT 3.5
may not align perfectly with ground-truth labels,
we use DeBERTa to map the responses (yi) to
ground-truth class names by embedding the pre-
dictions and the ground-truth class names (zyi and
Zgt ∈ RD×(|CK |+|CN |), respectively) and identify-
ing the ground-truth class that exhibits the highest
cosine similarity with the predicted class:

ym = argmax

(
zyi · Zgt

max
(
∥zyi∥2 · ∥Zgt∥2 , ϵ

)
)

where ymi is the mapped prediction of prediction
yi, and ϵ = 1e−8. We denote the GPT 3.5 baseline
with mapped predictions as “GPT 3.5 +cos.”

For all our baselines, we use identical settings for
the number of known and novel classes and, save
GPT 3.5, we use the same pre-trained model (He
et al., 2021) as a base model and map predictions to
ground-truth classes via the Hungarian Algorithm.
We use Micro-F1 scores to assess relation classifi-
cation performance and report overall performance
as well as performance on known and novel classes
to assess a model’s ability to identify each class
type from unlabeled data.

7 Results

Our proposed method, KNoRD, outperforms the
baseline models in all metrics (Table 2). We ob-
serve that the ORCA baseline demonstrates strong
overall performance and the OpenRE methods
(RoCORE′, MatchPrompt′, TABs′) yield diverse
results, which we attributes to the differences in un-
derlying architectures. Models such as TABs and
MatchPrompt incorporate clustering methods that
effectively develop relationship representations in
an unsupervised setting. In contrast, RoCORE re-
lies more heavily on supervised training to form
high-quality relationship representations. This dis-
tinction is evident in our confidence-based adapta-
tions (RoCORE†, MatchPrompt†, TABs†), where
pre-dividing the unlabeled data benefits RoCORE
significantly while the results for MatchPrompt and
TABs are mixed.

We observe that GPT 3.5 underperforms in this set-
ting. Although mapping responses to ground-truth
classes (GPT 3.5 +cos) yields a slight performance

boost, the model still performs poorly relative to
our other baselines. Given the unsatisfactory re-
sults from GPT 3.5 in our simplified experiment
setting without negative instances, we decide to
exclude it from the more challenging setting where
negative instances are present. We conclude that
more advanced techniques are required to enable
GPT 3.5 to accurately classify and discover rela-
tionships from textual data. A deeper examination
of GPT 3.5’s performance is provided in Appendix
A.4.3.

In the setting with negative instances, all methods
struggle to identify novel relation classes indicat-
ing the difficulty of discovering new classes among
instances with no relation. We attribute the lower
overall performance using TACRED compared to
ReTACRED to TACRED’s wrong labeling prob-
lem (Stoica et al., 2021).

The relatively small drop in performance of all
models between FewRel with and without nega-
tive instances can be attributed to FewRel lacking
annotated negative instances, so we artificially aug-
ment the data with negatives from ReTACRED.
We posit that the models can exploit the slight dif-
ference in the distribution of the augmented neg-
ative instances, thus reducing the task’s difficulty.
These results emphasize the importance of future
RE dataset creation efforts in annotating negative
instances.

7.1 Ablations

We conduct ablation studies to better understand
the relative importance of each design choice be-
hind KNoRD.

• KNoRD w/constrained: We only use con-
strained predictions from the prompt model to
construct relationship representations (Equation
1) and keep all other modules unchanged for this
ablation.

• KNoRD w/unconstrained: Similar to the afore-
mentioned ablation, but we only leverage uncon-
strained predictions to construct relationship rep-
resentations (Equation 2) for the GMM module.

• KNoRD without CE: We remove the cross-
entropy (CE) module from KNoRD and allow
the GMM to predict relation classes directly. We
remap cluster predictions to ground-truth classes
using the Hungarian Algorithm.

Table 3 shows the performance of all ablation ex-

14233



ReTACRED TACRED FewRel
w

/o
ne

g.
in

st
an

ce
s

Model F1 (all) F1 (known) F1 (novel) F1 (all) F1 (known) F1 (novel) F1 (all) F1 (known) F1 (novel)

Fully supervised 0.963 0.966 0.938 0.925 0.939 0.849 0.912 0.902 0.922

ORCA 0.622 0.870 0.325 0.521 0.719 0.360 0.411 0.398 0.414
RoCORE′ 0.117 0.174 0.049 0.101 0.126 0.081 0.069 0.002 0.080
RoCORE† 0.578 0.846 0.257 0.380 0.629 0.177 0.352 0.314 0.358
MatchPrompt′ 0.558 0.601 0.506 0.627 0.660 0.600 0.397 0.398 0.397
MatchPrompt† 0.682 0.826 0.509 0.585 0.758 0.444 0.573 0.655 0.560
TABs′ 0.674 0.816 0.505 0.595 0.724 0.489 0.535 0.215 0.585
TABs† 0.312 0.304 0.320 0.298 0.294 0.302 0.541 0.370 0.568
GPT 3.5 0.279 0.450 0.075 0.277 0.482 0.111 0.098 0.313 0.064
GPT 3.5 +cos 0.283 0.453 0.079 0.280 0.483 0.114 0.101 0.314 0.066

KNoRD 0.793 0.927 0.632 0.718 0.860 0.603 0.606 0.662 0.597

w
/n

eg
.i

ns
ta

nc
es

Fully supervised 0.969 0.974 0.922 0.748 0.737 0.814 0.911 0.904 0.918

ORCA 0.570 0.737 0.203 0.354 0.453 0.082 0.402 0.373 0.406
RoCORE′ 0.362 0.244 0.302 0.048 0.018 0.049 0.064 0.000 0.072
RoCORE† 0.555 0.758 0.181 0.391 0.619 0.086 0.360 0.322 0.366
MatchPrompt′ 0.416 0.429 0.210 0.274 0.253 0.148 0.529 0.287 0.542
MatchPrompt† 0.532 0.536 0.372 0.330 0.339 0.173 0.563 0.622 0.552
TABs′ 0.550 0.615 0.329 0.358 0.334 0.233 0.511 0.253 0.551
TABs† 0.186 0.158 0.123 0.143 0.116 0.088 0.532 0.307 0.549

KNoRD 0.677 0.832 0.434 0.536 0.685 0.355 0.574 0.689 0.555

Table 2: F1-micro scores reported on unlabeled data with and without negative (e.g., no relation) instances. F1
(known) and F1 (novel) report performance on ground-truth known and novel classes, respectively. OpenRE models
are extended to operate in the Generalized Relation Discovery setting (see Section 6 for details). All scores average
five runs except the GPT 3.5 scores which are resultant from a single run.

ReTACRED TACRED FewRel

w
/o

ne
g.

Method F1 (all) F1 (known) F1 (novel) F1 (all) F1 (known) F1 (novel) F1 (all) F1 (known) F1 (novel)
KNoRD w/constrained 0.759 0.886 0.606 0.653 0.792 0.539 0.491 0.650 0.466
KNoRD w/unconstrained 0.776 0.918 0.607 0.633 0.815 0.485 0.575 0.648 0.564
KNoRD w/o CE 0.413 0.354 0.487 0.489 0.402 0.559 0.509 0.371 0.529
KNoRD 0.793 0.927 0.632 0.718 0.860 0.603 0.606 0.662 0.597

w
/n

eg
. KNoRD w/constrained 0.568 0.718 0.305 0.498 0.699 0.246 0.544 0.665 0.525

KNoRD w/unconstrained 0.507 0.700 0.119 0.490 0.686 0.241 0.507 0.700 0.119
KNoRD w/o CE 0.282 0.300 0.258 0.307 0.313 0.301 0.507 0.246 0.554
KNoRD 0.677 0.832 0.434 0.536 0.685 0.355 0.574 0.689 0.555

Table 3: Ablation experiments varying relationship representation methods used in KNoRD, as well as removing
the cross-entropy module and using cluster predictions directly (“w/o CE”).

periments. Without CE, KNoRD performs poorly,
emphasizing the need for selecting high-quality
weak labels to train a CE module. Constrained
predictions from the prompt model outperform un-
constrained predictions in 4 out of 6 experiments in
predicting novel classes, indicating their suitability
for rare, long-tail relations. Combining constrained
and unconstrained predictions in KNoRD yields
the best overall results, demonstrating the effective-
ness of optimizing the prompt method to capture
explicit and implicit relationships.

We also manually evaluate the accuracy of our
prompt method in predicting relation class names.
We evaluate the alignment of the top one and top
three constrained and unconstrained predictions

with ground-truth class names (Figure 3). Con-
strained predictions, designed to model explicit
relationships, are generally more accurate for long-
tail relation classes. Conversely, unconstrained pre-
dictions perform better on common relationships.

This observed phenomenon roughly aligns with
Zipf’s Law (Zipf, 1936), indicating that rare con-
cepts and relations are more likely to appear explic-
itly in a long-form manner. In contrast, common
relations tend to be expressed in a compressed form
(e.g., implicitly). This insight lends additional evi-
dence to designing a prompt method that captures
explicit and implicit relationships.
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Few
Rel

ReTACRED

Accuracy

Top 3 Constrained Predictions Top 1Top 3 Unconstrained Predictions

Figure 3: Accuracy of top 1 and top 3 predictions from
our prompt method in two settings: constrained (in-
sentence words) and unconstrained (all vocabulary) pre-
dictions. Unconstrained predictions perform well with
common relationships, while constrained predictions
perform well on long-tail relationships.

8 Conclusion

In this work, we address the limitations of existing
approaches in OpenRE and introduce the General-
ized Relation Discovery setting to align the task to
characteristics of data found in the real-world. By
expanding the scope of unlabeled data to include
known and novel classes, as well as negative in-
stances, and incorporating long-tail relation types
in the set of novel classes, we aim to enhance the
practicality of OpenRE methods.

Furthermore, we propose KNoRD, a novel method
that effectively classifies explicitly and implicitly
expressed relations from known and novel classes
within unlabeled data. Through comprehensive
experimental evaluations on various Open-world
RE benchmarks, we demonstrate that KNoRD con-
sistently outperforms existing methods, yielding
significant performance gains. These results high-
light the efficacy and potential of our proposed
approach in advancing the field of OpenRE and its
applicability to real-world scenarios.

9 Limitations

The limitations of our method are as follows:

1. Our method requires human-annotated data,
which is expensive and time-consuming to cre-
ate.

2. Our method cannot automatically determine the
ground truth number of novel classes in unla-
beled data. We leave this to future work.

3. Our method focuses on sentence-level rela-
tion classification, and without further testing,
we cannot claim these methods work well for
document-level relation classification.

4. The low F1 scores of our model and all leading
OpenRE models within our experiments with
negative instances highlight an area for growth
in future works.

10 Ethical Concerns

We do not anticipate any major ethical concerns;
relation discovery is a fundamental problem in nat-
ural language processing. A minor consideration is
the potential for introducing certain hidden biases
into our results (i.e., performance regressions for
some subset of the data despite overall performance
gains). However, we did not observe any such
issues in our experiments, and indeed these con-
siderations seem low-risk for the specific datasets
studied here because they are all published.
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A Appendix

A.1 Examples of Explicitly vs. Implicitly
Expressed Relationships

Implicit relationships do not contain class-
indicative words; they are inferred through specific
lexical patterns within a sentence. Explicit relation-
ships are relationships that are explicitly expressed
and contain class-indicative words. Figure 4 pro-
vides examples of each expression type.

Expression 
Type

Noam Chomsky gained the title Professor…

Professor Noam Chomsky of MIT's linguistics program…

William attended Auburn University.

William (MS, Auburn University) joined the team.

Philadelphia is located in Pennsylvania.

The event took place in Philadelphia, Pennsylvania. 

Relation

title

title

attended

attended

located in

located in

explicit

implicit

explicit

implicit

explicit

implicit

Sentence ( head , tail )

Figure 4: Implicitly expressed relationships are con-
veyed through lexical patterns, where specific linguistic
patterns indicate a relationship between entities. Ex-
plicitly expressed relationships are represented through
class-indicative words.

A.2 Additional Related Work
Continual Relation Extraction: Continual rela-
tion extraction (CRE) is a relatively new task that
focuses on continuously extracting relations, in-
cluding novel relations, as new data arrives. CRE’s
main challenge is preventing the catastrophic for-
getting of known classes (Hu et al., 2022; Zhao
et al., 2022). In CRE, new data can contain known
and novel classes, similar to our setting; however,
CRE assumes that all new data is labeled, which
fundamentally differs from our unlabeled setting.

Zero-shot Relation Extraction: Zero-shot rela-
tion extraction methods typically assume that test
data only contains novel classes and that descrip-
tions for those novel classes are readily available
(Levy et al., 2017; Obamuyide and Vlachos, 2018;
Lockard et al., 2020; Chen and Li, 2021). General-
ized zero-shot relation extraction (ZSRE) removes
the assumption that test data can only contain novel
classes. However, ZSRE methods still heavily rely
on descriptions of novel relation classes (Huang
et al., 2018; Rahman et al., 2017), which is infor-
mation that we do not assume is available in our
unlabeled setting.

Prompt-based RE Methods: Prompt-based meth-
ods have shown promising results for both closed-
world and open-world RE tasks (Jun et al., 2022;

Wang et al., 2022a; Li et al., 2022b). Prompt-based
methods for relation extraction involve construct-
ing prompts, sometimes called “templates,” that
provide contextual cues for identifying relations
between entities in text. These prompts typically
comprise natural language phrases that capture the
semantic relationship between entities. Concur-
rent OpenRE works Li et al. (2022b) and Wang
et al. (2022a) introduce a prompt-based framework
for unlabeled clustering. Prompt-based methods
are used to generate relationship representations
which are then clustered in a high-dimensional
space. The clusters are iteratively refined using
the training signal from labeled data, with care-
ful measures to ensure the model is not biased to
known classes. However, the aforementioned meth-
ods assume that unlabeled data is already divided
into sets of known and novel classes, which is an
unrealistic assumption of real-world unlabeled data.
Furthermore, these works only report performance
on novel classes, obscuring the model’s overall
performance in a real-world setting where the unla-
beled data contains known and novel classes.

A.3 Pre-processing and Augmenting FewRel

Special treatment is needed for FewRel dataset
since it is a uniform dataset without entity type
information or annotated negative instances.

Frequency-based class splits: To conduct the
frequency-based splits described in Section 5, we
obtain the distribution of relation classes as they
appear in real-world data. Given that the relation-
ship IDs in FewRel correspond with relationships
in Wikipedia, we obtain class frequency informa-
tion directly from Wikipedia by aggregating counts
of occurrences of each relationship.

Augmenting with negative instances: Unfortu-
nately, FewRel does not provide annotated nega-
tive instances (e.g., the no relation class). To better
simulate real-world data, we augment the FewRel
dataset with negative instances from ReTACRED.
We recognize that augmenting FewRel with data
from another dataset is not ideal since distribution
differences may exist. Future work in the Gen-
eralized Relation Discovery setting may focus on
extending FewRel with domain-aligned human an-
notated negative instances.

Resolving entity type information: The role of en-
tity type information in relation extraction has been
widely acknowledged (Peng et al., 2020; Wang
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et al., 2022b). However, the FewRel dataset lacks
explicit entity type information. To address this
limitation and resolve entity types for all entities
in the FewRel dataset, we employ the following
two-phase approach:

1. Wikidata ontology traversal: FewRel provides a
Wikidata entity ID for each entity. Leveraging
the Wikidata API, we retrieve the metadata asso-
ciated with each entity ID. Then, we recursively
map entity types (e.g., the value of the property
“subclass of” for each concept in Wikidata) to
parent types until a root node is found. Dur-
ing this traversal, we encounter a few special
cases: (1) concepts with missing values for the
“subclass of” property; (2) concepts with mul-
tiple values for the “subclass of” property; and
(3) values of “subclass of” that lead to looping
paths in the ontology. For entities with missing
values, typically found in the leaf nodes of the
Wikidata knowledge graph, we default to the
value of the Wikidata property “instance of” as
the starting concept for our recursive transversal.
When a concept has multiple values for “sub-
class of,” we select the first value unless that
value leads to a looping path within the ontol-
ogy (e.g., “make-up artist” is a subclass of “hair
and make-up artist,” which is a subclass of a
“make-up artist”). In these cases, we choose the
next value of the “subclass of” until we find a
non-looping path to a root node.

2. Type binning: Using the raw values of sub-
classes results in thousands of fine-grained en-
tity types. We iteratively bin entity types into
parent entity types until each entity type has
at least 1,000 entities to obtain broader, more
generalized entity types. This method produced
23 distinct entity types (see Figure 5 for the
names and distribution of entity types found in
FewRel).

A.4 Baselines

In this section, we provide additional details about
our baseline models.

A.4.1 Soliciting Predictions from GPT 3.5:
GPT 3.5 often performs better on tasks with the
help of in-context learning (Wei et al., 2023; Wang
et al., 2023). We construct a prompt that lists all
known relation classes and offers a couple exam-
ples of extracted relationships. We use natural lan-
guage class names to help the model understand
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Figure 5: The distribution of the 23 entity types resulting
from our recursive resolution of FewRel entity types
using the Wikidata ontology.

and make predictions. The following is the prompt
we used for soliciting predictions for our tests:

1. Select the correct relation between the head and
tail entities in the following unlabeled examples.

2. Each example has the head and tail entities ap-
pended to the sentence in the form: (head entity)
(tail entity).

3. There are 40 known relation classes, and up to
80 unknown, or novel, relation classes.

4. The following is the list of known relation
classes: "instance of", "subject", "language",
"country", "located in", "occupation", "constel-
lation", "citizenship", "part of", "taxon rank",
"location", "heritage", "has part", "sport",
"genre", "child", "country of origin", "position",
"follows", "followed by", "contains", "father",
"jurisdiction", "field of work", "participant",
"spouse", "mother", "participant", "operator",
"performer", "member of party", "publisher",
"owned by", "member org", "religion", "head-
quarters", "sibling", "position played", "work
location", "original language"

5. If the instance is a novel class, suggest the most
likely novel class name.

6. Here are some examples:
• In 1966 the USSR accomplished the first soft

landings and took the first pictures from the
lunar surface during the Luna 9 and Luna 13
missions . (Luna 13) (USSR) => ?
"operator"

• Her attempts to publish the work were un-
successful until she acquired the patronage
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of Sophia Mathilde, wife of King William III
of the Netherlands. (Sophia Mathilde) (King
William III of the Netherlands) => ?
"spouse"

7. Respond only with the class name in quotes:
KGOR is licensed to Omaha, Nebraska United
States, and serves the Omaha metropolitan area.
(KGOR) (Omaha, Nebraska) => ?

An identical prompt was also used for TACRED
and ReTACRED, with changes only made to the
numbers of known and novel classes, the list of
known classes, and the examples provided.

A.4.2 Probing GPT 3.5 for Prior Knowledge
One issue in evaluating GPT 3.5 is that the exact
body of data used for training is unknown. There-
fore, to ensure a fair comparison, we seek to de-
termine if GPT 3.5 prior knowledge of the various
datasets we use in our experiments. To do this,
we ask GPT 3.5 to list all the classes in a specific
dataset with the following prompt: “What are the
relation classes found in the [DATASET_NAME]
relation extraction dataset?” We report the response
when asking about TACRED in Table 4. Note: GPT
3.5 also responded with accurate descriptions of
the relation classes, but they are omitted for brevity.

For the TACRED dataset, GPT 3.5 responded with
37 correct responses of the 41 total relation classes.
We use these results to argue that GPT 3.5 has an
unfair advantage in discovering novel classes in
TACRED and ReTACRED. Despite this advantage,
GPT 3.5 did poorly compared to the other baselines
we tested. However, when asked about the relation
classes in FewRel, it responded with only four cor-
rect responses of the 80 total relation classes in
the dataset. This information can partially explain
why, in our tests, GPT 3.5 performs better on the
TACRED and ReTACRED datasets compared to
FewRel.

A.4.3 A Deeper Examination of GPT 3.5’s
Performance

The performance of GPT 3.5 has yielded results
below our initial expectations. We carefully con-
structed our prompts in accordance with best prac-
tices drawn from recent studies that have show-
cased the efficacy of in-context learning with gen-
erative models (Wei et al., 2023; Wang et al., 2023).
Nevertheless, it is plausible that more effective
prompting methods for open relation extraction ex-
ist. In particular, we propose exploring alternative

Ground truth class Response from GPT 3.5 Type

org:alternate_names org:alternate_names TP
org:city_of_headquarters org:city_of_headquarters TP
org:country_of_headquarters org:country_of_headquarters TP
org:dissolved org:dissolved TP
org:founded org:founded TP
org:founded_by org:founded_by TP
org:member_of org:member_of TP
org:members org:members TP
org:number_of_employees/members org:number_of_employees/members TP
org:parents org:parents TP
org:political/religious_affiliation org:political/religious_affiliation TP
org:shareholders org:stateorprovince_of_headquarters TP
org:stateorprovince_of_headquarters FN
org:subsidiaries org:subsidiaries TP
org:top_members/employees org:top_members/employees TP
org:website org:website TP
per:age per:age TP
per:alternate_names FN
per:cause_of_death per:cause_of_death TP
per:charges per:charges TP
per:children per:children TP
per:cities_of_residence per:cities_of_residence TP
per:city_of_birth per:city_of_birth TP
per:city_of_death per:city_of_death TP
per:countries_of_residence per:countries_of_residence TP
per:country_of_birth per:country_of_birth TP
per:country_of_death per:country_of_death TP
per:date_of_birth per:date_of_birth TP
per:date_of_death per:date_of_death TP
per:employee_of per:employee_of TP
per:origin FN
per:other_family FN
per:parents per:parents TP
per:religion per:religion TP
per:schools_attended per:schools_attended TP
per:siblings per:siblings TP
per:spouse per:spouse TP
per:stateorprovince_of_birth per:stateorprovince_of_birth TP
per:stateorprovince_of_death per:stateorprovince_of_death TP
per:stateorprovinces_of_residence per:stateorprovinces_of_residence TP
per:title per:title TP

per:countries_of_citizenship FP
per:locations_of_residence FP
per:locations_of_residence FP

Table 4: Comparing responses from GPT 3.5 to the
ground-truth classes in the TACRED dataset. GPT 3.5.
correctly predicts 37 of the 41 relation classes in TA-
CRED, receiving an F1 score of 0.91 for class name
prediction.

prompting techniques, such as Chain-of-Thought
(CoT) or Self-Consistency Prompting, in future
works.

To gain a more comprehensive understanding of the
reasons behind GPT 3.5’s suboptimal performance,
we conducted an informal error analysis. Our inves-
tigation involved randomly selecting 40 instances
of erroneous predictions across both known and
novel classes generated by GPT 3.5. We present
our observations below:

Errors within Known Classes: GPT 3.5’s
inaccuracies within known classes appear
to stem from the difficulty in distinguish-
ing between classes with subtle differences.
For instance, in the context of ReTACRED,
the model frequently confuses the following
known classes: “org:top_members/employees,”
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“org:members,” and “org:member_of.” Sim-
ilarly, the model exhibits confusion be-
tween the “org:country_of_branch” and
“org:stateorprovince_of_branch” classes. We
speculate that GPT 3.5 may require a larger
volume of in-context examples to discern the
nuances that set these classes apart.

Errors within Novel Classes: Errors in predicting
novel classes exhibit a common pattern in which
GPT 3.5 tends to predict the nearest known
and, typically, more general class, rather than
suggesting a novel class name. For instance,
instances of the novel class “org:shareholders” are
frequently predicted as the broader but related
known class “org:member_of.” Furthermore,
the model struggles to propose novel class
names that align with novel classes, especially
among novel classes that share a high degree
of similarity. For instance, classes such as
“per:cause_of_death,” “per:city_of_death,”
“per:stateorprovince_of_death,” and
“per:country_of_death” pose challenges for
the model.

The task of consistently suggesting names of novel
relation classes without access to a predefined set
of class names is intrinsically challenging, even for
human annotators. Ideally, having access to the
relationship representations produced by GPT 3.5
would allow us to leverage the advanced clustering
techniques used in this paper that have proven effec-
tive in predicting novel classes. Unfortunately, the
unavailability of these representations constrains
our ability to employ such methods to enhance GPT
3.5’s capability to predict novel classes.

A.4.4 Confidence-based Baselines
For our confidence-based extensions of existing
OpenRE methods, we pre-train each model on the
set of known classes. Then, we use a holdout set of
known class instances and collect confidence scores
(c) for each instance using the softmax function:

c =
exp(F(x, y))∑

y′∈R exp (F (x, y′))

where x is an input instance with relation label y,
and F(x, y)) is a relation classifier function.

The mean of confidence scores from known in-
stances is then used as a threshold to segment in-
stances from unlabeled data into sets of known and
novel classes—confidence scores from predictions

ReTACRED TACRED FewRel

w
/o

ne
g RoCORE++ 0.722 0.698 0.528

MatchPrompt++ 0.794 0.712 0.817
TABs++ 0.693 0.704 0.816

w
/n

eg

RoCORE++ 0.571 0.551 0.518
MatchPrompt++ 0.690 0.576 0.860
TABs++ 0.474 0.522 0.737

Table 5: Accuracy when using the mean confidence
score of labeled data to determine which instances are
and are not novel from unlabeled data.

on unlabeled data that fall below the threshold are
assigned novel classes and vice-versa. We report
the accuracy of each pre-trained model in determin-
ing whether an instance is known or novel in Table
5. Overall, this method performs reasonably well
on data without negative instances. However, with
negative instances, segmenting known and novel
classes becomes difficult.

A.4.5 ORCA Baseline
ORCA leverages a pre-trained vision model,
namely ResNet (He et al., 2015), to generate repre-
sentations for images. To adapt the ORCA model to
the text domain, we replace ResNet with DeBERTa
(He et al., 2021) and generate representations for
relationships using the method used in KNoRD and
described in Section 4.4. The remaining architec-
ture and loss functions are unmodified.

A.5 High-quality Weak Label Analysis

We retrospectively assess the effect of using dif-
ferent amounts (P%) of high-quality weak labels
generated from the GMM to train the cross-entropy
module. Quality is assessed using the probability
that an instance belongs to a given cluster within
the GMM module. Instances within each cluster
are sorted by quality, and then the top P% is se-
lected as weak labels to train the cross-entropy
model. In Table 6, We observe that, in most cases,
performance is increased by selecting a subset of
weak labels based on quality; however, the optimal
value for P fluctuates between settings. We leave
determining the best P value for future work set
P = 15 for all and the experiments presented in
this paper.

A.6 Implementation Details

A.6.1 Prompt Model Training
In our prompt model training, we adopt the
masked language modeling (MLM) task where a
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ReTACRED TACRED FewRel
w

/o
ne

ga
tiv

es
% of Weak Labels F1 (all) F1 (known) F1 (novel) F1 (all) F1 (known) F1 (novel) F1 (all) F1 (known) F1 (novel)
Top 10% 0.770 0.927 0.582 0.667 0.771 0.582 0.483 0.514 0.478
Top 15% 0.793 0.927 0.632 0.718 0.860 0.603 0.606 0.662 0.597
Top 25% 0.758 0.924 0.560 0.712 0.806 0.635 0.537 0.608 0.526
Top 50% 0.769 0.937 0.567 0.718 0.814 0.640 0.575 0.676 0.559
Top 75% 0.763 0.933 0.558 0.721 0.822 0.640 0.534 0.707 0.507
All (100%) 0.764 0.932 0.562 0.732 0.828 0.654 0.528 0.749 0.494

w
/n

eg
at

iv
es

Top 10% 0.658 0.835 0.370 0.535 0.695 0.332 0.598 0.693 0.583
Top 15% 0.677 0.832 0.434 0.536 0.685 0.355 0.583 0.728 0.559
Top 25% 0.680 0.814 0.478 0.540 0.683 0.364 0.574 0.689 0.555
Top 50% 0.686 0.824 0.482 0.553 0.676 0.405 0.615 0.723 0.598
Top 75% 0.664 0.811 0.456 0.563 0.679 0.429 0.601 0.734 0.580
All (100%) 0.673 0.785 0.499 0.580 0.672 0.473 0.584 0.724 0.561

Table 6: F1-micro scores reported using varied levels of high-quality weak labels with and without negative instances.
Quality is measured using the probabilities assigned by the GMM that each instance belongs to a specific cluster.

RoBERTa 8 is trained on an NVIDIA Quadro RTX
8000 GPU.

We split labeled data into training and validation
datasets by their relationships. Specifically, we
hold out instances with five random relationships
(excluding negative instances) from labeled data
for each dataset as the validation dataset. Training
with dataset splitting by relation types instead of
instances can stop early before the model overfit
on the known classes. The metric for validation is
perplexity. Other hyper-parameters are as follows:

• learning rate: 5e-5
• batch size: 32
• probability of masking: 15%

A.6.2 Relation Classification
All our models were trained on an NVIDIA
GeForce RTX 3090 GPU. We use {41, 42, 43,
44, 45} for our seed values. We limit the length
of the input sequence to 100 tokens, use a hid-
den dimension of 768, and use an AdamW opti-
mizer (Loshchilov and Hutter, 2017). We use De-
BERTa (He et al., 2021)9 as the pre-trained model
for all of our experiments.

We perform light hyperparameter tuning using the
Optuna framework (Akiba et al., 2019). We ran-
domly sample 20% of the instances of known
classes in our labeled datasets for validation and
conduct 80 trials of a hyperparameter search within
the following search space:

• learning rate: [1e-4, 1e-5]
• dropout: [0.2, 0.4], (step size = 0.05)

8https://huggingface.co/roberta-base
9https://huggingface.co/microsoft/

deberta-base

• batch size: [64, 128], (step size = 64)
• max gradient norm: [0.8, 1.0], (step size = 0.1)
• epochs: [4, 12], (step size = 1),

Below are the final hyper-parameter settings used
for each dataset:
ReTACRED & TACRED: batch size: 128,
epochs: 5, learning rate: 1e-5, dropout: 0.2, max
gradient norm: 1
FewRel: batch size: 128, epochs: 5, learning rate:
1e-5, dropout: 0.2

A.6.3 Fully-supervised Training
We construct our fully-supervised data splits by as-
suming all classes are known and using the method
described in Section 5. We combine instances from
labeled and unlabeled data and randomly selected
15% to form the test split. The remaining instances
were used for training, with 20% of the training
data further segmented as the validation set.

Note that our results from the fully supervised set-
ting cannot be directly compared to numbers re-
ported on popular benchmarking websites10 since
our splits do not match the standard. Our splits are
designed to maintain consistency with our other ex-
periments within the proposed Generalize Relation
Discovery setting.

10https://paperswithcode.com/sota
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