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Abstract

Current approaches in paraphrase generation
and detection heavily rely on a single general
similarity score, ignoring the intricate linguistic
properties of language. This paper introduces
two new tasks to address this shortcoming by
considering paraphrase types - specific linguis-
tic perturbations at particular text positions.
We name these tasks Paraphrase Type Gen-
eration and Paraphrase Type Detection. Our
results suggest that while current techniques
perform well in a binary classification scenario,
i.e., paraphrased or not, the inclusion of fine-
grained paraphrase types poses a significant
challenge. While most approaches are good at
generating and detecting general semantic sim-
ilar content, they fail to understand the intrin-
sic linguistic variables they manipulate. Mod-
els trained in generating and identifying para-
phrase types also show improvements in tasks
without them. In addition, scaling these mod-
els further improves their ability to understand
paraphrase types. We believe paraphrase types
can unlock a new paradigm for developing para-
phrase models and solving tasks in the future.

1 Introduction

Paraphrases are texts expressing identical meanings
that use different words or structures (Vila et al.,
2015, 2014; Zhou and Bhat, 2021). Paraphrases
exhibit humans’ complex language’s nature and
diversity, as there are infinite ways to transform
one text into another without altering its meaning.
For example, one can change a text’s

morphology: “Who they could might be?”,

syntax: “He drew a go was drawn by him.”,

lexicon: “She liked enjoyed it.”.

Nonetheless, current paraphrase generation and
detection systems are yet unaware of the lexical
variables they manipulate (Zhou and Bhat, 2021).

The President gave a 
speech about her plan to 
change the Constitution

The President has given a 
speech about her plan to 
change the Constitution

She has given a talk about 
her plan to change the 

Constitution

She has given a speech 
about her plan to change 

the Constitution

Diathesis Alternation

Polarity Substitution

Lexicon Change

The President gave a 
speech about her plan to 
change the Constitution

She has given a talk
about her plan to change 

the Constitution

Similarity

Figure 1: Comparison of current paraphrase tasks (left)
and our proposal towards paraphrase types (right).

Generative models cannot be asked to perform cer-
tain types of perturbations, and detection models
are unable to understand which paraphrase types
they detect (Egonmwan and Chali, 2019; Meng
et al., 2021; Ormazabal et al., 2022; Vizcarra and
Ochoa-Luna, 2020), or they learn limited language
aspects (e.g., primarily syntax (Chen et al., 2019;
Goyal and Durrett, 2020; Huang and Chang, 2021)).
The shallow notion of what composes paraphrases
used by these systems limits their understanding
of the task and makes it challenging to interpret
detection decisions in practice. For example, al-
though high structural and grammatical similarities
can indicate plagiarism, detection systems are of-
ten not concerned with the aspects that make two
texts segments alike (Ostendorff et al., 2022; Wahle
et al., 2022a).

Given the limitations of current paraphrase gen-
eration and detection tasks, their proposed solu-
tions are also constrained (Foltýnek et al., 2020).
Figure 1 gives an example of the difference be-
tween current tasks and their true linguistic di-
versity. Therefore, we propose two new tasks
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to explore the role of paraphrase types, namely
Paraphrase Type Generation and Paraphrase
Type Detection. In the generation task, a model
has to generate a paraphrased text for specific
segments considering multiple paraphrase types
(§3.1). For the detection task, paraphrased seg-
ments must be classified into one or more para-
phrase types (e.g., lexico-syntactic-based changes)
(§3.2). These tasks complement existing ones
(without paraphrase types), enabling more gran-
ular assessments of paraphrased content.

The shift from traditional paraphrase tasks to-
wards a more specific scenario, i.e., including para-
phrase types, has many benefits. A direct con-
sequence of incorporating paraphrase types, and
maybe the most impactful, lies in plagiarism de-
tection. Plagiarism detection systems based on
machine learning often support their decision re-
sults using shallow high-level similarity metrics
that only indicate how much a given text is po-
tentially plagiarized, thus limiting their analysis
(Foltýnek et al., 2019). Incorporating paraphrase
types allows for more interpretable plagiarism de-
tection systems, as more informative and precise re-
sults can be derived. Additionally, automated writ-
ing assistants can be improved beyond simple prob-
ability distributions when suggesting alterations to
a text. On top of that, second-language learners
can correct their texts by considering specific para-
phrase types in their daily lives (e.g., learning about
contractions “does not = doesn’t”), helping them
to learn new languages faster.

Our proposed tasks indicate that language mod-
els struggle to generate or detect paraphrase types
with acceptable performance, underlining the chal-
lenging aspect of finding the linguistic aspects
within paraphrases. However, learning paraphrase
types is beneficial in generation and detection as
the performance of trained models consistently in-
creases for both tasks. In addition, scaling models
also suggest improvements in their ability to un-
derstand and differentiate paraphrase types when
transferring to unseen paraphrasing tasks.

In summary, we:
• introduce two new tasks, Paraphrase Type

Generation and Paraphrase Type Detection,
providing a more granular perspective over
general similarity-based tasks for paraphrases;

• show that our proposed tasks are compatible
with traditional paraphrase generation and de-
tection tasks (without paraphrase types);

• investigate the correlation between paraphrase
types, generation and detection performance
of existing solutions, and scaling experiments
to explore our proposed tasks;

• make the source code and data to reproduce
our experiments publicly available;1

• provide an interactive demo to generate para-
phrases with types;2

2 Related Work

First attempts to categorize the lexical variables ma-
nipulated in paraphrases into a taxonomy have been
performed by Vila et al. (2014), followed by their
first typology annotated corpus (Vila et al., 2015).
Gold et al. (2019) categorize paraphrases on a
higher level as meaning relations and present three
additional categories: textual entailment, speci-
ficity, and semantic similarity. Kovatchev et al.
(2020) extend Vila et al. (2015, 2014)’s typology
and re-annotate the MRPC-A (Dolan and Brockett,
2005) corpus with fine-grained annotations with
more than 26 lexical categories, such as negation
switching and spelling changes in the ETPC dataset.
Recent works model objective functions instead of
taxonomies (e.g., word position deviation, lexical
deviation) to automatically categorize paraphrases
(Liu and Soh, 2022a). This approach is similar to
Bandel et al. (2022); Liu et al. (2020a)’s proposed
metrics for paraphrase quality (e.g., semantic simi-
larity, expression diversity).

Recent work requires texts to satisfy certain
stylistic, semantic, or structural requirements, such
as using formal language or expressing thoughts
using a particular template (Iyyer et al., 2018; Shen
et al., 2017). In paraphrase generation, methods
require texts to meet certain quality criteria, such
as semantic preservation and lexical diversity (Ban-
del et al., 2022; Yang et al., 2022) or require syn-
tactic criteria, such as word ordering (Chen et al.,
2019; Goyal and Durrett, 2020; Sun et al., 2021).
The development of the Multi-Topic Paraphrase
in Twitter (MultiPIT) corpus addresses quality is-
sues in existing paraphrase datasets and facilitates
the acquisition and generation of high-quality para-
phrases (Dou et al., 2022). Parse-Instructed Prefix
(PIP) tunes large pre-trained language models for

1
https://github.com/jpwahle/

emnlp23-paraphrase-types
2
https://huggingface.co/spaces/jpwahle/

paraphrase-type-generation
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generating paraphrases according to specified syn-
tactic structures in a low-data setting, significantly
reducing training costs compared to traditional fine-
tuning methods (Wan et al., 2023).

Although current contributions to generate and
detect different paraphrase forms, they do not use
them to generate or detect paraphrase types directly.
Instead, they rely on shallow similarity measures
and binary labels for identifying paraphrases. In
this work, we propose two new tasks. One for
generating specific perturbations when creating
new paraphrases and one for detecting the lexi-
cal differences between paraphrases. We use the
ETPC dataset to evaluate these tasks and show that
learning paraphrase types is more challenging than
considering the binary notion of paraphrase. Our
results suggest that learning paraphrase types is
beneficial for traditional paraphrase generation and
detection. We further demonstrate these findings in
our experiments (§4).

3 Task Formulation

Most paraphrase-related tasks focus on generat-
ing or classifying paraphrases at a general level
(Foltýnek et al., 2020; Wahle et al., 2022a,b, 2021).
This goal is limited, as it provides little details on
what composes a paraphrase or which aspects make
original and paraphrase alike (Fournier and Dunbar,
2021). We believe incorporating paraphrase types
in generation- and detection-related tasks can help
understand paraphrasing better.

We propose specific tasks for paraphrase gen-
eration and detection to include paraphrase types.
The goal of Paraphrase Type Generation is to
generate a paraphrased text that preserves the se-
mantics of the source text but differs in certain
linguistic aspects. These linguistic aspects are spe-
cific paraphrase types (e.g., lexicon change). In the
Paraphrase Type Detection task, the goal is to
locate and identify the paraphrase types in which
two pieces of the text differ.

Both tasks aim to include a fine-grained under-
standing of paraphrase types over current existing
tasks. Each specific task can also be formulated as
a simple paraphrase generation or detection task
(i.e., without paraphrase types) with a small error
ϵ. Thus, our tasks complement existing ones in
paraphrase generation and detection. Section 4 pro-
vides more information on the composition of the
proposed datasets, their splits, and their structure.
Figure 2 illustrate our proposed tasks.

3.1 Paraphrase Type Generation

Given a sentence or phrase x and a set of para-
phrase type(s) li ∈ L, a paraphrase x̃ should be
provided, where L is the set of all possible para-
phrase types L = {llex, ..., lmorph}. The reference
paraphrase types li to be incorporated in x̃ have to
take place on specific positions (i.e., segments si),
which can potentially overlap. The resulting para-
phrase x̃ should maximize its similarity against the
original text x while incorporating the segment’s
reference paraphrase type(s).

The task can be measured through multiple met-
rics. This study uses BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), and BERTScore (Zhang et al.,
2020b) for the paraphrase segments in x̃ in relation
to x (cf. Section 4.1). To measure correlations, we
also include word position deviation and lexical
deviation (Liu and Soh, 2022a),

3.2 Paraphrase Type Detection

Given a sentence or phrase x and a paraphrase x̃,
the task is to identify which paraphrase types li ∈ L
the latter contains in relation to the former L(x̃),
where L is the group of all possible paraphrase
types L = {llex, ..., lmorph} and L(x̃) represents
the paraphrase types in x̃. Both x and x̃ include no
information about which segments sj were altered
or how they are correlated. Therefore, our task
requires the identification of segments and their
classification, which can be composed of multiple
types. sj might have different positions in x and
x̃, as each phrase can have different word order.
The following example shows how two phrases are
related according to their paraphrase types.

x: A project s1 was funded s2 in s3 New York City s4 .

x̃: New York s4 funded s2 it s1 for s3 its largest city s4 .

L(x̃): {(s1, llex); (s2, lsyn); (s3, ldis); (s4, llex)}
Multiple metrics can also be considered when

evaluating Paraphrase Type Detection (e.g., F1
score, accuracy). We evaluate the detection as a
weighted sum of accuracies of paraphrase types li
in the modified segments of x̃ against x. Therefore,
accuracies are weighted within the same phrase.
Weighting prevents the dominance of specific types
in phrases with multiple occurrences in the dataset.

As our goal is to explore paraphrase types, we as-
sume that one of the sentences is a paraphrase of the
other and both are semantically related. However,
this task can also be altered to identify the existence
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a                    about her...                   

Paraphrase Type Generation

Diathesis Lexicon

Paraphrase Type Detection

The president gave speech

a              about her...                   She has given talk

a                    about her...                   The president gave speech

a              about her...                   She has given talk

Polarity	𝒇(𝑠!)	𝒇(𝑠")	𝒇(𝑠#) 	𝒇(𝑠!, �̃�!) 	𝒇(𝑠", �̃�") 	𝒇(𝑠#, �̃�#)

�̃�! 										; 0,1Polarity �̃�" 											; 0,1 	Diathesis �̃�# 											; 0,1 	Lexicon

Figure 2: Paraphrase Type Generation (left) and Paraphrase Type Detection (right) with model f , reference segments
s1, s2, s3 and candidate segments s̃1, s̃2, s̃3.

of paraphrasing and its types separately. Another
possible extension for our tasks could include un-
related sentence pairs with no paraphrase types,
similar to the unanswerable questions in SQuAD
2.0 (Li, 2019). In our experiments, we do not in-
vestigate the performance considering the location
of each paraphrase. Thus, a correct identification
is only considered if the pair (sj , li) is provided.
We leave the investigation of such aspects to fu-
ture work and invite researchers to explore other
variations of our tasks.

4 Experiments

In our experiments, we first investigate the dis-
tinct differences in paraphrase types by evaluating
their correlations. Next, we measure how much
language models already know about paraphrase
types and how that changes when scaling them. Fi-
nally, we empirically study how existing models
perform in our proposed tasks. To test whether
paraphrase types are a valuable extension to tra-
ditional paraphrasing tasks, we evaluate selected
models after incorporating paraphrase types in their
training to quantify the transfer from paraphrase
types to traditional paraphrase tasks.

4.1 Setup

Datasets. We use the Extended Paraphrase Ty-
pology Corpus (ETPC) (Kovatchev et al., 2018)
and three challenging auxiliary paraphrase datasets
according to (Becker et al., 2023): Quora Ques-
tion Pairs (QQP) (Wang et al., 2017), Twitter
News URL Corpus (TURL) (Lan et al., 2017),
and Paraphrase Adversaries from Word Scrambling
(PAWS) (Zhang et al., 2019). More details about
the datasets can be found in Appendix A.3. ETPC
is a corpus with binary labels (paraphrased or orig-
inal) and 26 fine-grained paraphrase types, and
six high-level paraphrase groups. Table 1 gives an

overview of their distribution. The most common is
the group “lexicon-based changes”, particularly the
paraphrase type “synthetic/analytic substitutions”,
e.g., noun replacements with the same meaning.
Notably, many paraphrases are additions or dele-
tions of words to a phrase. Using ETPC, we evalu-
ate how well existing models perform generation
and detection tasks, with and without prior training
in paraphrase types. We use a 70% train and 30%
eval split with an equal balance between paraphrase
types. To show how our tasks are compatible with
general binary paraphrase tasks and datasets, se-
lected models trained with paraphrase types are
tested for paraphrase types (ETPC) and a general
paraphrase task (QQP).

Metrics. For the Paraphrase Type Generation task,
we measure the performance of models generating
paraphrase types on a segment level using BLEU
and ROUGE. For Paraphrase Type Detection, we
use accuracy on a segment level, i.e., each seg-
ment receives an individual score which we aver-
age per phrase for three categories: Binary - para-
phrased or not; Type - paraphrase type (e.g., ellip-
sis); and Group - groups of paraphrase types (e.g.,
morphology-based changes). More details on the
evaluation can be found in the Appendix A.5.

Models. We conduct experiments scaling model
sizes with LLaMA (Touvron et al., 2023); gen-
eration experiments with autoregressive models:
BART (Lewis et al., 2020), PEGASUS (Zhang
et al., 2020a) and ChatGPT; and detection exper-
iments with autoencoders: BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), ERNIE 2.0
(Sun et al., 2020), DeBERTa (He et al., 2021), and
ChatGPT. We use ChatGPT in the September 25th
2023 version3.

3
https://help.openai.com/en/articles/

6825453-chatgpt-release-notes
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Figure 3: Task performance (accuracy) for different model sizes of LLaMA with and without learned paraphrase
types against human performance as reported by the respective datasets or benchmarks.
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Figure 4: Accuracy for identifying paraphrase types of
six high-level groups for different model sizes in the
ETPC dataset using LLaMA.

4.2 Generation & Detection

Q1. How much are paraphrase types already rep-
resented in language models?

We test the ability of models to identify paraphrase
types for different model sizes of LLaMA (in terms
of model parameters). Therefore, we compose
in-context prompts with few-shot examples and
chain-of-thought (Wang et al., 2022; Wei et al.,
2023). Prompt examples are shown in Figure 9
in Appendix A.6. We measure the accuracy of de-
tecting the correct paraphrase type using the ETPC
group categories. Figure 4 shows the results. While
smaller models lead to overall low performance
in identifying paraphrase types, scaling them in-
creases the performance in identifying paraphrase
types. As we scale the model, a divergence between
paraphrases and non-paraphrases becomes more
prominent for different types. We colored the three
most divergent groups in red, i.e., lexicon-based
changes, syntax-based, and others (mainly addi-

tions and deletions). One possible explanation is
that phrases can be syntactically different and mean
the same or have opposing meanings, leading to
divergences. Larger models tend to learn the differ-
ence between paraphrases and non-paraphrases for
individual types better. The overall performance,
though, is relatively low, reflecting that LLMs also
have difficulties classifying paraphrase types in
general, meaning that they are unable to identify
the particular changes that led to detection, even
though they show good performance for the known
Binary classification case (not shown here4).

Q2. How well can language models perform type
generation and detection when instructed to?

Generation. We use BART and PEGASUS to per-
form Paraphrase Type Generation by adapting their
last layer for token prediction. We assign each sam-
ple token-level label for generating substitutions of
a paraphrase type.

x Amrozi accused his brother, whom he called
‘the witness‘, of deliberately distorting his evi-
dence.

x̃ Referring to him as only ‘the witness‘, Amrozi
accused his brother of deliberately distorting
his evidence.

L(x) (26, 26, 26, 26, 0, 5, 0, 6, 25, 25, 25, 25, 25,
25, 25, 25, 25, 25, 25)

L(x̃) (6, 5, 5, 0, 25, 0, 0, 0, 0, 0, 26, 26, 26, 26, 0, 0,
0, 0, 0, 0)

4see https://paperswithcode.com/task/qqp
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Paraphrase Type # Examples

Morphology-based changes 975
Derivational Changes 186
Inflectional Changes 606
Modal Verb Changes 183

Lexicon-based changes 6 366
Spelling changes 628
Change of format 236
Same Polarity Substitution (contextual) 4 138
Same Polarity Substitution (habitual) 831
Same Polarity Substitution (named ent.) 533

Lexico-syntactic based changes 950
Converse substitution 43
Opposite polarity substitution (contextual) 15
Opposite polarity substitution (habitual) 4
Synthetic/analytic substitution 888

Syntax-based changes 731
Coordination changes 47
Diathesis alternation 161
Ellipsis 65
Negation switching 20
Subordination and nesting changes 468

Discourse-based changes 617
Direct/indirect style alternations 19
Punctuation changes 293
Syntax/discourse structure changes 305

Extremes 2 287
Entailment 81
Identity 1 782
Non-paraphrase 424

Others 5 742
Addition/Deletion 4 733
Change of order 857
Semantic-based 152

Total 16 813

Table 1: An overview of considered paraphrase types
and their occurrences in the ETPC dataset.

Each label is mapped to a paraphrase type, and
the tuple index corresponds to the tokenized word
index. We balance the number of paraphrase types
between training and validation sets, although this
sometimes leads to low amounts of evaluation ex-
amples (e.g., 1

4
examples for opposite polarity sub-

stitution). Thus, we consider only groups with at
least 100 examples per type in their evaluation set.

We also test paraphrase type generation with
ChatGPT-3.5 by formulating generation prompts
as instructions (see Figure 9 for examples).

Table 2 shows the results. Both BART and PE-
GASUS show strong performance for generating
paraphrase types in ETPC. BART outperforms PE-
GASUS in all metrics, particularly in ROUGE-L,
suggesting that BART may be better suited for the
task when contexts are longer. Although we ex-
pected fine-tuned ChatGPT to be superior over
smaller models, it achieves higher BLEU scores but

lower ROUGE scores than BART. ChatGPT gener-
ates text that matches the reference at the n-gram
level more precisely but might be missing out on
covering other parts of the reference. This means
the generated text might be very similar to some
portions of the reference but does not capture the
entirety or breadth of the reference content. BART
and PEGASUS capture most of the content from
the reference text, but how they present it (word-
ings, order) might differ from the reference. This
means the generated text has a good recall of the
critical content but may not have the exact phras-
ing or structure as the reference. Table 5 in Ap-
pendix A.4 shows additional in-context predictions
of ChatGPT, showing that the default model is not
able to generate paraphrase types well without fine-
tuning. Although ChatGPT-3.5 reached the highest
BLEU scores, smaller models have an edge when
fine-tuned. All tested models can learn and gen-
erate paraphrase types to some extent. Still, there
is much potential for improvement using more so-
phisticated methods to generate paraphrase types.

Detection. We test four autoencoder models on
Paraphrase Type Detection by adapting their token-
level representation with a linear layer to classify
one of the 26 paraphrase types. We also fine-tuned
ChatGPT-3.5 on the same task with prompt in-
structions. To estimate the accuracy of classifying
higher-level perturbations, we group the 26 types
into one of six groups (Table 1). Both the type and
group scores are averaged over all occurrences in
the sequence. For the entire sequence, we classify
the binary label (i.e., paraphrase or not) using the
aggregate representation of the model (e.g., [CLS]-
token for BERT).

Table 3 shows the accuracy for paraphrase type
detection on ETPC and paraphrase detection on
QQP. DeBERTa achieves the highest performance
of all encoder models across all categories for de-
tecting paraphrase types, with 83.0 in the tradi-
tional binary case, 65.0 when detecting paraphrase
types, and 67.9 when detecting the correct group.
ChatGPT significantly outperforms the results of
DeBERTa and when detecting paraphrase types, it
achieves 11.8 percentage points higher results than
DeBERTa. ERNIE 2.0 closely follows DeBERTa
in binary detection with a score of 82.7 but trailed
in type and group detection. Overall, the scores
for paraphrase type and group are relatively low
compared to the binary case, underlining the chal-
lenge for autoencoder models to grasp which lex-
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Model BLEU ROUGE-1 ROUGE-2 ROUGLE-L

BART 46.3 56.2 34.9 54.2
PEGASUS 45.3 54.9 33.8 50.1

ChatGPT-3.5 55.9 51.8 32.9 48.9

Table 2: Generation results of fine-tuned models on the ETPC dataset.

ETPC QQP

Model Binary Type Group w/o Types∗ w/ Types

BERT 74.1 58.7 60.0 89.3 / 72.1 91.6 / 88.6
RoBERTa 68.3 62.5 62.9 90.2 / 74.3 91.5 / 88.6
ERNIE 2.0 82.7 64.2 65.9 90.9 / 75.2 92.4 / 89.7
DeBERTa 83.0 65.0 67.9 90.8 / 76.2 93.0 / 90.6

ChatGPT-3.5 90.4 76.8 78.1 90.7 / 75.4 92.5 / 90.0

Table 3: Detection results for the ETPC (accuracy) and QQP (accuracy/F1) datasets. Models trained on ETPC
are applied in QQP (w/ Types). ∗Official results for autoencoders (w/o Types) from GLUE leaderboard https:
//gluebenchmark.com/leaderboard for comparison. Best results in bold.

ical perturbation occurred. In the binary scenario,
all models can distinguish between paraphrased
and original content at a general level with good
performance. However, this success diminishes
in the presence of paraphrase types, corroborating
that these models do not understand the intrinsic
variables that have been manipulated yet.

Q3. How does learning paraphrase types improve
task performance of traditional paraphrase tasks
with model scale?

We test fine-tuned LLaMA in three binary para-
phrase tasks, i.e., QQP, TURL, and PAWS, with
two different settings: without paraphrase type in-
structions and with instructions using the ETPC
dataset. For more details on the prompts used, see
Figure 9. We also report the human performance
of the respective dataset papers or benchmarks.
The results reveal a positive trend when scaling
LLaMA from 7B to 65B parameters. While scaling
the model improves its baseline (w/o paraphrase
types), the incorporation of paraphrase types leads
to an increase in performances, achieving better-
than-human results for all three datasets (Figure 3).
Across datasets, the variation is lowest for QQP,
which is also more than ten times larger (795k)
than TURL (52k) or PAWS (65k). This analysis
complements earlier findings that larger models are
also more capable of paraphrase type tasks.

Q4. What impact has learning paraphrase types
on generating paraphrases?

We test models previously trained on generating
ETPC paraphrase types to generate paraphrases for
the QQP dataset. Table 4 shows the results. In-
tegrating paraphrase types into BART and PEGA-
SUS leads to considerable performance improve-
ments across all assessed metrics. When using
ChatGPT with in-context instructions, consider-
able performance gains can be observed too but
overall the results are lower than BART and PE-
GASUS, again underlining that specific tasks can
benefit from smaller expert models. BART experi-
ences a marked increase in ROUGE-L score from
41.8 to 44.2 and its ROUGE-1 score from 43.1
to 45.5, demonstrating improved results in para-
phrase generation. Similar but overall less consis-
tent improvements are also observed in PEGASUS,
with BLEU increasing by 2.6 points and ROUGE-L
score rise of 2.4 points. These results show that
including paraphrase types positively affects per-
formance in the QQP dataset. ChatGPT shows
good performance in generating paraphrase types
too, without fine-tuning, with increases of up to
3.2 percentage points (ROUGE-1). Both models
drop in performance from ROUGE-1 to ROUGE-2
and again increase from ROUGE-2 to ROUGE-L,
a finding consistent with related works (Li et al.,
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Model BLEU ROUGE-1 ROUGE-2 ROUGE-L

BART
+ w/o paraphrase types 44.7 43.1 25.3 41.8
+ w/ paraphrase types 46.8 45.5 27.0 44.2

PEGASUS
+ w/o paraphrase types 42.3 41.9 25.1 39.6
+ w/ paraphrase types 44.9 43.6 26.8 42.0

ChatGPT-3.5
+ w/o paraphrase types 34.6 31.8 14.5 29.2
+ w/ paraphrase types 34.7 35.0 16.9 37.4

Table 4: Generation results on the QQP dataset for trained models in the ETPC without and with prior paraphrase type
generation training. Best results in bold.

2019; Liu et al., 2020b; Miao et al., 2019; See
et al., 2017). Including paraphrase types overall
leads to higher ROUGE-L scores, indicating higher
recall and tendencies to perform better with longer
contexts. Further investigations are necessary to
conclude whether specific paraphrase types or ad-
ditional training contributed to performance gains.

Q5. What impact has learning paraphrase types
on identifying paraphrases?

We also test the transfer of models trained on de-
tecting ETPC paraphrase types to the QQP task
(right side of Table 3). For the QQP column, we
fine-tuned models on QQP that have been previ-
ously fine-tuned with paraphrase types on ETPC5.
Models trained on paraphrase types consistently
outperform their counterparts in the binary setup
(w/o Types) for the QQP dataset. For example, the
accuracy of DeBERTa improved from 90.8/76.2 to
93.0/90.6 with the integration of paraphrase types.
Similarly, when paraphrase types are incorporated,
BERT’s performance improves from 89.3/72.1 to
91.6/88.60. ChatGPT achieves comparable perfor-
mance to autoencoders.

These results underscore the value of integrating
paraphrase types in enhancing models’ detection
capabilities across different datasets and detection
metrics. DeBERTa achieves the best performance
with significant improvements when the model is
trained to recognize paraphrase types. Although
ETPC has a relatively small amount of examples,
the performance benefits are clear and can poten-
tially accelerate the development of new paraphrase
detection methods using LLMs in the future.

5We do not fine-tune ChatGPT on the full QQP dataset to
reduce training cost. We sample 20% of training examples.
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Figure 5: Rescaled Spearman correlations between para-
phrase types in six higher-level families using word po-
sition deviation and lexical deviation. Correlations are
normalized around the origin using mean µ and standard
deviation σ such that µ = 0, σ = 1.

4.3 Type Correlations and Similarity

To show how different paraphrase types correlate,
we compute word position deviation and lexical
deviation (Liu and Soh, 2022b) of examples in the
ETPC dataset. Next, we compute the Spearman
correlations between these scores for all examples
per paraphrase type to another and average over
all examples per paraphrase type. Correlations are
high overall, with an average of 0.89. We rescale
the correlations in Figure 5 with µ = 0 and σ = 1
to visualize the differences better. We include the
correlation of all 26 paraphrase types in Figure 8
in Appendix A.2.

Within groups, lexicon-based changes have the
highest correlation, followed by the “Others” cate-
gory that contains “Addition/Deletion”, “Change of
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order”, and “Semantic-based” changes. Between
groups, we observe a higher-than-average corre-
lation between syntax-based and lexico-syntactic-
based changes, both containing syntactic compo-
nents. The most prominent cases regarding group
types are between “synthetic/analytic substitution”
and “diathesis alternation”; and “opposite polarity
substitution (contextual)” and “ellipsis” (see Ap-
pendix A.2 for more details). In summary, differ-
ent paraphrase types show overall high correlations
even between groups while lexicon-based and other
changes correlate less.

4.4 Demo for Paraphrase Types

We provide an interactive chat-like demo on Hug-
gingface6 to generate paraphrase types interactively
or automatically using the Python Gradio Client
API. Figure 6 in the Appendix provides a screen-
shot of that tool.

5 Final Considerations

Conclusion. In this paper, we proposed Paraphrase
Type Generation and Paraphrase Type Detection,
two specific paraphrase type-based tasks. These
tasks extend traditional binary paraphrase genera-
tion and detection tasks with a more realistic and
granular objective. In the generation task, para-
phrases have to be produced according to spe-
cific lexical variations, while in the detection task,
these lexical perturbations need to be identified
and classified. Our results suggest that the pro-
posed paradigm poses a more challenging scenario
to current models, but learning paraphrase types
is beneficial in the generation and detection tasks.
Additionally, both of our proposed tasks are com-
patible with existing ones. All models trained on
paraphrase types consistently improve their per-
formance for generation and detection tasks, with
and without paraphrases. The shift from general
paraphrasing to including specific types encourages
the development of solutions that understand the
linguistic aspects they manipulate. Systems that
incorporate specific paraphrase types, can there-
fore support more interpretability, accuracy, and
transparency of current model results.
Future Work. As the vast majority of datasets in
paraphrasing do not account for paraphrase types,
the first natural step is to evaluate how to include
types in their composition. The expansion of cur-

6
https://huggingface.co/spaces/jpwahle/

paraphrase-type-generation

rent datasets could take place either by automated
systems (for large datasets) or by human annotators.
In addition to generating new paraphrase-typed
datasets, a prospective direction is to use large
language models to paraphrase original content
and qualitatively identify which paraphrase types
these models learn during their training through
humans. Although metrics such as BLUE and
ROUGE have known deficiencies (e.g., high scores
for low-quality generations), they are currently the
standard practice in generation tasks. Thus, a met-
ric incorporating paraphrase types with their lo-
cation and segment length could provide a more
accurate assessment of our proposed tasks.

Limitations

As the use of paraphrase types in generation and
detection tasks is still incipient, much work is re-
quired to establish this as the new paradigm in the
field. To the best of our knowledge, our paper is one
of the first contributions to define tasks for para-
phrase types for automatic investigations, probe
state-of-the-art models under these conditions, and
verify the compatibility of specifically trained mod-
els with proposed and existing tasks. However,
several points remain open to be explored. In this
section, we go over some of them.

Two factors limit the experimental setup of our
tasks: the datasets used and the considered metrics.
Our analysis is based on ETPC to probe paraphrase
types, so we are bounded to the limited number of
examples of that dataset. In addition, we only test
the transfer from paraphrase types to more general
paraphrase tasks between ETPC and QQP. Thus,
more diverse datasets must be proposed and ex-
plored so prospective solutions can be thoroughly
evaluated. On the evaluation side, we still rely
on standard metrics such as BLEU and ROUGE,
which are known for their limitations (e.g., poor
correlation with human preferences) and cannot
account for paraphrase types, locations, or segment
length in their score. A metric incorporating para-
phrase types with their location and segment length
would greatly support our experiments and results.

Even though we probe state-of-the-art models
in our proposed tasks, no human study was con-
ducted to establish a human baseline for compar-
ison on paraphrase types. Particularly automated
generation metrics such as ROUGE and BLEU
work well for particularly paraphrase types, such
as, syntax-changes but obviously have problems

12156

https://huggingface.co/spaces/jpwahle/paraphrase-type-generation
https://huggingface.co/spaces/jpwahle/paraphrase-type-generation


for lexicon-changes and lexico-syntactic changes.
In future work, we are already exploring human
annotation and alternative metrics to overcome is-
sues resulting from word overlap. Part of the re-
sults obtained in Section 4 are limited to automatic
solutions, and only traditional tasks involve a hu-
man baseline. Therefore, it is uncertain how much
improvement current models still need to be com-
parable to human performance in generating and
detecting paraphrase types.

Ethics & Broader Impact

Ethical considerations. We understand that tech-
niques devised for paraphrasing have many appli-
cations, and some of them are potentially uneth-
ical. As we push forward the necessity of para-
phrase types, these can also be applied to gener-
ate more complex, human-like, and hard-to-detect
paraphrased texts, which can be used for plagia-
rism. Plagiarism is a severe act of misconduct in
which one’s idea, language, or work is used with-
out proper reference (Foltýnek et al., 2019; Kumar
and Tripathi, 2013).

Large language models capable of mimicking
human text are a reality (e.g., ChatGPT), and most
of us still do not fully understand their reach. As al-
ready foreshadowed (Wahle et al., 2022a,b, 2021),
paraphrasing using language models can lead to
more undetected plagiarism, undermining the qual-
ity and veracity in several areas (e.g., academia,
basic education, industry). Even though paraphrase
types might encourage the development of even
more sophisticated techniques that can potentially
be incorporated into these models, we should not
remain neutral. Therefore, artifacts to probe and
understand what composes paraphrases in neural
language models should be welcome instead of
feared.
Broader Impact. The presented tasks in this work
and its future solutions have the potential to benefit
other areas aside from paraphrase generation and
detection. In the following, we list a few applica-
tions that can be explored.
Machine translation. Paraphrase Type Detection
can help identify paraphrase types in a translated
text to identify areas where the translation is faith-
ful to the original text. This task can also assist
in identifying deficiencies in specific linguistic as-
pects between models and languages.
Emotion analysis. Paraphrase Type Generation
could be used to express different emotions through

multiple linguistic aspects. For example, the re-
search could focus on comparing multiple versions
of the same emotions and then estimate whether dif-
ferent linguistic concepts, such as negation, convey
more or less emotion.
Text summarization. On top of Paraphrase Type
Detection, researchers can build tools to identify
where the summary preserves the original text’s
meaning, which parts of the text change, and how
it impacts semantic preservation and coherence.
Text generation. Paraphrase Type Generation can
support generating or paraphrasing stories using
different paraphrase types to estimate which types
lead to desirable attributes such as originality, ten-
sion, and character development.
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A Appendix

A.1 Frequently Asked Questions

How do your tasks differ from syntactic and
semantic learning?
The presented tasks are specifically designed to
incorporate information about various linguistic
aspects, not limited to syntax and semantics.
They overcome shortcomings as demonstrated in
our experiments in which one aspect is learned
well (e.g., semantics - the subjects and objects
and actions are the same), but others suffer (e.g.,
opposite polarity - the meaning was reversed).
Investigating only semantics and syntax can lead
to underrepresented paraphrase types, which are
particularly problematic when shifting to new
domains.

The annotations for this task require experts. Is
there an unsupervised approach that I can use?
While paraphrase types are diverse and have many
categories, the annotation task is similar to a
named entity recognition annotation, in which the
text span (segment location) and entity (paraphrase
type) must be annotated. High amounts of labels
are also not a new challenge. Large annotation
providers (e.g., Prodigy7, Scale8) provide tools
to simplify this process (e.g., one annotator finds
three categories at a time). Also, tasks with more
complex problems and descriptions seem to be
more beneficial for future research (Mohammad,
2016; Rozovskaya and Roth, 2010). We are
currently working on a semi-supervised method
for assisted paraphrase-type generation using
contrastive learning and reinforcement learning
from human feedback to facilitate this task. Still,
for evaluation purposes, we require an annotated
test set or human raters.

How can I use the tasks?
Our implementation is available on GitHub9 and a
demo is available through Huggingface.

A.2 Details on Correlations

Figure 8 provides the detailled correlation of Fig-
ure 5 for each paraphrase type. While the overall
group correlations are also represented here, some

7
https://prodi.gy/

8
https://scale.com

9
https://github.com/jpwahle/

emnlp23-paraphrase-types

notable differences exist. For example, direct and
indirect style alternations more-than-average with
the change of order. While writing style seems to
have many components, a significant one seems
to be the ordering of sentences. Usually, the most
important keywords of a sentence remain the same,
but their ordering can vary - one of the reasons
why word-count-based metrics such as BLEU and
ROUGE are still used in many tasks.

Another high correlation exists for contextual
opposite polarity substitution and change of or-
der. Opposite polarity substitutions are cases in
which the meaning of a term is opposed to the
original (e.g., “Johnson quickly accepted the pro-
posal.” and “Johnson rejected the proposal without
hesitation.”). Changing polarity can often include
changing the term’s position if an exact opposite
term does not exist. Therefore, an order change can
often be explained by contextual opposite polarity.
However, suppose the polarity change is habitual.
In that case, there is often no need for word order
changes as the same concept can be explained at
the same text position (i.e., the meaning remains -
“Leicester failed in both enterprises” and “He did
not succeed in either case”). Changing polarity
also correlates with ellipses which are typically
shorter versions of the same phrase.

Much lower-than-average correlations appear for
converse substitution with addition and deletion
and a format change. Converse substitution means
the change of action from subject to object (e.g.,
“Sam bought a new car from John.” and “John
sold his car to Sam.”). As already illustrated by
this simple example, a converse substitution often
requires a format change and additions/deletions
to ensure that the subjects/objects are connected to
the action in both cases.

While many more correlations exist across the
spectrum (e.g., modal verb changes to negation
switching or subordination and nesting changes to
syntax/discourse structure changes), their nature
appears to be due to both often appearing in the
same sentences. The correlation analysis of this
study serves as a starting point for further inves-
tigations but is limited in that only 17 668 total
paraphrase types occur across 5 801 sentences.

Figure 7 shows the rescaled BERTScore sim-
ilarity scores for the example in Figure 1 with
three paraphrase-type perturbations, i.e., diathe-
sis alternation, polarity substitution, and lexicon
change. Since the example has no word position
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Figure 6: An interactive demo to generate paraphrase types.

deviations, we expect the column maxima to be
diagonal-shaped like in the segment “about her
plan to change the constitution”. However, par-
ticularly for the paraphrase types in question, the
similarities between “She” and “The president”,
“has given” and “gave”, and “talk” and “speech”
are lower between them and sometimes inferior to
other similarities for the same terms. We also tested
the same example with “he/him” and “they/them”
pronouns instead of “she/her” to verify potential
biases towards gender (i.e., presidents are mainly
male in the training data), but the scores were com-
parable.

We hypothesize that similarities between seg-
ments with paraphrase types have lower similarity,
on average, than their non-paraphrase type coun-
terparts. This suggests that paraphrase types are
semantically more challenging to identify.

A.3 Datasets

Quora Question Pairs (QQP) is a collection of ap-
proximately 400k pairs of questions extracted from
Quora10, a platform for general question and an-
swers. This dataset is annotated to identify whether
one question is a rephrasing of another (Wang et al.,
2017). QQP is one of the largest and most estab-

10
https://quora.com/
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Figure 7: Rescaled BERTScore similarity for an exam-
ple reference phrase and its paraphrased candidate.

lished paraphrase datasets in the community and
therefore received particular attention throughout
our experiments.
Twitter News URL Corpus (TURL) encompasses
about 2.8 million pairs of human-authored sen-
tences taken from Twitter11 news (Lan et al., 2017).

11
https://twitter.com
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Figure 8: Rescaled Spearman correlations between paraphrase types using word position deviation, lexical deviation,
BLEU, ROUGE, and BERTScore in the ETPC dataset. Correlations are normalized using mean µ and standard
deviation σ such that µ = 0, σ = 1.

Annotations in the form of binary-type markings
were provided by six individual raters. In our study,
we recognized a paraphrase as positive based on
a majority vote and neglected those pairs lacking
majority consensus.
Paraphrase Adversaries from Word Scrambling
(PAWS) comprises around 65k pairs of machine-
generated texts (Zhang et al., 2019). These texts are
obtained from Wikipedia and were created by im-
plementing word reordering and back-translation
strategies.

A.4 Supplementary Results

Table 5 shows additional in-context prediction re-
sults for ChatGPT (i.e., prompts with few-shot ex-
amples). Both ROUGE and BLEU scores are much
lower than those of fine-tuned models, showing
that ChatGPT’s default capability to generate para-
phrase types is limited.

A.5 Evaluation

Our detection experiments also included statisti-
cal significance tests of our results, namely results
of Table 3. Following (Dror et al., 2018), we as-
sess our results using a non-parametric sampling-
free test, namely the Wilcoxon signed-rank test

(Wilcoxon, 1992). The detection results between
models are significant with p < 0.05.

A.6 Prompt examples
Figure 9 shows some prompt examples used in our
experiments. We rely on Wang et al. (2022) for
few-show examples and prompt templates.
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In-Context Fine-Tuned

Model BLEU ROUGE-1 ROUGE-L BLEU ROUGE-1 ROUGE-L

BART - - - 46.3 56.2 54.2
PEGASUS - - - 45.3 54.9 50.1

ChatGPT-3.5 27.1 24.0 23.3 55.9 51.8 48.9

Table 5: Generation results on the ETPC dataset for BLEU, ROUGE-1 and ROUGE-L.

Figure 9: Example prompts used for experiments on paraphrase type generation and detection.
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