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Abstract
Existing works on coreference resolution sug-
gest that task-specific models are necessary to
achieve state-of-the-art performance. In this
work, we present compelling evidence that such
models are not necessary. We finetune a pre-
trained seq2seq transformer to map an input
document to a tagged sequence encoding the
coreference annotation. Despite the extreme
simplicity, our model outperforms or closely
matches the best coreference systems in the lit-
erature on an array of datasets. We also propose
an especially simple seq2seq approach that gen-
erates only tagged spans rather than the spans
interleaved with the original text. Our analy-
sis shows that the model size, the amount of
supervision, and the choice of sequence repre-
sentations are key factors in performance.

1 Introduction

The seminal work by Lee et al. (2017) popularized
end-to-end models for coreference resolution based
on searching over all possible spans and their clus-
tering. However, even with substantial refinement
and simplification in followup works (Lee et al.,
2018; Xu and Choi, 2020; Wu et al., 2020; Kirstain
et al., 2021), the models are highly task-specific,
involving many specialized hyperparameters such
as how many candidates to retain in the mention
proposal phase.

There is a recent line of works that take an alter-
native approach, leveraging advances in pretrained
sequence-to-sequence (seq2seq) models. Liu et al.
(2022) propose ASP, an autoregressive pointer-
based model with a multitasking head for bracket
pairing and span labeling. Bohnet et al. (2023)
propose a transition-based system with carefully
designed states and actions, simulated by a seq2seq
model that processes one state at a time. However,
these seq2seq-based models are still task-specific,
requiring a modification of the seq2seq architecture
or a derivation of a transition-based system with
state manipulation.

A natural question is: are such task-specific mod-
els necessary for coreference resolution, or can
we approach it as a standard seq2seq problem?
There have been previous efforts to reduce corefer-
ence resolution as a seq2seq problem (Urbizu et al.,
2020; Paolini et al., 2021), but they underperform
task-specific models, suggesting that task-specific
models are perhaps necessary.

In this work, we present the first full seq2seq
reduction of coreference resolution that matches or
outperforms the best coreference systems in the lit-
erature, demonstrating that task-specific models are
not necessary to obtain state-of-the-art performance
and questioning the need to develop task-specific
solutions. Our approach is extremely simple. We
treat the raw document as a source sequence and
the coreference annotation as a target sequence,
then finetune a pretrained encoder-decoder model
like T5 (Raffel et al., 2020) or T0 (Sanh et al., 2022)
without any modification to the architecture.

There is a great deal of flexibility in the choice
of target sequence representation. Our main model
represents the coreference annotation as a sequence
of actions that either copy a token from the source
sequence, start/end a mention span, or tag a pre-
dicted mention span with an integer. At test time,
the model always produces a valid coreference clus-
tering by constrained beam search. We consider
an even simpler version in which the model gen-
erates only the tagged spans, and find that it also
yields surprisingly high performance. This simpler
version is advantageous because it results in faster
inference.

Our seq2seq model obtains strong results on
an array of coreference datasets. On English
OntoNotes (Pradhan et al., 2012), with a 3B-
parameter T0 the model obtains 82.9 test aver-
age F1, outperforming the corresponding ASP
(Liu et al., 2022) initialized from the same base
model (82.3). With a 11B-parameter T0, our
model achieves 83.2 F1, outperforming CorefQA
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(Wu et al., 2020) (83.1) and getting close to the
best known result using a 13B-parameter model
(83.3). On PreCo (Chen et al., 2018), the model
achieves 88.5, outperforming the task-specific
model of Toshniwal et al. (2021) (87.8). On Lit-
Bank (Bamman et al., 2020), which has substan-
tially smaller training data, the model obtains 78.3
cross-validation F1 lagging behind Toshniwal et al.
(2021) who report 79.2. But when trained on the
union of LitBank, OntoNotes, and PreCo, it obtains
81.2 split-0 F1, significantly outperforming their
78.2. Our analysis shows that the model size, the
amount of supervision, and the choice of sequence
representations are key factors in performance.
We make our code publicly available at: https:
//github.com/WenzhengZhang/Seq2seqCoref.

2 Related Work

In this section, we give a more focused treatment
of previous works on seq2seq-style approaches to
coreference resolution to make our contributions
more clear. Urbizu et al. (2020) propose framing
coreference resolution as a seq2seq task, but their
work is a proof of concept. They naively predict
boundaries, cluster numbers, and blanks (e.g., “(0
– – 0) – (1 – (2) | 1)”) with suboptimal modeling
choices (e.g., their decoder only receives these sym-
bols and no document content). They only report
results on the ARRAU corpus and significantly fall
behind existing works (e.g., 66.5 vs 78.8 under
B3). In contrast, we solve a much more challeng-
ing problem of developing state-of-the-art seq2seq
coreference systems.

There are recent works approaching structured
prediction with a general seq2seq-style solution.
One example is TANL (Paolini et al., 2021), which
frames entity/relation extraction, semantic role
labeling, and coreference resolution as seq2seq
tasks. Again, TANL fails to demonstrate compet-
itive performance on standard coreference resolu-
tion datasets, obtaining only 72.8 average F1 on
OntoNotes (compared to the current state-of-the-
art performance level which is > 80). Their target
sequence representation corresponds to our full lin-
earization with token action except that they tag the
cluster information by preceding mention strings
(e.g., “[ his | Barack Obama ]”), which yields long
target sequences and introduces clustering ambigu-
ity. While we improve the performance of TANL
to 79.6 in our own implementation, achieving the
best performance (83.2) requires our sequence def-

initions (Section 3).
ASP (Liu et al., 2022) is an autoregressive

pointer-based model for structured prediction. It
is a modified transformer that at step t conditions
on the input document x and a sequence represen-
tation of the annotation so far z≤t and predicts a
tuple of model-specific actions (αt, βt, γt) used for
structure building. For instance, βt ∈ {0 . . . t− 1}
is a bracket pairing action parameterized with a
feedforward layer that consumes the previous hid-
den states (ht, hβt) (i.e., a pointer network). ASP
obtains state-of-the-art results on OntoNotes (up
to 82.5 average F1). We outperform ASP with a
standard transformer.

Bohnet et al. (2023) develop a transition-based
coreference system that can be implemented by a
seq2seq model. The system autoregressively maps
a state to a prediction, where a state is previous
coreference-annotated sentences along with the
next sentence and a prediction is system actions
(e.g., link and append). While the system can be
reduced to seq2seq predictions, it processes one
sentence at a time by applying the predicted ac-
tions to the current state. We show that such an
explicit state-by-state transition is not necessary,
and that a standard transformer can directly reason
with all coreference clusters simultaneously.

3 Seq2Seq Methods

Let V denote the vocabulary. For any sequence
a ∈ VT and position t ∈ {1 . . . T}, we use the
prefix notation a<t = (a1 . . . at−1) ∈ Vt−1 and
a≤t = (a1 . . . at) ∈ Vt. We assume a gener-
alized seq2seq setting in which x ∈ VT ′

is the
source sequence, y ∈ VT is the target sequence
(i.e., a sequence of labels), and z ∈ VT is an addi-
tional sequence fed to the seq2seq decoder where
zt = F (x, z<t, y<t) is some fixed deterministic
mapping. The “generalized” model uses parame-
ters θ to define the conditional distribution

pθ(y|x) =
T∏

t=1

pθ(yt|x, z≤t). (1)

We emphasize that the generalization above does
not modify the standard seq2seq framework. Dur-
ing training, we feed (x, z) to the model as the
usual source-target sequence pair and minimize the
cross-entropy loss using y as per-token labels. At
test time, we apply the mapping F at each step by
postprocessing predictions.
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All our methods use (1) and only change the
variable definitions. The encoder input x is always
the document to be processed. The decoder input
z is a sequence representation or “linearization”
of the coreference annotation of x. The decoder
output y is any action sequence from which z can
be extracted deterministically at each step.

3.1 Linearization of the Coreference
Annotation

For a document x ∈ VT ′
, the coreference anno-

tation S is a set of spans clustered into C groups
formalized as

S ⊂
{
(i, j, l) : 1 ≤ i ≤ j ≤ T ′, 1 ≤ l ≤ C

}

Note that the spans can be nested. We assume that
the spans are ordered in non-decreasing lengths.
We will use the following as a running example:

x = (a, b, c, d, e)

S = {(2, 2, 1), (5, 5, 2), (2, 3, 2)} (2)

(i.e., the clustered spans are {{b} , {(b, c), e}}).
The goal is to express S as a sequence z ∈ VT

for some length T . A minimal formulation is to
literally predict the integer triples, for instance
z = str(S) where str is the string conversion
in Python. However, while short, such a non-
linguistic representation was found to perform
poorly likely because it is not compatible with lan-
guage model pretraining.

A better approach is to predict the mentions. We
represent the tagged span (i, j, l) in document x as

<m> xi . . . xj | l </m>

where <m>, </m> ∈ V are special symbols indicat-
ing the start and end of a mention representation,
and | ∈ V indicates the end of a mention string.
Nested spans are handled naturally by linearizing
the spans in order (i.e., from the shortest to the
longest). For instance, the subsequence (b, c) ∈ V2

in the running example (2) will become the length-
10 sequence

<m> <m> b | 1 </m> c | 2 </m>

In contrast to a transition-based approach (Bohnet
et al., 2023), we decode all coreference clusters in
the document in a single pass. Thus there is an issue
of alignment: if the model predicts multiple men-
tions with the same string form, how do we know

the corresponding spans in the source sequence?
A simple solution popular in general seq2seq ap-
proaches to tagging is to exhaustively predict all
the tokens in x (Daza and Frank, 2018; De Cao
et al., 2021). The example (2) is then linearized as

a <m> <m> b | 1 </m> c | 2 </m> d <m> e | 2 </m>

We call this representation full linearization. Full
linearization completely eliminates the problem of
alignment ambiguity at the cost of longer target
sequences. We also consider an alternative shorter
representation that we call partial linearization in
which only the tagged mentions are encoded. In
this case, (2) is linearized as

<m> <m> b | 1 </m> c | 2 </m> <m> e | 2 </m>

Partial linearization has the potential to drastically
shorten the target length if the mentions are sparse,
but it requires an explicit alignment step to transfer
the predictions to the input document. We defer the
discussion of the alignment problem to Section 3.4.

3.2 Action Sequences
Given a choice of linearization z ∈ VT (i.e., input
to the decoder), we can choose any action sequence
y ∈ VT (i.e., the actual predictions by the decoder)
such that at each step t, we can extract zt from the
document x and the past information z<t and y<t.
We assume that z1 = <s> and zT+1 = </s> are
the standard start and end symbols for the target se-
quence. A straightforward action sequence is given
by yt = zt+1 for t = 1 . . . T which we call token
action. Token action corresponds to a common
language modeling setting where the per-step pre-
diction is simply the next token. For instance, the
annotation x = (a, b) and S = {(2, 2, 1)} under
full linearization and token action is assigned

y = (a, <m>, b, |, 1, </m>, </s>)
z = (<s>, a, <m>, b, |, 1, </m>, </s>) (3)

Under full linearization, we can use a smaller
action space A = {<c>, <m>, </m>, |, </s>} ∪ U
where <c> is the special “copy” symbol which
means copying a single token from the document
and advancing the index by one, and U ⊂ V is the
subset of the vocabulary used for encoding integers.
We call this choice copy action, formally defined
as

yt =

{
<c> if zt+1 ̸∈ {<m>, </m>, |, </s>} ∪ U
zt+1 otherwise
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The example (3) under copy action becomes

y = (<c>, <m>, <c>, |, 1, </m>, </s>)
z = (<s>, a, <m>, b, |, 1, </m>, </s>)

Copy action in conjunction with constrained beam
search is a natural way to prevent deviations be-
tween the source and target sequences (Daza and
Frank, 2018). Partial linearization is not compati-
ble with copy action since the model skips the gap
between mentions.

3.3 Integer-Free Representation
So far we have relied on the separation symbol |
and an integer l to label every mention with its clus-
ter identity. Because the number of mentions in a
document is quite large, we consider ways to avoid
these two symbols. One way is to hard-code the
cluster information directly in the mention bound-
aries by introducing a special symbol </ml> ∈ V
for each cluster number l = 1, . . . , C. Under this
scheme, we may assign to the annotation x = (a, b)
and S = {(1, 1, 1)(2, 2, 1)}:

y = (<m>, <c>, </m1>, <m>, <c>, </m1>, </s>)

z = (<s>, <m>, a, </m1>, <m>, b, </m1>, </s>)
(4)

The performance of this representation was found
to be surprisingly poor, likely because the model
has a hard time learning to predict so many new
symbols. We tackle this issue by introducing a
“new” action <new> that delegates the burden of
specifying an unseen cluster number to postprocess-
ing. The example (4) is now assigned the action
sequence

y = (<m>, <c>, <new>, <m>, <c>, </m1>, </s>)

z = (<s>, <m>, a, </m1>, <m>, b, </m1>, </s>)

In this way, whenever the model predicts <new> we
can feed </ml+1> as the decoder input where l is
the previous number of clusters. The model is only
responsible for predicting </ml> for expanding a
known cluster l. We call this integer-free repre-
sentation and show that it is nearly as performant
as a corresponding baseline that relies on | and l
while being shorter and notationally cleaner.

3.4 Mention Alignment
The issue of alignment arises only under partial lin-
earization and token action. In this case, it is possi-
ble to have linearized mentions whose correspond-
ing locations in the input document are ambiguous.

Consider the document x = (a, b, c, d, e, b, b). The
linearization consisting of two length-1 mentions

<m> b | 1 </m> <m> b | 1 </m> (5)

correspond to either S = {(2, 2, 1), (6, 6, 1)} or
S = {(6, 6, 1), (7, 7, 1)}. We align mentions by
aligning tokens with gaps (i.e., a token may be
aligned to nothing). Prior to aligning tokens, we
remove all special symbols while saving the span
information for each mention (omitting the clus-
ter information for simplicity). For instance, (5)
becomes (b, b) with spans (1, 1) and (2, 2).

We then find a highest-scoring alignment where
the score measures token matching (1 if matched,
−1 if mismatched) and length-n affine gap penalty
g(n) = −1− p(n− 1), where p is a hyperparame-
ter1. The affine gap penalty encourages long unseg-
mented gaps, capturing the intuition that mentions
tend to appear in high density. The above example
has the optimal alignment with 2 matches (6 ↔ 1
and 7 ↔ 2) and a length-5 gap in the source se-
quence (1 . . . 5). Plugging in the token matches
in the span information, we identify the locations
(6, 6) and (7, 7) corresponding to the second an-
notation. This approach naturally handles nested
mentions.

For a document of length T ′ and a partial
linearization (with special symbols removed) of
length K, there are

(
T ′+K
K

)
possible alignments

with gaps. We exactly find an optimal alignment in
O(T ′K) time by Gotoh’s algorithm (Gotoh, 1982).
An oracle experiment shows that our approach
is highly effective, reaching 98.0 average F1 on
OntoNotes if we use the gold partial linearization.
We further improve the alignment scheme by in-
serting sentence markers in the input document
and linearization, which allows us to constrain the
alignment to sentence pairs at test time.

4 Discussion

Having presented our technical approach, we dis-
cuss how it relates to other approaches to corefer-
ence resolution that also use sequence-based mod-
els.

Our approach is pure seq2seq because we use
both the standard architecture and the system de-
sign that is applicable to any seq2seq task, such
as machine translation and text summarization. In
contrast, the approach of Bohnet et al. (2023) is not

1In our experiment, we set p = 0 for simplicity, as we ob-
served negligible performance differences when p ≤ 0.0001.

11496



considered pure seq2seq because their transition-
based system is specifically designed for the coref-
erence task (e.g., their “Link” and “Append” ac-
tions are meant to cluster mentions together), even
though the system itself is implemented using the
standard seq2seq architecture. To understand the
practical difference, note that their system requires
M encoder forward passes for a single document
during inference where M is the number of sen-
tences, whereas ours requires one. The success of
the transition system of Bohnet et al. (2023) does
not imply the success of the general seq2seq system
in our work.

We adopt the generalized seq2seq framework
that may require postprocessing during generation
(e.g., for copy action) for improved modeling flexi-
bility and performance, but the postprocessing step
does not change the standard seq2seq architecture
and system design. Furthermore, our model with-
out postprocessing is nearly as effective. Specifi-
cally, our “Full linear + token action + T03B" model
in Table 2 is a standard seq2seq model with no post-
processing during inference but achieves an 82.4
test F1 score, which is competitive with our best
same-size “Full linear + copy action + T03B” model
that does require token-level postprocessing (82.9).

We use constrained decoding during generation
to ensure valid coreference annotation, which is
a standard practice (Daza and Frank, 2018; De
Cao et al., 2021). The details can be found in
Appendix A.

5 Experiments

5.1 Datasets

We train and evaluate on three widely used datasets
for coreference resolution: OntoNotes (Pradhan
et al., 2012), PreCo (Chen et al., 2018) and Lit-
Bank (Bamman et al., 2020). The data statistics
are summarized in Table 1. It is important to note
that these datasets exhibit significant variations in
terms of size, document length, number of men-
tions/clusters, and domain. Following Kirstain et al.
(2021), we incorporate the speaker’s name into the
text whenever there is a change in speakers for
datasets that include speaker metadata. In addition
to training and evaluating on these three datasets
individually, we also perform an additional exper-
iment involving joint training on the combined
dataset comprising all three datasets. To address the
issue of data magnitude imbalance in joint training,
we adopt the methodology suggested by Toshniwal

# Docs
Dataset Train Dev Test Words Mentions Cluster Size
OntoNotes 2802 343 348 467 56 4.4
LitBank 80 10 10 2105 291 3.7
PreCo 36120 500 500 337 105 1.6

Table 1: Data statistics for OntoNotes, LitBank, and
PreCo datasets. The number of documents in each split,
average word count per document, average mention
count per document, and average mention count per
cluster are listed.

et al. (2021) and downsample the OntoNotes and
PreCo datasets to 2K samples per epoch.

5.2 Implementation Details

We initialize our model using the T5 model fam-
ily (Raffel et al., 2020), which includes models
of various sizes. Specifically, we use T5 (Raffel
et al., 2020), T0 (Sanh et al., 2022), and FLAN-T5
(Chung et al., 2022) with model sizes base, large,
XL/3B, and XXL/pp. We use the pretrained models
available in the Hugging Face Transformers library
(Wolf et al., 2019).

To train large models with limited resources, we
use Deepspeed (Rasley et al., 2020) with ZeRO
optimizers (Rajbhandari et al., 2020) and enable
gradient checkpointing. We divide the document
into overlapped segments, each with a maximum
length of 2048 tokens and an overlapping length of
1024 tokens. During inference, the maximum input
length is 4096 tokens for all our experiments. We
use constrained beam search with beam size 4.

For optimization, we use the Adam optimizer
(Kingma and Ba, 2015) with the learning rate of
5e-4 for base/large models, 5e-5 for XL/3B, and
3e-5 for XXL/pp models. We use a linear learning
rate decay scheduler with a warmup proportion of
0.1. We train our models using a batch size of 1 per
GPU, using 8 A100 40G GPUs for models of size
up to 3B and 8 A100 80G GPUs for models of size
11B.

5.3 Baselines

We categorize the baselines into the following three
groups.

Non-seq2seq Models in this category are specifi-
cally designed for coreference resolution and em-
ploy sophisticated coreference-specific architec-
tures. Most models in this category follow the
approach introduced by Lee et al. (2017) to de-
tect mention spans in the input text and establish
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MUC B3 CEAFϕ4 Avg.
Model P R F1 P R F1 P R F1 F1

Non-Seq2seq

Lee et al., 2017 78.4 73.4 75.8 68.6 61.8 65.0 62.7 59.0 60.8 67.2
Lee et al. (2018) 81.4 79.5 80.4 72.2 69.5 70.8 68.2 67.1 67.6 73.0
Joshi et al. (2019) 84.7 82.4 83.5 76.5 74.0 75.3 74.1 69.8 71.9 76.9
Yu et al. (2020) 82.7 83.3 83.0 73.8 75.6 74.7 72.2 71.0 71.6 76.4
Joshi et al. (2020) 85.8 84.8 85.3 78.3 77.9 78.1 76.4 74.2 75.3 79.6
Xia et al. (2020) 85.7 84.8 85.3 78.1 77.5 77.8 76.3 74.1 75.2 79.4
Toshniwal et al. (2020) 85.5 85.1 85.3 78.7 77.3 78.0 74.2 76.5 75.3 79.6
Wu et al. (2020)∗ 88.6 87.4 88.0 82.4 82.0 82.2 79.9 78.3 79.1 83.1
Xu and Choi (2020) 85.9 85.5 85.7 79.0 78.9 79.0 76.7 75.2 75.9 80.2
Kirstain et al. (2021) 86.5 85.1 85.8 80.3 77.9 79.1 76.8 75.4 76.1 80.3
Dobrovolskii (2021) 84.9 87.9 86.3 77.4 82.6 79.9 76.1 77.1 76.6 81.0
Toshniwal et al. (2021) - - - - - - - - - 79.6
Liu et al. (2022) + T03B 85.8 88.3 86.9 79.6 83.3 81.5 78.3 78.5 78.4 82.3
Liu et al. (2022) + FLAN-T5XXL 86.1 88.4 87.2 80.2 83.2 81.7 78.9 78.3 78.6 82.5

Transition Seq2seq Bohnet et al. (2023) + mT5XXL 87.4 88.3 87.8 81.8 83.4 82.6 79.1 79.9 79.5 83.3

Seq2seq

Paolini et al. (2021)+T5base - - 81.0 - - 69.0 - - 68.4 72.8
Paolini et al. (2021)+T0†

3B 85.0 86.0 85.2 76.1 78.5 77.3 76.5 75.6 76.0 79.6
Partial linear + T03B 83.9 87.6 85.7 76.6 82.1 79.3 77.7 76.5 77.1 80.7
Integer free + T03B 84.9 88.8 86.8 78.9 84.0 81.4 78.1 79.3 78.7 82.3
Full inear + token action + T03B 85.9 88.6 87.2 79.6 83.5 81.5 78.9 78.0 78.5 82.4
Full linear + copy action + T03B 85.8 89.0 87.4 80.0 84.3 82.1 79.1 79.4 79.3 82.9
Full linear + copy action + T0pp 86.1 89.2 87.6 80.6 84.3 82.4 78.9 80.1 79.5 83.2

Table 2: Results on the OntoNotes (CoNLL-12 English) test set. The average CoNLL F1 score of MUC, B3 and
CEAFϕ4

is the main evaluation criterion. Models marked with † are our implementation. ∗ marks models using
additional training data.

antecedent relationships by computing span repre-
sentation similarity at either span level (Lee et al.,
2017, 2018; Joshi et al., 2019, 2020; Xu and Choi,
2020; Liu et al., 2022) or word level (Kirstain et al.,
2021; Dobrovolskii, 2021). In contrast, Wu et al.
(2020) use a QA model to predict coreferent men-
tion boundaries, while Xia et al. (2020), Toshniwal
et al. (2020), and Toshniwal et al. (2021) use mem-
ory augmented models.

Transition-based Seq2seq Models in this cat-
egory are based on a designed transition system.
Currently Bohnet et al. (2023) is the only model in
this category.

Seq2seq Models in this category leverage a
sequence-to-sequence architecture to predict lin-
earized coreference annotations without relying on
coreference-specific model architectures or special-
ized system designs. Existing models in this cate-
gory include Urbizu et al. (2020) and Paolini et al.
(2021). However, Urbizu et al. (2020) do not evalu-
ate on standard coreference resolution datasets like
OntoNotes, and their performance is not competi-
tive enough, so we do not compare with them. On
the other hand, Paolini et al. (2021) do not report
performance using larger T5 models, and their in-
put length is shorter than ours (1024 words). To

ensure a fairer comparison, we implement their
method and include the results by training and eval-
uating with a larger model (T03B) using the same
input length as ours (2048 tokens). All of our mod-
els fall into this category. We include both full
linearization models and partial linearization mod-
els as baselines. For full linearization models, we
consider variants that use token action sequence
and copy action sequence.

5.4 Results

5.4.1 English OntoNotes
Table 2 shows our main results on the test portion
of English OntoNotes. We first point out that it
is generally challenging to ensure full comparabil-
ity due to numerous ways the approaches differ.
For instance, CorefQA (Wu et al., 2020) achieves
strong performance with a relatively small model
(SpanBERT-large, 340M parameters), but it uses
additional training data to optimize the mention
proposal network (without which the performance
drops to 75.9) and is slow at test time because it
runs an extractive reader on each mention. On
the other hand, the best results obtained with ASP
(Liu et al., 2022) and the transition-based system
(Bohnet et al., 2023) rely on much larger models
(FLAN-T5XXL, 11B parameters; mT5XXL, 13B pa-
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Model PreCo LitBank LitBank0

Xia and Van Durme (2021) 88.0 76.7∗ -
Thirukovalluru et al. (2021) - 78.4 -
Wu and Gardner (2021) 85.0 - -
Toshniwal et al. (2020) - 76.5 -
Toshniwal et al. (2021) 87.8 79.3 77.2
Toshniwal et al. (2021)+Joint 87.6 - 78.2
Our copy action + T03B 88.5 78.3 77.3
Our copy action + T03B + Joint 88.3 - 81.2

Table 3: Results on Preco, Litbank test set. The aver-
age CoNLL F1 score of MUC, B3 and CEAFϕ4

is the
evaluation metric. We report both the 10-fold cross-
validation results (official setting) and the results of split
0 (LitBank0) following Toshniwal et al. (2021). Joint
denotes training on the union of OntoNotes, PreCo and
LitBank0. * marks transfer learning results which uses
additional pretraining.

rameters), where running such large models is not
always feasible depending on the authors’ avail-
able computational resources (e.g., we do not have
the resources to scale to 13B parameters). We do
our best to interpret the results as objectively as
possible2.

The first observation is that models based on a
sizeable T5 outperform those that are not (with the
exception of CorefQA which uses additional train-
ing data). Focusing on models with 3B parameters
and input length 2048, our T0-based seq2seq model
with full linearization and copy action achieves an
average F1 score of 82.9, outperforming ASP (82.3)
and TANL (79.6) using the same base model and
input length. In fact, our 3B-model outperforms
ASP using a 11B model (82.5). While full lineariza-
tion with copy action is the most performant, full
linearization with token action (which requires no
postprocessing during generation) is almost as com-
petitive (82.4). Partial linearization with token ac-
tion using the alignment method in Section 3.4 also
obtains a nontrivial F1 of 80.7, outperforming most
non-seq2seq baselines. In terms of performance
and speed, partial linearization demonstrates lower
accuracy but faster inference compared to full lin-
earization. On the English OntoNotes development
data, the inference time for partial linearization is
about 22 minutes, whereas full linearization takes
approximately 40 minutes for both token action
and copy action sequences.

With the 11B-parameter T0pp initialization, our
model reaches 83.2 F1, better than CorefQA and

2While the model sizes are similar, the comparison with
Bohnet et al. (2023) is not fully equivalent due to their focus
on multilingual coreference using the mT5 model.

close to 83.3 obtained by 13B-parameter transition-
based system. While we do not have the computa-
tional budget to train a 13B-parameter model, as
a point of comparison, Bohnet et al. (2023) report
the dev average F1 of 78.0 using a 3.7B-parameter
mT5XL; our model using the same base model with
full linearization and copy action obtains 79.6.

5.4.2 PreCo and LitBank
We further verify the effectiveness of our seq2seq
model by taking the same 3B-parameter T0 setting
(full linearization, copy action) for OntoNotes to
additional datasets in Table 3. We consider PreCo
(Chen et al., 2018) and LitBank (Bamman et al.,
2020) following the same experimental setup in
Toshniwal et al. (2021). On PreCo, which pro-
vides the largest training dataset (36K documents,
compared to 2.8K in OntoNotes), our model out-
performs all previous works at an average F1 score
of 88.5.

LitBank, on the other hand, is a very small
dataset with only 100 annotated documents split
into 80-10-10 for training, validation, and test. Its
official evaluation metric is an average over 10-fold
cross-validation results; we also report results on
split 0 to compare with prior work. Despite the
small training data, our model achieves competi-
tive results of 77.3 on split 0 and 78.3 on cross-
validation, though lagging behind the task-specific
model of Toshniwal et al. (2021). When the model
is trained on the union of OntoNotes, Preco and
LitBank split 0 training portion, the model achieves
a significantly better performance of 81.2, beating
78.2 in the previous work. This shows that (1)
when there is sufficient training data, our seq2seq
model can easily obtain state-of-the-art results, and
(2) even when that is not the case, the performance
is still relatively strong and can be easily improved
by including other available datasets.

5.5 Ablation Studies

In this section, we conduct ablation studies to in-
vestigate different aspects related to sequence rep-
resentations, decoder input choices, and pretrained
models of varying sizes. Unless specified, all the
ablation experiments are conducted using the T03B
model.

5.5.1 Action Sequence
To analyze the impact of sequence representation,
we present the results of an ablation study in Ta-
ble 4.
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Sequence Representation Avg. F1

full linear

Baseline 82.6
– Copy action + integer free 82.6
– Copy action + put integer before 82.3
– Token action + integer 82.5
– Token action + antecedent string 79.5

partial linear
Baseline 81.1
– w/o sentence marker 79.9
– Oracle align 99.2
– Oracle align w/o sentence marker 98.0

Table 4: Ablation study for sequence representations
on OntoNotes development set. Average CoNLL F1 is
reported.

Full Linearization The baseline for full lin-
earization utilizes copy action sequence and repre-
sents cluster identity using integers. In Section 3.3,
we introduce an integer-free representation which
achieves performance comparable to the baseline
(both achieving 82.6). Although the integer-free
representation is more complex in design, it offers
a cleaner and shorter sequence representation. No-
tably, placing the integer before the mention string
leads to a noticeable drop in performance (82.3 vs
82.6), emphasizing the importance of predicting
cluster identity after detecting mentions due to the
autoregressive nature of the seq2seq model. Addi-
tionally, replacing the copy action in the baseline
with a token action results in slightly worse per-
formance (82.5 vs 82.6), indicating that a smaller
action space is beneficial. Moreover, using the
antecedent mention string to link coreferent men-
tions (similar to TANL (Paolini et al., 2021)) sig-
nificantly decreases performance (79.5 vs 82.6).
This demonstrates the superiority of using integers
to represent cluster identity over using antecedent
mention strings for linking coreferent mentions.

Partial Linearization Partial linearization is in-
compatible with the copy action since the model
skips the gap between mentions. For partial lin-
earization, the baseline employs a token action se-
quence with explicit sentence markers. Sentence
markers prove to be useful for the model, allowing
it to focus on each sentence individually during
generation and aiding in alignment. Removing sen-
tence markers leads to a significant deterioration in
performance (79.9 vs 81.1). To further understand
the benefits of sentence markers for alignment, we
conduct oracle experiments using gold lineariza-
tion with and without sentence markers, obtaining
average F1 scores of 99.2 and 98.0, respectively.

Decoder Input Avg. F1
Baseline 82.6
– Copy action sequence 56.4
– Token sequence + copy action sequence 82.5

Table 5: Ablation study for decoder input on OntoNotes
development set. Average CoNLL F1 is reported.

Pretrained Model # params Avg. F1
T5base 220M 76.2
T5large 770M 77.2
T53B 3B 81.6
FLAN-T5XL 3B 82.5
T03B 3B 82.6
FLAN-T5XXL 11B 82.9
T0pp 11B 83.0

Table 6: Ablation study for pretrained model on
OntoNotes development set. Average CoNLL F1 is
reported.

These results validate the effectiveness of sentence
markers in alignment.

5.5.2 Decoder Input
We present an ablation study for decoder input in
Table 5. The baseline uses a linearized token se-
quence as the decoder input. Replacing the token
sequence with a copy action sequence (similar to
Urbizu et al. (2020)) yields significantly worse per-
formance compared to the baseline (56.4 vs 82.6).
Averaging token and action embeddings as the in-
put embedding is also less effective than the base-
line (82.5 vs 82.6). These results emphasize the
importance of providing the decoder with a lin-
earized token sequence.

5.5.3 Pretrained Model
Table 6 shows an ablation study for pretrained
model. We observe an improvement in perfor-
mance as the model size increases. For models of
the same size, both FLAN-T5 and T0 surpass the
performance of the original T5 model. T0 achieves
better performance than FLAN-T5 when compared
at the same size.

5.6 Error Analysis

To better understand the model behavior, we con-
duct error analysis on the dev set in Table 7. The ex-
periments are based on the T03B copy action model.
The unlabeled mention detection F1 is 89.2. On
the other hand, the clustering performance reaches
95.8 average F1 when restricted to correctly recov-
ered mentions, and 94.8 when we assume perfect
mention detection. This shows that mention detec-
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F1
Mention detection 89.2
Detected mention clustering 95.8
Oracle mention clustering 94.8

Table 7: Error analysis on OntoNotes development set.
We report mention detection F1 and mention clustering
average CoNLL F1.

tion is the performance bottleneck; once correct
mentions are obtained, the model can accurately
infer coreference clusters. Upon qualitative anal-
ysis of randomly sampled gold clusters and their
best matches, we find that a major source of error
is annotation mistakes. For instance, one gold an-
notation dictates “you do not want to [face]17 the
dilemma. But [it]17 can not be avoided” while our
model correctly predicts “you do not want to face
[the dilemma]20. But [it]20 can not be avoided”;
another gold annotation dictates “[ [ William ]9
and she ]10 saw each other, it was such a wonderful
reunion for [ them ]10 to just hug, and he would
hug [ her ]2 and look at [ her ]2 ” while our model
predicts “[ [ William ]11 and [ she ]2 ]12 saw each
other, it was such a wonderful reunion for [ them
]12 to just hug, and [ he ]11 would hug [ her ]2 and
look at [ her ]2”.

6 Conclusions

We have presented a highly performant seq2seq
reduction of coreference resolution. Unlike in pre-
vious works that rely on task-specific approaches
to obtain strong performance, we use a standard
encoder-decoder model that receives the document
as an input sequence and predicts a sequence repre-
sentation of its coreference annotation as the target
sequence. Contrary to previously reported weak
results using seq2seq reductions, we show for the
first time that with suitable definitions of the se-
quence representation of the task, it is possible
to achieve state-of-the-art performance, reaching
83.2 test average F1 on English OntoNotes with
an 11B-parameter T0pp initialization. Our model’s
strong results fundamentally challenge the default
task-specific approach to coreference resolution.

Limitations

While our approach is standard seq2seq modeling
and does not require architectural modifications,
it requires an effort in identifying an effective se-
quence representation of coreference resolution;
the model may perform poorly with a suboptimal

choice of representation as evidenced in past works.
However, once an effective representation is found,
as is the case in this work, we expect the perfor-
mance on the task will only improve with future ad-
vances in pretrained transformers. Another limita-
tion, shared across all approaches built on seq2seq
models, is the fact that training with language mod-
eling loss is computationally intensive. Even with
our substantial effort in scaling the model, with
our budget we could not consider properly training
models with more than 11B parameters. But we
expect this limitation to benefit from the general
effort in improving the efficiency of training and
deploying transformers.
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A Constrained Decoding

We implement constrained decoding through vo-
cabulary masking, which depends on the current
state of the generated sequence. Below, we outline
the masking rules for various models. For more
details, please check our code.

A.1 Full Linearization
We categorize the state of the generated tokens thus
far in full linearization with integer cluster identity
as follows:

1. Inside Cluster Identity: Cluster identity gen-
eration stage (i.e., the count of mention end
tokens </m> is less than that of separation to-
ken |).

2. Inside Mention: Open mentions exist (i.e., the
count of separation tokens | is less than that
of mention start tokens <m>), but not in Inside
Cluster Identity state.

3. Outside: Not in Inside Mention or Inside Clus-
ter Identity states.

Token Action. Depending on the current state,
different tokens are permitted:

• Outside: The next token from the input source
and the mention start token <m> are allowed.

• Inside Mention: The next token from the input
source, the mention start token <m>, and the
separation token | are allowed.

• Inside Cluster Identity: All integer tokens and
the mention end token </m> are allowed.

Copy Action. For the Copy Action model,
trained to generate a copy action token <c> rather
than the actual next source token, we manipulate
the logits scores to enforce the generation of the
actual source token. Specifically, the logits score of
the actual next source token is set to that of the copy
token <c>. The copy token <c> is then masked out.
The rules for permissible tokens remain consistent
with those for Token Action.

A.2 Partial Linearization
Due to alignment issues with the input source in
partial linearization, it’s infeasible to impose con-
straints on source input token generation as in
full linearization. Nonetheless, sentence-level con-
straints can be applied by utilizing sentence bound-
ary markers <sentence> and </sentence> in both
the input source and linearization. We identify the
current state of the generated tokens in partial lin-
earization based on sentence markers and integer
cluster identity as:

1. Complete Sentence: Equal counts of sen-
tence start <sentence> and end markers
</sentence>.

2. Inside Sentence i: Within the i-th sentence
(i.e., <sentence> count is i and not in Com-
plete Sentence state).

3. Inside Cluster Identity: Cluster identity gen-
eration stage (i.e., the count of mention end
tokens </m> is less than that of separation to-
ken |).
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4. Inside Mention: Open mentions exist (i.e., the
count of separation tokens | is less than that
of mention start tokens <m>), but not in Inside
Cluster Identity state.

5. Outside: Not in Inside Mention or Inside Clus-
ter Identity states.

Depending on the current state, different tokens are
permitted:

• Complete Sentence: only sentence start
marker token <sentence> is allowed.

• Outside and Inside sentence i: All the tokens
from the i-th sentence in the input source, the
mention start token <m> and the sentence end
marker token </sentence> are allowed.

• Inside Mention and Inside Sentence i: All
the tokens from the i-th sentence in the input
source, the mention start token <m>, the sep-
aration token | and the sentence end marker
token </sentence> are allowed.

• Inside Cluster Identity and Inside Sentence i:
All the tokens from the i-th sentence in the
input source, all integer tokens, the mention
end token </m> and the sentence end marker
token </sentence> are allowed.

A.3 Integer-Free Representation.

In the integer-free model, which is trained to pre-
dict <new> for unseen clusters instead of </ml+1>,
where </m0>, </m1>, . . . , </ml> have already ap-
peared, we manipulate the logits scores to enforce
the generation of the </ml+1> token instead of
<new> token for unseen cluster. Specifically, the
logits score of the </ml+1> token is set to that of
the <new> token. The <new> token is then masked
out. We categorize the state of the generated to-
kens thus far in full linearization with integer-free
cluster identity as follows:

1. Inside Mention Seen l: Open mentions ex-
ist (i.e., the count of cluster identity hard-
coded mention end tokens </ml> is less
than that of mention start tokens <m>) and
</m0>, </m1>, . . . , </ml> has been seen so far.

2. Outside Mention: No open mentions.

Depending on the current state, different tokens are
permitted:

• Inside Mention Seen l: The next token from
the input source, the mention start token <m>,
and cluster identity hard-coded mention end
tokens </m0>, </m1>, . . . , </ml>, </ml+1> are
allowed.

• Outside Mention: The next token from the
input source and the mention start token <m>
are allowed.
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