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Abstract

Many information retrieval tasks require large
labeled datasets for fine-tuning. However, such
datasets are often unavailable, and their util-
ity for real-world applications can diminish
quickly due to domain shifts. To address this
challenge, we develop and motivate a method
for using large language models (LLMs) to
generate large numbers of synthetic queries
cheaply. The method begins by generating a
small number of synthetic queries using an ex-
pensive LLM. After that, a much less expensive
one is used to create large numbers of synthetic
queries, which are used to fine-tune a family of
reranker models. These rerankers are then dis-
tilled into a single efficient retriever for use in
the target domain. We show that this technique
boosts zero-shot accuracy in long-tail domains
and achieves substantially lower latency than
standard reranking methods.

1 Introduction

The advent of neural information retrieval (IR) has
led to notable performance improvements on docu-
ment and passage retrieval tasks (Nogueira and
Cho, 2019; Khattab and Zaharia, 2020; Formal
et al., 2021) as well as downstream knowledge-
intensive NLP tasks such as open-domain question-
answering and fact verification (Guu et al., 2020;
Lewis et al., 2020; Khattab et al., 2021; Izacard
et al., 2022). Neural retrievers for these tasks often
benefit from fine-tuning on large labeled datasets
such as SQuAD (Rajpurkar et al., 2018), Natural
Questions (NQ) (Kwiatkowski et al., 2019), and
KILT (Petroni et al., 2021). However, IR models
can experience significant drops in accuracy due to
distribution shifts from the training to the target do-
main (Thakur et al., 2021; Santhanam et al., 2022b).
For example, dense retrieval models trained on
MS MARCO (Nguyen et al., 2016) might not gen-
eralize well to queries about COVID-19 scientific
publications (Voorhees et al., 2021; Wang et al.,

Figure 1: Overview of UDAPDR. An expensive LLM
like GPT-3 is used to create an initial set of synthetic
queries. These are incorporated into a set of prompts for
a less expensive LLM that can generate large numbers
of synthetic queries cheaply. The queries stemming
from each prompt are used to train separate rerankers,
and these are distilled into a single ColBERTv2 retriever
for use in the target domain.

2020), considering for instance that MS MARCO
predates COVID-19 and thus lacks related topics.

Recent work has sought to adapt IR models
to new domains by using large language models
(LLMs) to create synthetic target-domain datasets
for fine-tuning retrievers (Bonifacio et al., 2022;
Meng et al., 2022; Dua et al., 2022). For example,
using synthetic queries, Thakur et al. (2021) and
Dai et al. (2022) fine-tune the retriever itself and
train a cross-encoder to serve as a passage reranker
for improving retrieval accuracy. This significantly
improves retriever performance in novel domains,
but it comes at a high computational cost stemming
from extensive use of LLMs. This has limited the
applicability of these methods for researchers and
practitioners, particularly in high-demand, user-
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facing settings.
In this paper, we develop Unsupervised Domain

Adaptation via LLM Prompting and Distillation of
Rerankers (UDAPDR),1 an efficient strategy for us-
ing LLMs to facilitate unsupervised domain adap-
tation of neural retriever models. We show that
UDAPDR leads to large gains in zero-shot settings
on a diverse range of domains.

The approach is outlined in Figure 1. We begin
with a collection of passages from a target domain
(no in-domain queries or labels are required) as
well as a prompting strategy incorporating these
passages with the goal of query generation. A pow-
erful (and perhaps expensive) language model like
GPT-3 is used to create a modest number of syn-
thetic queries. These queries form the basis for
corpus-adapted prompts that provide examples of
passages with good and bad queries, with the goal
of generating good queries for new target domain
passages. These prompts are fed to a smaller (and
presumably less expensive) LM that can generate
a very large number of queries for fine-tuning neu-
ral rerankers. We train a separate reranker on the
queries from each of these corpus-adapted prompts,
and these rerankers are distilled into a single stu-
dent ColBERTv2 retriever (Khattab and Zaharia,
2020; Santhanam et al., 2022b,a), which is evalu-
ated on the target domain.

By distilling from multiple passage rerankers
instead of a single one, we improve the utility of
ColBERTv2, preserving more retrieval accuracy
gains while reducing latency at inference. Our core
contributions are as follows:

• We propose UDAPDR, a novel unsupervised
domain adaptation method for neural IR that
strategically leverages expensive LLMs like
GPT-3 (Brown et al., 2020) and less expensive
ones like Flan-T5 XXL (Chung et al., 2022),
as well as multiple passage rerankers. Our
approach improves retrieval accuracy in zero-
shot settings for LoTTE (Santhanam et al.,
2022b), SQuAD, and NQ.

• We preserve the accuracy gains of these
rerankers while maintaining the competitive
latency of ColBERTv2. This leads to substan-
tial reductions in query latency.

• Unlike a number of previous domain adapta-
tion approaches that utilize millions of syn-
thetic queries, our technique only requires

1pronounced: Yoo-Dap-ter

1000s of synthetic queries to prove effective
and is compatible with various LLMs de-
signed for handling instruction-based tasks
like creating synthetic queries (e.g., GPT-3,
T5, Flan-T5).

• We generate synthetic queries using multi-
ple prompting strategies that leverage GPT-
3 and Flan-T5 XXL. This bolsters the effec-
tiveness of our unsupervised domain adapta-
tion approach. The broader set of synthetic
queries allows us to fine-tune multiple passage
rerankers and distill them more effectively.

2 Related Work

2.1 Data Augmentation for Neural IR
LLMs have been used to generate synthetic datasets
(He et al., 2022; Yang et al., 2020; Anaby-Tavor
et al., 2020; Kumar et al., 2020), which have been
shown to support effective domain adaptation in
Transformer-based architectures (Vaswani et al.,
2017) across various tasks. LLMs have also been
used to improve IR accuracy in new domains via
the creation of synthetic datasets for retriever fine-
tuning (Bonifacio et al., 2022; Meng et al., 2022).

Domain shift is the most pressing challenge for
domain transfer. Dua et al. (2022) categorize dif-
ferent types of domain shifts, such as changes in
query or document distributions, and provide inter-
vention strategies for addressing each type of shift
using synthetic data and indexing strategies.

Query generation can help retrieval models
trained on general domain tasks adapt to more tar-
geted domains through the use of generated query–
passage pairs (Ma et al., 2020; Nogueira et al.,
2019). Wang et al. (2022) also use generative
models to pseudo-label synthetic queries, using
the generated data to adapt dense retrieval mod-
els to domain-specific datasets like BEIR (Thakur
et al., 2021). Thakur et al. (2021) and Dai et al.
(2022) generate millions of synthetic examples for
fine-tuning dense retrieval models, allowing for
zero-shot and few-shot domain adaptation.

Synthetic queries can also be used to train pas-
sage rerankers that assist neural retrievers. Cross-
encoders trained with synthetic queries boost re-
trieval accuracy substantially while proving more
robust to domain shifts (Thakur et al., 2020, 2021;
Humeau et al., 2019). Dai et al. (2022) explore
training the few-shot reranker Promptagator++,
leveraging an unsupervised domain-adaptation ap-
proach that utilizes millions of synthetically gener-
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ated queries to train a passage reranker alongside
a dense retrieval model. Additionally, Wang et al.
(2022) found using zero-shot cross-encoders for
reranking could further improve quality.

However, due to the high computational cost
of rerankers at inference, both Dai et al. (2022)
and Wang et al. (2022) found it unlikely these ap-
proaches would be deployed in user-facing settings
for information retrieval. Our work seeks to bolster
the utility of passage rerankers in information re-
trieval systems. Overall, Dai et al. (2022) and Wang
et al. (2022) demonstrated the efficacy of unsuper-
vised domain adaptation approaches utilizing syn-
thesized queries for fine-tuning dense retrievers or
passage rerankers. By using distillation strategies,
we can avoid their high computational cost while
preserving the latent knowledge gained through
unsupervised domain adaptation approaches.

2.2 Pretraining Objectives for IR

Pretraining objectives can help neural IR systems
adapt to new domains without annotations. Masked
Language Modeling (MLM) (Devlin et al., 2019)
and Inverse Cloze Task (ICT) (Lee et al., 2019)
offer unsupervised approaches for helping retrieval
models adapt to new domains. Beyond MLM and
ICT, Chang et al. (2020) proposed two unsuper-
vised pretraining tasks, Body First Selection (BFS)
and Wiki Link Prediction (WLP), which use sam-
pled in-domain sentences and passages to warm-up
a neural retriever to new domains. Additionally,
Gysel et al. (2018) developed the Neural Vector
Space Model (NVSM), an unsupervised pretraining
task for news article retrieval that utilizes learned
low-dimensional representations of documents and
words. Izacard et al. (2021) also explore a con-
trastive learning objective for unsupervised training
of dense retrievers, improving retrieval accuracy in
new domains across different languages.

These pretraining objectives can be paired with
additional domain adaptation strategies. Wang et al.
(2022) coupled ICT with synthetic query data to
achieve domain adaptation in dense retrieval mod-
els without the need for annotations. Dai et al.
(2022) also paired the contrastive learning objec-
tive in Izacard et al. (2021) with their unsupervised
Promptagator strategy. While our zero-shot domain
adaptation approach can pair with other techniques,
it does not require any further pretrainingfor bol-
stered retrieval performance; our approach only
needs the language model pretraining of the re-

triever’s base model (Devlin et al., 2019), and we
show that it combines effectively with multi-vector
retrievers (Khattab and Zaharia, 2020; Santhanam
et al., 2022b).

3 Methodology

Figure 1 outlines each stage of the UDAPDR strat-
egy. For the target domain T , our approach re-
quires access to in-domain passages (i.e., within
the domain of T ). However, it does not require any
in-domain queries or labels. The overall goal is to
leverage our store of in-domain passages and LLM
prompting to inexpensively generate large numbers
of synthetic queries for passages. These synthetic
queries are used to train domain-specific reranking
models that serve as teachers for a single retriever.
The specific stages of this process are as follows:

Stage 1: We begin with a set of prompts that em-
bed examples of passages paired with good and bad
queries and that seek to have the model generate
a novel good query for a new passage. We sam-
ple X in-domain passages from the target domain
T , and we use the prompts to generate 5X syn-
thetic queries. In our experiments, we test values
of X such as 5, 10, 50, and 100. (In Appendix A,
we explore different strategies for selecting the X
in-domain passages from the target domain.)

In this stage, we use GPT-3 (Brown et al., 2020),
specifically the text-davinci-002 model. The
guiding idea is to use a very effective LLM for
the first stage, to seed the process with very high
quality queries. We employ the five prompting
strategies in Figure 2. Two of our prompts are from
Bonifacio et al. 2022, where they proved successful
for generating synthetic queries in a few-shot set-
ting. The remaining three use a zero-shot strategy
and were inspired by prompts in Asai et al. 2022.

Stage 2: The queries generated in Stage 1 form
the basis for prompts in which passages from the
target domain T are paired with good and bad syn-
thetic queries. The prompt seeks to lead the model
to generate a good query for a new passage. Our
prompt template for this stage is given in Figure 3.
We create Y corpus-adapted prompts in this fash-
ion, which vary according to the demonstrations
they include. In our experiments, we test out sev-
eral values for Y , specifically, 1, 5, and 10. This
programmatic creation of few-shot demonstrations
for language models is inspired by the Demonstrate
stage of the DSP framework (Khattab et al., 2022).
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Figure 2: The five prompts used in Stage 1 (Section 3). The few-shot prompts #1 and #2 were inspired by Bonifacio
et al. (2022) while the zero-shot prompts #3, #4, and #5 were inspired by Asai et al. (2022). In our experiments, we
prompt GPT-3 in this stage to generate an initial set of queries.

Figure 3: The prompt template used in Stage 2. (Sec-
tion 3). In our experiments, we create Y variants of
this prompt, and each one is used with Flan-T5 XXL to
generate Z queries for each Y .

Stage 3: Each of the corpus-adapted prompts
from Stage 2 is used to generate a unique set of
Z queries with Flan-T5 XXL (Chung et al., 2022).
The gold passage for each synthetic query is the
passage it was generated from. We have the option
of letting Z be large because using Flan-T5 XXL
is considerably less expensive than using GPT-3 as

we did in Stage 1. In our experiments, we test 1K,
10K, 100K, and 1M as values for Z. We primarily
focus on Z = 10K and 100K in Section 4.3.

We use multiple corpus-adapted prompts to mit-
igate edge cases in which we create a low-quality
prompt based on the chosen synthetic queries and
in-domain passages from the target domain T . (See
Stage 4 below for a description of how low-quality
prompts can optionally be detected and removed.)

As a quality filter for selecting synthetic queries,
we test whether a synthetic query can return its
gold passage within the top 20 retrieved results
using a zero-shot ColBERTv2 retriever. We only
use synthetic queries that pass this filter, which
has been shown to improve domain adaptation in
neural IR (Dai et al., 2022; Jeronymo et al., 2023).

Stage 4: With each set of synthetic queries gen-
erated using the Y corpus-adapted prompts in
Stage 3, we train an individual passage reranker
from scratch for the target domain T . These will
be used as teachers for a single ColBERTv2 model
in Stage 5. Our multi-reranker strategy draws in-
spiration from Hofstätter et al. (2021), who found
a teacher ensemble effective for knowledge distil-
lation into retrievers. At this stage, we can simply
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use all Y of these rerankers for the distillation pro-
cess. As an alternative, we can select the N best
rerankers based on their accuracy on the validation
set of the target domain. For our main experiments,
we use all of these rerankers. This is the most
general case, in which we do not assume that a
validation set exists for the target domain. (In Ap-
pendix A, we evaluate settings where a subset of
them is used.)

Stage 5: The domain-specific passage rerankers
from Stage 4 serve as multi-teachers creating a
single ColBERTv2 retriever in a multi-teacher dis-
tillation process. For distillation, we use annotated
triples that are created by using the trained domain-
specific reranker to label additional synthetic ques-
tions. Overall, our distillation process allows us
to improve the retrieval accuracy of ColBERTv2
without needing to use the rerankers at inference.

Stage 6: We test our domain-adapted Col-
BERTv2 retriever on the evaluation set for the tar-
get domain T . This corresponds to deployment of
the retriever within the target domain.

4 Experiments

4.1 Models

We leverage the Demonstrate-Search-Predict (DSP)
(Khattab et al., 2022) codebase for running our ex-
periments. The DSP architecture allows us to build
a modular system with both retrieval models and
LLMs. For our passage rerankers, we selected
DeBERTaV3-Large (He et al., 2021) as the cross-
encoder after performing comparison experiments
with RoBERTa-Large (Liu et al., 2019), BERT (De-
vlin et al., 2019), and MiniLMv2 (Wang et al.,
2021). For our IR system, we use the ColBERTv2
retriever since it remains competitive for both ac-
curacy and query latency across various domains
and platforms (Santhanam et al., 2022c).

4.2 Datasets

For our experiments, we use LoTTE (Santhanam
et al., 2022b), BEIR (Thakur et al., 2021), NQ
(Kwiatkowski et al., 2019), and SQuAD (Rajpurkar
et al., 2016). This allows us to cover both long-tail
IR (LoTTE, BEIR) and general-knowledge ques-
tion answering (NQ, SQuAD).

We note that NQ and SQuAD were both part of
Flan-T5’s pretraining datasets (Chung et al., 2022).
Wikipedia passages used in NQ and SQuAD were
also part of DeBERTaV3 and GPT-3’s pretraining

datasets (He et al., 2021; Brown et al., 2020). Sim-
ilarly, the raw StackExchange answers and ques-
tions (i.e., from which LoTTE-Forum is derived)
may overlap in part with the training data of GPT-3.
The overlap between pretraining and evaluation
datasets may impact the efficacy of domain adap-
tation on NQ and SQuAD, leading to increased
accuracy not caused by our approach.

4.3 Multi-Reranker Domain Adaptation
Table 1 provides our main results for UDAPDR
accuracy. For these experiments, we set a total bud-
get of 100K synthetic queries and distribute these
equally across the chosen number of rerankers to be
used as teachers in the distillation process. When
exploring UDAPDR system designs, we report dev
results, and we report core test results for LoTTE
and BEIR in Section 4.7.

We compare UDAPDR to two baselines. In the
leftmost column of Table 1, we have a Zero-shot
ColBERTv2 retriever (no distillation). This model
has been shown to be extremely effective in our
benchmark domains, and it is very low latency, so
it serves as an ambitious baseline. In the rightmost
column, we have a Zero-shot ColBERTv2 retriever
paired with a single non-distilled passage reranker,
trained on 100K synthetic queries. We expect this
model to be extremely competitive in terms of ac-
curacy, but also very high latency.

All versions of UDAPDR are far superior to
Zero-shot ColBERTv2 across all the domains we
evaluated. In addition, two settings of our model
are competitive with or superior to Zero-shot Col-
BERTv2 plus a Reranker: distilling into Col-
BERTv2 the scores from 5 rerankers, each trained
on 20k synthetic queries, as well as 10 rerankers,
each trained on 10k synthetic queries.

4.4 Query Latency
The accuracy results in Table 1 show that UDAPDR
is highly effective. In addition to this, Table 2
reports a set of latency evaluations using the LoTTe
Lifestyle section. Our latency costs refer to the
complete retrieval process for a single query, from
query encoding to the last stage of passage retrieval.

Zero-shot ColBERTv2 is known to have low re-
trieval latency (Santhanam et al., 2022a). However,
its accuracy (repeated from Table 1), which is at
a state-of-the-art level (Santhanam et al., 2022c),
trails by large margins the methods we propose in
this work. UDAPDR (line 2) has similar latency
but also achieves the best accuracy results. The
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ColBERTv2 Distillation with UDAPDR

Zero-shot
ColBERTv2

Y = 1 reranker,
Z = 100k queries

Y = 5 rerankers,
Z = 20k queries

Y = 10 rerankers,
Z = 10k queries

Zero-shot
ColBERTv2
+ Reranker

LoTTE Lifestyle 64.5 73.0 74.8 74.4 73.5
LoTTE Techology 44.5 50.2 51.3 51.1 50.6
LoTTE Writing 80.0 84.3 85.7 86.2 85.5
LoTTE Recreation 70.8 76.9 80.4 79.8 79.1
LoTTE Science 61.5 65.6 67.9 68.0 67.2
LoTTE Pooled 63.7 70.0 72.1 72.2 71.1

NaturalQuestions 68.9 72.4 73.7 74.0 73.9
SQuAD 65.0 71.8 73.8 73.6 72.6

Table 1: Success@5 for Multi-Reranker Domain Adaptation Strategies with Different Synthetic Query Counts.
LoTTE results are for the Forum configuration. All results are for dev sets. The reranker used is DeBERTa-v3-Large.
The ColBERTv2 distillation strategies train Y rerankers each with Z synthetic queries before distilling each reranker
with the same ColBERTv2 model. No selection process for rerankers is needed nor access to annotated in-domain
dev sets (cf. Table 7 in our Appendices). The non-distilled reranker in the final column is trained on 100K synthetic
queries created using Flan-T5 XXL model and the prompting strategy outlined in Section 3.

Retriever and Reranker Passages
Reranked

Query
Latency Success@5

Zero-shot ColBERTv2 N/A 35 ms 64.5
ColBERTv2 Distillation: Y = 5 rerankers, Z = 20k queries N/A 35 ms 74.8
Zero-shot ColBERTv2 + Reranker 20 412 ms 73.3
Zero-shot ColBERTv2 + Reranker 100 2060 ms 73.5
Zero-shot ColBERTv2 + Reranker 1000 20600 ms 73.5

Table 2: Average Single Query Latency for Retrieval + Reranker Systems. Latencies and Success@5 are for
LoTTE Lifestyle. The ColBERTv2 distillation strategies train Y rerankers each with Z synthetic queries before
distilling each reranker with the same ColBERTv2 model. These experiments were performed on a single NVIDIA
V100 GPU with PyTorch, version 1.13 (Paszke et al., 2019). Query latencies rounded to three significant digits.

Zero-shot ColBERTv2 + Reranker models come
close, but only with significantly higher latency.

4.5 Impact of Pretrained Components

UDAPDR involves three pretrained components:
GPT-3 to generate our initial set of synthetic
queries, Flan-T5 XXL to generate our second,
larger set of synthetic queries, and DeBERTaV3-
Large for the passage rerankers. What is the impact
of these specific components on system behavior?

To begin to address this question, we explored
a range of variants. These results are summarized
in Table 4. Our primary setting for UDAPDR per-
forms the best, but it is noteworthy that very com-
petitive performance can be obtained with no use
of GPT-3 at all. Additionally, we tried using Flan-
T5 XL instead of Flan-T5 XXL for the second stage
of synthetic query generation, since it is more than
90% smaller than Flan-T5 XXL in terms of model
parameters. This still leads to better performance
than Zero-shot ColBERTv2.

We also explored using a smaller cross-encoder

for UDAPDR. We tested using DeBERTaV3-Base
instead of DeBERTaV3-Large for our passage
reranker, decreasing the number of model parame-
ters by over 70%. We found that DeBERTaV3-Base
was still effective, though it results in a 4.1 point
drop in Success@5 compared to DeBERTaV3-
Large for LoTTE Pooled (Table 3). (In our initial
explorations, we also tested using BERT-Base or
RoBERTa-Large as the cross-encoder but found
them less effective than DeBERTaV3, leading to
6–8 point drops in Success@5.)

4.6 Different Prompting Strategies

We tested whether a simpler few-shot prompting
strategy might be better than our corpus-adapted
prompting approach for domain adaptation. In Ta-
ble 4, we compare the InPars (Bonifacio et al.,
2022) few-shot prompt to our corpus-adapted
prompt approach for synthetic query generation
and passage reranker distillation. We evaluate these
using query generation with both Flan XXL and
GPT-3. We find that our multi-reranker, corpus-
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Query Generators Passage Reranker Success@5

GPT-3 + Flan-T5 XXL DeBERTav3 Large 71.1
GPT-3 + Flan-T5 XL DeBERTav3 Large 66.7
Flan-T5 XXL DeBERTav3 Large 68.0
Flan-T5 XL DeBERTav3 Large 65.9
GPT-3 + Flan-T5 XXL DeBERTav3 Base 67.0
GPT-3 + Flan-T5 XL DeBERTav3 Base 64.1
Zero-shot ColBERTv2 N/A 63.7

Table 3: Model Configurations for Synthetic Query Generation and Passage Reranker. We describe the first
and second query generators for UDAPDR in Section 3. The Success@5 scores are for the LoTTE Pooled dev task.
A single non-distilled reranker is trained on 100K synthetic queries for each configuration. We do not explore a
configuration with exclusively GPT-3 generated queries due to GPT-3 API costs.

Prompt Strategy Query Generators Reranker Count Success@5

InPars Prompt GPT-3 1 65.8
InPars Prompt Flan-T5 XXL 1 67.6
InPars Prompt Flan-T5 XXL 5 67.1
Corpus-Adapted Prompts GPT-3 + Flan-T5 XXL 1 67.4
Corpus-Adapted Prompts GPT-3 + Flan-T5 XXL 5 71.1
Zero-shot ColBERTv2 N/A N/A 63.7

Table 4: Model Configurations for Prompting Strategies. We specify the prompting strategy, query generators,
and reranker counts for each configuration. The Success@5 scores are for the LoTTE Pooled dev task. 100,000
synthetic queries total are used for each approach except for the top row, which uses 5,000 synthetic queries due to
the costs of the GPT-3 API. The synthetic queries are split evenly amongst the total rerankers used. The rerankers
are distilled with a ColBERTv2 retriever for configuration.

adapted prompting strategy is more successful,
leading to a 3.5 point increase in Success@5 af-
ter ColBERTv2 distillation while using the same
number of synthetic queries for training.

4.7 LoTTE and BEIR Test Results

In Table 5 and Table 6, we include the test set
results for LoTTE and BEIR, respectively. For
LoTTE, UDAPDR increases ColBERTv2 zero-shot
Success@5 for both Forum queries and Search
queries, leading to a 7.1 point and a 3.9 point av-
erage improvement, respectively. For BEIR, we
calculated ColBERTv2 accuracy using nDCG@10.
We found that UDAPDR increases zero-shot ac-
curacy by 5.2 points on average. Promptagator++
Few-shot offers similar improvements to zero-shot
accuracy, achieving a 4.2 point increase compared
to a zero-shot ColBERTv2 baseline. However,
Promptagator++ Few-shot also uses a reranker dur-
ing retrieval, leading to additional computational
costs at inference time. By comparison, UDAPDR
is a zero-shot method (i.e., that does not assume
access to gold labels from the target domain) and
only uses the ColBERTv2 retriever and thus has a
lower query latency at inference time.

4.8 Additional Results
Table 1 and Table 2 explore only a limited range
of potential uses for UDAPDR. In Appendix A,
we consider a wider range of uses. First, we ask
whether it is productive to filter the set of rerankers
based on in-domain dev set performance. We
mostly find that this does not lead to gains over
simply using all of them, and it introduces the re-
quirement that we have a labeled dev set. Second,
we evaluate whether substantially increasing the
value of Z from 100K leads to improvements. We
find that it does not, and indeed that substantally
larger values of Z can hurt performance.

5 Discussion & Future Work

Our experiments with UDAPDR suggest several
directions for future work:

• While we show that our domain adaptation
strategy is effective for the multi-vector Col-
BERTv2 model, whether it is also effective
for other retrieval models is an open question
for future research.

• For our base model in ColBERTv2, we use
BERT-Base. However, ColBERTv2 now al-
lows for other base models, such as DeBER-
TaV3, ELECTRA (Clark et al., 2020), and
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LoTTE Datasets
Forum Search

Life. Tech. Writing Rec. Science Pooled Life. Tech. Writing Rec. Science Pooled

BM25 60.6 39.4 64.0 55.4 37.1 47.2 63.8 41.8 60.3 56.5 32.7 48.3
SPLADEv2 74.0 50.8 73.0 67.1 43.7 60.1 82.3 62.4 77.1 69.0 55.4 68.9
RocketQAv2 73.7 47.3 71.5 65.7 38.0 57.7 82.1 63.4 78.0 72.1 55.3 69.8
Zero-shot ColBERTv2 76.2 54.0 75.8 69.8 45.6 62.3 82.4 65.9 80.4 73.2 57.5 71.5
UDAPDR 84.9 59.9 83.2 78.6 48.8 70.8 86.8 67.7 84.3 77.9 61.0 76.6

Table 5: Success@5 for LoTTE Test Set Results. The ColBERTv2 distillation strategies train Y rerankers each
with Z synthetic queries before distilling each reranker with the same ColBERTv2 model. For UDAPDR, we use 5
rerankers and 20K distinct synthetic queries for training each of them. For BM25, SPLADEv2, and RocketQAv2,
we take results directly from Santhanam et al. (2022b).

BEIR Datasets
ArguAna Touché Covid NFcorpus HotpotQA DBPedia Climate-FEVER FEVER SciFact SCIDOCS FiQA

BM25 31.5 36.7 65.6 32.5 60.3 31.3 21.3 75.3 66.5 15.8 23.6
DPR (MS MARCO) 41.4 - 56.1 20.8 37.1 28.1 17.6 58.9 47.8 10.8 27.5
ANCE 41.5 - 65.4 23.7 45.6 28.1 19.8 66.9 50.7 12.2 29.5
ColBERT (v1) 23.3 - 67.7 30.5 59.3 39.2 18.4 77.1 67.1 14.5 31.7
TAS-B 42.7 - 48.1 31.9 58.4 38.4 22.8 70.0 64.3 14.9 30.0
RocketQAv2 45.1 24.7 67.5 29.3 53.3 35.6 18.0 67.6 56.8 13.1 30.2
SPLADEv2 47.9 27.2 71.0 33.4 68.4 43.5 23.5 78.6 69.3 15.8 33.6
BM25 Reranking w/ Coherelarge 46.7 27.6 80.1 34.7 58.0 37.2 25.9 67.4 72.1 19.4 41.1
BM25 Reranking w/ OpenAIada2 56.7 28.0 81.3 35.8 65.4 40.2 23.7 77.3 73.6 18.6 41.1
Zero-shot ColBERTv2 46.1 26.3 84.7 33.8 70.3 44.6 27.1 78.0 66.0 15.4 45.8
GenQ 49.3 18.2 61.9 31.9 53.4 32.8 17.5 66.9 64.4 14.3 30.8
GPL + TSDAE 51.2 23.5 74.9 33.9 57.2 36.1 22.2 78.6 68.9 16.8 34.4
UDAPDR 57.5 32.4 88.0 34.1 75.3 47.4 33.7 83.2 72.2 17.8 53.5
Promptagator Few-shot 63 38.1 76.2 37 73.6 43.4 24.1 86.6 73.1 20.1 49.4

Table 6: nDCG@10 for BEIR Test Set Results. For each dataset, the highest-accuracy zero-shot result is marked
in bold while the highest overall is underlined. For UDAPDR, we use 5 rerankers and 20K distinct synthetic queries
for training each of them. The Promptagator and GPL results are taken directly from their respective papers. For
Promptagator, we include both the best retriever-only configuration (Promptagator Few-shot) and the best retriever +
reranker configuration (Promptagator++ Few-shot). We include the GPL+TSDAE pretraining strategy, which is
found to improve retrieval accuracy (Wang et al., 2022). We copy the results for BM25, GenQ, ANCE, TAS-B, and
ColBERT from Thakur et al. (2021), for MoDIR and DPR-M from Xin et al. (2022), for SPLADEv2 from Formal
et al. (2021), and for BM25 Reranking of Coherelarge and OpenAIada2 from Kamalloo et al. (2023).

RoBERTa (Liu et al., 2019). We would be
interested to see the efficacy of our domain
adaptation strategy with these larger encoders.

• We explored distillation strategies for combin-
ing passage rerankers with ColBERTv2. How-
ever, testing distillation strategies for shrink-
ing the reranker itself could be a viable direc-
tion for future work.

• We draw upon several recent publications, in-
cluding Bonifacio et al. (2022) and Asai et al.
(2022), to create the prompts used for GPT-3
and Flan-T5 XXL in our domain adaptation
strategy. Creating a more systematic approach
for generating the initial prompts would be an
important item for future work.

6 Conclusion

We present UDAPDR, a novel strategy for adapting
retrieval models to new domains. UDAPDR uses
synthetic queries created using generative models,
such as GPT-3 and Flan-T5 XXL, to train multiple
passage rerankers on queries for target domain pas-
sages. These passage rerankers are then distilled
into ColBERTv2 to boost retrieval accuracy while
keeping query latency competitive as compared to
other retrieval systems. We validate our approach
across the LoTTE, BEIR, NQ, and SQuAD datasets.
Additionally, we explore various model configura-
tions that alter the generative models, prompting
strategies, retriever, and passage rerankers used in
our approach. We find that UDAPDR can boost
zero-shot retrieval accuracy on new domains with-
out the use of labeled training examples. We also
discuss several directions for future work.
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7 Limitations

While our domain adaptation technique does not
require questions or labels from the target domain,
it does require a significant number of passages
in the target domain. These passages are required
for use in synthetic query generation with the help
of LLMs like GPT-3 and Flan-T5, so future work
should evaluate how effective these methods are on
extremely small passage collections.

The synthetic queries created in our approach
may also inherit biases from the LLMs and their
training data. Moreover, the exact training data of
the LLMs is not precisely known. Our understand-
ing is that subsets of SQuAD and NQ, in particular,
have been used in the pretraining of Flan-T5 mod-
els as we note in the main text. More generally,
other subtle forms of data contamination are possi-
ble as with all research based on LLMs that have
been trained on billions of tokens from the Web.
We have mitigated this concern by evaluating on a
very large range of datasets and relying most heav-
ily on open models (i.e., Flan-T5, DeBERTa, and
ColBERT). Notably, our approach achieves consis-
tently large gains across the vast majority of the
many evaluation datasets tested (e.g., the individ-
ual sets within BEIR), reinforcing our trust in the
validity and transferability of our findings.

Additionally, the LLMs used in our technique
benefit substantially from GPU-based hardware
with abundant and rapid storage. These technolo-
gies are not available to all NLP practitioners and
researchers due to their costs. Lastly, all of our
selected information retrieval tasks are in English,
a high-resource language. Future work can ex-
pand on the applicability of our domain adaptation
techniques by using non-English passages in low-
resource settings, helping us better understand the
approach’s strengths and limitations.
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Appendix

A Reranker Configurations

We aim to understand the impact of different model configurations on the efficacy of our domain adaptation
technique. We expand on experiments from Section 4.3 and explore alternate configurations of key factors
in the UDAPDR approach. Specifically, we want to answer the following questions through their
corresponding experiments:

1. (a) Question: Do corpus-adapted prompts improve domain adaptation and retriever distillation?
(b) Experiment: Compare zero/few-shot prompts to corpus-adapted prompts for synthetic question

generation (Table 4).

2. (a) Question: How does the number of rerankers affect downstream retrieval accuracy?
(b) Experiment: Compare single-reranker to multi-reranker approach (with different reranker

selection strategies) across various target domains (Table 7).

3. (a) Question: How does the synthetic query count affect downstream retrieval accuracy?
(b) Experiment: Explore different query count configurations ranging from several thousand to

hundreds of thousands of synthetic queries (Table 1).

4. (a) Question: How do triple counts during distillation affect domain adaptation for ColBERTv2?
(b) Experiment: Explore different triple counts ranging from several thousand to millions of triples

(Table 8).

In Table 7 and Table 8 (and Table 1 in the main text), we outline the results of different experimental
configurations in which we alter synthetic query generation and passage reranker training. Based on
our results for the LoTTE pooled dataset, we find that training multiple rerankers and selecting the best
performing rerankers can improve our unsupervised domain adaptation approach. We generate multiple
corpus-adapted prompts and rerankers to prevent edge cases in which sampled in-domain passages and
queries have low quality. Furthermore, distilling the passage rerankers with ColBERTv2 allows us preserve
their accuracy gains while avoiding their high computational costs. However, training many rerankers and
selecting the best five rerankers can be computationally intensive and ultimately unnecessary to achieve
domain adaptation. The simpler approach of training several rerankers and using them for distillation,
without any quality filtering, yields comparable results with only a 0.6 point drop in Success@5 on average
while computing 10x less synthetic queries (Table 7). Additionally, by using our rerankers to generate
more triples for distillation with ColBERTv2, we were able to boost performance even further as shown in
Table 8.

B Fine-tuning Rerankers and Retriever

For all passage reranker models that we fine-tune, we optimize for cross-entropy loss using Adam (Kingma
and Ba, 2014) and apply a 0.1 dropout to the Transformer outputs. We feed the final hidden state of
the [CLS] token into a single linear classification layer. We fine-tune for 1 epoch in all experimental
configurations. Additionally, we using a 5e-6 learning rate combined with a linear warmup and linear decay
for training (Howard and Ruder, 2018). We use a batch size of 32 across all experimental configurations.

For our ColBERTv2 retriever, we use a 1e-5 learning rate and a batch size of 32 during distillation. The
ColBERTv2 maximum document length is set to 300 tokens. We use a BERT-Base model (Devlin et al.,
2019) as our encoder.

Instead of fine-tuning the rerankers, we also tried fine-tuning ColBERTv2 directly with the synthetic
datasets. We found that fine-tuning the retriever directly with the synthetic queries offered only limited
benefits, only improving zero-shot retrieval by 1-3 points of accuracy at best and decreasing zero-shot
accuracy at worst (for the LoTTE Forum dev set). Distilling the rerankers offered more substantive gains
and better adaptation to the target domains more generally.
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ColBERTv2 Distillation with UDAPDR

Zero-shot
ColBERTv2

1 of 50
Rerankers

5 of 50
Rerankers

10 of 50
Rerankers

5 of 5
Rerankers

Zero-shot
ColBERTv2
+ Reranker

LoTTE Lifestyle 64.5 67.5 73.2 73.6 72.8 73.5
LoTTE Techology 44.5 46.3 50.3 50.7 49.9 50.6
LoTTE Writing 80.0 81.5 83.4 84.2 83.0 85.5
LoTTE Recreation 70.8 73.7 77.8 78.3 76.7 79.1
LoTTE Science 61.5 63.0 66.3 66.8 65.5 67.2
LoTTE Pooled 63.7 66.3 70.3 70.7 69.6 71.1

NaturalQuestions 68.9 70.1 73.0 73.5 72.7 73.9
SQuAD 65.0 67.2 71.0 71.3 70.4 72.6

Table 7: Success@5 for Multi-Reranker Domain Adaptation Strategies with Different Reranker Counts.
LoTTE dataset results correspond to the Forum configuration. All results correspond to dev sets of each task. The
reranker used in the experiments is DeBERTa-v3-Large. The ColBERTv2 distillation strategies train X number of
rerankers before selecting the best Y based on their performance on the dev set of the target domain. Through the
selection process, we aim to find an upper bound for retrieval accuracy, even though access to an annotated dev set
is not realistic for all domains. In our distillation strategies, each reranker was trained on 2,000 synthetic queries.
For our non-distilled reranker used in the final column, we trained it on 100,000 synthetic queries. The synthetic
queries were created using Flan-T5 XXL model and the prompting strategy outlined in Section 3.

ColBERTv2 Distillation with UDAPDR

Zero-shot
ColBERTv2

1000
triples

10000
triples

100000
triples

Zero-shot
ColBERTv2
+ Reranker

LoTTE Lifestyle 64.5 67.4 70.1 72.4 73.5
LoTTE Techology 44.5 46.0 47.8 50.2 50.6
LoTTE Writing 80.0 82.5 83.4 85.0 85.5
LoTTE Recreation 70.8 72.3 76.5 77.7 79.1
LoTTE Science 61.5 62.0 64.2 66.5 67.2
LoTTE Pooled 63.7 66.0 68.4 70.4 71.1

NaturalQuestions 68.9 70.5 72.7 73.4 73.9
SQuAD 65.0 67.2 70.6 71.5 72.6

Table 8: Success@5 for Multi-Reranker Domain Adaptation Strategies with Various Distillation Triples
Counts. LoTTE dataset results correspond to the Forum configuration. All results correspond to dev sets of each
task. The reranker used in the experiments is DeBERTa-v3-Large. The ColBERTv2 distillation strategies use a
single reranker trained on 10,000 synthetic queries; this reranker then generates the specified number of labeled
triples. For our non-distilled reranker used in the final column, we trained it on 100,000 synthetic queries. The
synthetic queries were created using Flan-T5 XXL model and the prompting strategy outlined in Section 3.
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We ran additional experiments testing UDAPDR’s efficacy on LoTTE Search dev, using one reranker
trained with a unique set of 2000 synthetic queries. We found that the approach boosted accuracy by 1.6
points, increasing accuracy from 71.5 to 73.1. However, since the synthetic queries could be generated so
cheaply, we decided to scale to tens of thousands of synthetic queries for further experiments.
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