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Abstract

Research interest in task-oriented dialogs has
increased as systems such as Google Assistant,
Alexa and Siri have become ubiquitous in ev-
eryday life. However, the impact of academic
research in this area has been limited by the
lack of datasets that realistically capture the
wide array of user pain points. To enable re-
search on some of the more challenging aspects
of parsing realistic conversations, we introduce
PRESTO1, a public dataset of over 550K con-
textual multilingual conversations between hu-
mans and virtual assistants. PRESTO contains
a diverse array of challenges that occur in real-
world NLU tasks such as disfluencies, code-
switching, and revisions. It is the only large-
scale human generated conversational parsing
dataset that provides structured context such
as a user’s contacts and lists for each example.
Our mT5 model-based baselines demonstrate
that the conversational phenomena present in
PRESTO are challenging to model, which is
further pronounced in a low-resource setup.

1 Introduction

Virtual dialog agents (a.k.a. “assistants”) are in-
creasingly becoming a part of our everyday life.
From setting up alarms to controlling one’s home
environment, users now converse with their devices
to accomplish many tasks previously done manu-
ally. Parsing task-oriented dialogs is the problem
of understanding the user’s intent and any associ-
ated arguments so that the assistant can fulfill the
requested task.

Given the prominence of data-driven methods
in NLP, public availability of relevant datasets
dictates which problems can be effectively stud-
ied by the research community at large. Datasets

∗ Equal contribution.
† Work done while at Google.
‡ Work done during an internship at Google.

1https://github.com/google-research-datasets/
presto

such as MultiWoz (Budzianowski et al., 2018; Eric
et al., 2020), TOP (Gupta et al., 2018), MTOP (Li
et al., 2021), and SMCalFlow (Andreas et al.,
2020) have enabled researchers to study numerous
developments in conversational semantic parsing,
e.g., Budzianowski and Vulić (2019), Pasupat et al.
(2021). However, many challenging aspects of pars-
ing, such as disfluencies, code-switching, and the
use of the structured context which grounds conver-
sations, have been missing in these datasets, stifling
meaningful research progress in those areas.

With that in mind, we present PRESTO, a
dataset that better represents real conversations
users have with their virtual assistants. PRESTO
consists of:

• Challenging conversational phenomena such
as disfluencies, code-switching and user revi-
sions, addressing some of the aforementioned
limitations of current virtual assistants and
enabling researchers to test new methods of
addressing these challenges.

• Realistic multilingual dialogues. Unlike in
other datasets, conversations in each language
were not obtained by translating English dia-
log, but instead contributed by native speakers
of each language.

• Human and synthetic structured context with
the conversations. The data contributors were
instructed to look at and optionally reference
relevant context in the user’s virtual environ-
ment. For example, contributors could ref-
erence the user’s contact list while initiating
a phone call or sending a message using the
virtual assistant.

When users speak naturally to their virtual assis-
tants, a variety of conversational phenomena are
observed: disfluent turns (Gupta et al., 2021), revi-
sions (also known as conversational repair (Cassell
et al., 2000)) and code-switching (also known as
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   in my contacts

Person  2

Henry Moore
Personal_contact  3

No,

Initiate_call  1

 Lists
• School 

supply
• Cleaning
• …

 Contacts
• Charlotte 

Taylor
• Henry Moore
• …

 Notes
• Meeting 

tomorrow
• Wedding
• …

Context:

Parse:

Dialog:

Place a call to Henry Moore

Calling Henry Moore Foundation (Henry 
Moore Studios & Gardens) 
No, Henry Moore in my contacts

कुछ भी नह(
Cancel  1

 Lists
• शॉ पि ं ग
• मूवीज
• वालमा 5ट
• …

 Contacts
• डॉ रमेश
• अं शि का
• कमला
• …

 Notes
• फॅ मि ली
• श? पि ग
• पढाई …
• …

Context:

Parse:

Dialog:

मेरी मूवी लि B मC एक आयटम जोHना ह ैमुझे।
आप Lा जोHना चाहते हO?
कुछ भी नह(

Correct-argument (en) Cancel-action (hi)

 Lists
• Pendientes
• Deberes
• Vacaciones
• …

 Contacts
• Olivia
• Karla
• Ramón Ortiz
• …

 Notes
• Recoger 

pedido
• Sacar la basura
• …

Context:

Parse:

Dialog:

Agregar alquiler de coche a la lista vacaciones

De acuerdo, he añadido alquiler de coche

No, ver la lista vacaciones

Correct-action (es)

  No, ver la lista vacaciones
list_label  2

Get_list   1

!"! !!! !!!

Figure 1: Examples of user revision dialog sessions from PRESTO. PRESTO includes annotated dialogs
in 6 languages (de, en, es, fr, hi, ja) with various characteristics such as corrections (correct-argument,
correct-action), cancellations (cancel-action) etc. Each example consists of Input: a user’s virtual state
(context), one or more user utterances and the corresponding virtual assistant responses (dialog). Output: the
semantic parse of the last user utterance in the dialog (parse).

code-mixing (Agarwal et al., 2022)), to name a
few. Our dataset highlights several such linguis-
tic phenomena, and provides thousands (Table 1)
of examples of each phenomenon per language,
each produced by a native speaker. Overall, our
dataset contains more than 550k annotated utter-
ances across six languages. Each user utterance
is further verified by three native speakers for flu-
ency and correctness and then annotated separately
twice. Section §3 discusses how the data was col-
lected.

Section §2 discusses context as well as other im-
portant phenomena which are well-represented in
this dataset such as user revisions and disfluent ut-
terances. In section §4, we use mT5-based models
(Xue et al., 2021) to present some baseline model
performance metrics for this dataset, e.g., exact
match accuracy on the test sets, the relative perfor-
mance of monolingually- vs. multilingually-trained
models, and data scaling effects with respect to var-
ious linguistic phenomena.

2 Dataset Characteristics

In this section, we discuss the characteristics of
PRESTO dataset that set it apart from existing
datasets: native conversations in multiple lan-
guages, code-switched utterances, user revisions,
disfluencies, and structured context.

Native Speakers. The PRESTO dataset only in-
cludes utterances provided by native speakers of
the language, with no translation. Table 1 shows

the number of examples in each language.
Prior large multilingual datasets for conversa-

tional semantic parsing such as MTOP (Li et al.,
2021) and MASSIVE (FitzGerald et al., 2022) con-
tain non-English conversations obtained by translat-
ing English conversations to other languages,2 re-
sulting in unnatural and synthetic utterances which
are unlikely to be spoken by native speakers of
the non-English language. For example, an Arabic
example in MASSIVE:

does not resemble native Arabic speech of any di-
alect. The corresponding English utterance in the
MASSIVE dataset is: I need to have location ser-
vices on can you check.

Code-Switched Utterances. Multilingual users
often mix words from two languages in the same
utterance, as shown in Fig. 2. Recognizing the
difficulty of parsing such utterances, we asked
bilingual data contributors to provide mixed utter-
ances, and marked these examples with a special
tag ‘code-switching’ to enable isolated research
focused on addressing this phenomenon. Table 1
shows the number of code-switched examples in

2The translation was constrained in order to ensure the
English source and the translation have the same semantic
parse with argument values in English translated to the corre-
sponding phrases in the other language.
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Language # Intents / Avg. Slots / Avg. Tokens / Avg. Prev. Total Code User Spoken
# Slots Utterance Utterance Utterances Examples Switching Revisions Disfluencies

German 34 / 285 1.60 9.17 2.56 83,584 12,357 22,129 16,781
English 34 / 303 1.57 9.03 2.49 95,671 5,918 27,741 17,588
Spanish 34 / 299 1.72 10.70 2.57 96,164 12,570 27,713 21,510
French 34 / 303 1.63 10.73 2.63 95,870 12,939 25,157 20,137
Hindi 34 / 285 1.47 9.32 2.55 72,107 16,517 15,833 10,193
Japanese 34 / 292 1.73 11.23 2.58 109,528 15,200 29,474 23,838

Total - - 1.63 10.11 2.57 552,924 75,501 148,047 110,047

Table 1: Corpus and sentence level statistics of PRESTO, slices per language, including various linguistic
phenomenon.

Log_nutrition  

esta mañana
Time  3

Sparkpeople
Provider  2

,  record my meal from

1

Resume_exercise  

iPhone
Device  2

Ich will mein Workout auf dem

1

weitermachen.

Send_digital_object  

Screenshot
Attachment  3

SMS
Medium  2

  के साथ 

1

 भी भेजो।

Figure 2: Examples of Hindi-English (Send a screen-
shot along with the SMS.), Spanish-English (Sparkpeo-
ple, record my meal from this morning.), and German-
English (I want to continue my workout on the IPhone.)
code-switched utterances from PRESTO.

each language.3

User Revisions. The example in Fig. 1 highlights
another important aspect of realistic conversations:
users often revise their request to the assistant.
We have 4 such tags in our dataset which are all
grouped under the broader user-revision linguis-
tic phenomenon. The tags are: correct-action,
correct-argument, within-turn-correction,
and cancel- action. Sometimes the revision is
necessary due to a mistake made by the virtual as-
sistant, as in Fig. 1 (correct-argument). At other
times, the user may simply change their mind about
what they want the assistant to do which may hap-
pen in the same utterance, e.g., “Add bread no no
wait add wheat bread to my shopping list”, or in
a later utterance, e.g., “Sorry add wheat bread in-
stead.” Another common revision users make is to
cancel their requests, e.g., “Sorry don’t add any-
thing”. Fig. 1 shows examples of some of these
revisions. Table 1 reflects the number of examples

3We use a language ID classifier to determine which of the
two languages is dominant in a given utterance.

with user revisions in the last utterance for each
language in PRESTO.

Disfluencies. Due to the spoken nature of most
conversations with virtual assistants, user utter-
ances frequently have disfluencies such as repeated
phrases and filler words, as shown in Fig. 3. Table 1
shows the number of examples with disfluencies
for each language in PRESTO.

Send_digital_object  

Carla Harris
Person  3

email
Medium  2

to

1

Write an email uh yeah write an

Pay_bill  

ガス
Service_type  2

1

ガス代、 代を⽀払いたいんだけど。

Order_ride  

cinéma
Dropoff_location  3

Uber
Provider  2

1

Commandes un Ub un un pour le

Figure 3: Examples of utterances in English, Japanese
(Gas bill, I want to pay the gas bill.), and French (Order
an Ub an Uber for the cinema) with disfluencies (filler
words or repetitions) from PRESTO.

Structured Context. Users interact with virtual
assistants in a virtual world (henceforth context)
that may include structured objects like contacts,
shopping lists, to-do lists, alarms, smart devices,
etc. Context may or may not be needed to inter-
pret user utterances. Models should be able to
model and ignore structured information based on
the query. In Fig. 1 (correct-argument), the vir-
tual assistant fails to relate ‘Henry Moore’ to the
user’s contacts and incorrectly interprets the name
as a reference to the “Henry Moore Foundation”.
The gold parse provided in the dataset shows the
correct interpretation for the last utterance, leverag-
ing the structured context.
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Dataset # Languages Multi-turn Explicit Labeled Conversational
Context Phenomena

PRESTO 6 ✓ ✓ Code-Switching, Disfluencies,
User-Revisions, Coreferences∗

TreeDST (Cheng et al., 2020) 1 ✓ ✗ Coreferences
SMCalFlow (Andreas et al., 2020) 1 ✓ ✗ Coreferences, User-Revisions
MultiWOZ (Budzianowski et al., 2018) 1 ✓ ✗ Coreferences∗

DSTC10 (Kim et al., 2022) 1 ✓ ✗ Disfluencies∗

TOP (Gupta et al., 2018) 1 ✗ ✗ -
MTOP (Li et al., 2021) 6 ✗ ✗ -
MASSIVE (FitzGerald et al., 2022) 51 ✗ ✗ -
SNIPS (Coucke et al., 2018) 1 ✗ ✗ -
MultiATIS++ (Xu et al., 2020) 9 ✗ ✗ -

Table 2: Comparison of PRESTO with other recent datasets on or related to semantic parsing of task-oriented
dialog. * denotes phenomena which is implicitly present in the dataset but not explicitly tagged.

Other Statistics. PRESTO covers 34 intents, in-
cluding the intent ‘Other’ which is a catch-all in-
tent used for all out-of-scope utterances and con-
stitutes 11.3% of all examples in the dataset. The
average number of the previous user turns is around
2.6, which is representative of the relatively short
conversations users tend to have with virtual assis-
tants today. Table 1 provides summary statistics
for the number of tokens in labeled user utterances
in each language, demonstrating the large variety
in utterance lengths.

Related Datasets There have been multiple re-
lated datasets which are listed in Table 2. The
existing task-oriented dialog datasets can be split
by capabilities and representations. The salient ca-
pabilities are – single turn or conversational, mono-
lingual or multilingual, presence of conversational
phenomenon, and single-domain vs multi-domain.
In terms of representations, there are 2 popular
paradigms, a direct semantic parse typically con-
sisting of intents and slots vs maintaining an ex-
plicit dialog state. With the popularity of pretrained
text-to-text models, the natural modeling choice for
all of these has converged to similar models. In fact,
our context representation can be seen as a con-
stant dialog state for that conversation. While other
datasets have focussed on multi-intent and compo-
sitional utterances (Cheng et al., 2020), PRESTO
emphasizes on labelled conversational phenomena
and explicit context, which are important for mod-
eling real-world task-oriented dialogues.

3 Data Collection

The scope for data collection is based on the App
Actions built-in intents available for 3rd-party An-

droid Developers, which cover a wide spectrum
of domains including finance, health, fitness, food,
transportation, social, communications, shopping
among others.4 Our dataset has over 34 unique
intents and 370 arguments across 6 languages.
Table 6 talks about the intent distribution in the
dataset. We use two complementary approaches to
collect contextual and non-contextual examples.

Contextual Examples. Data contributors were
asked to have conversations with a virtual assistant
simulator based on different sets of instructions for
each language and for each type of targeted linguis-
tic phenomenon (e.g., code-switching). Each
data collection request targeted a single intent and
was initialized with potentially relevant structured
context, e.g., contacts, notes or lists, which can
optionally be referenced by data contributors in the
utterances they produce. The initial seed contacts,
notes and lists are authored by native speakers and
are shared for all examples in one request. For ex-
ample, when initiating a call, data contributors may
use one of the names in the contacts (e.g., “call
mom”), but they may also use the name of a busi-
ness not in the contact list (e.g., “call mcdonalds”).

Each user utterance from the collected conver-
sations is exported as a candidate example for se-
mantic annotation by trained expert linguists who
produce two types of annotations.5 First, linguists
decide whether the example is in scope or not. Out
of scope examples include incoherent or nonsen-

4https://developer.android.com/reference/
app-actions/built-in-intents

5Due to limited annotation capacity, we were not able to
annotate all candidate examples and we prioritized candidate
examples which have at least one previous turn. Candidates
which were not included were discarded and are not included
in this data release.
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sical utterances, unsupported arguments and out-
of-scope intents. Then, they choose the intent
and nested arguments as shown in Fig. 1. Finally,
they added semantic tags which indicate which
linguistic phenomena of interest are expressed
in this example, such as, correct-argument,
cancel-action, code-switching, etc.

Non-Contextual Examples. A key challenge in
representing context in real world semantic parsing
is that most examples can be parsed without using
it, for example utterances like “play music” are typ-
ically non-contextual but an utterance like “play
workout music” might be contextual if the user has
a playlist called “workout”. This makes it a chal-
lenging modeling task; context ideally should only
be used when it is relevant. On the one hand, ex-
clusively using relevant contextual examples when
training a conversational semantic parser results in
models which are over-sensitive to irrelevant con-
textual features. On the other hand, exclusively
using non-contextual training examples where the
user utterance is not related to previous turns or
structured context teaches the model that the con-
text does not matter, and may result in emphasizing
arbitrary contextual features which happen to cor-
relate with some prediction in the training data.

A balanced approach is to include both contex-
tual and non-contextual examples in training and
use targeted evaluation sets to understand the im-
pact of different ways of representing context. We
obtain non-contextual examples by asking linguists
to produce single-turn utterances along with their
gold parses. Then, we pair them with samples
of the structured context and previous turns from
the contextual conversations (described later in the
post-processing section). We denote such synthetic
generated context in the data by the tag context:
synthetic.

Data Quality. We adopt several mechanisms for
boosting the data quality of collected data. All
our data collection is done in 2 phases. Phase 1
is data collection, where annotators come up with
queries pertaining to a scenario. Phase 2 is the
actual semantic parse annotation for the query.

For non-contextual examples, we use a crowd
compute like platform with native speakers to gen-
erate and annotate the data. The process is de-
scribed below:

1. [Phase 1.1] Annotator 1 authors a query
(contextual or non-contextual).

2. [Phase 1.2] Annotators 2, 3, 4 indepen-
dently validate the query (scope judgment).
If all 2, 3, 4 agree that the query is valid, then
the query goes to phase 2. Upon any disagree-
ment, the example is discarded.

3. [Phase 2.1] Annotators 5 and 6 annotate
the query independently. If their annotations
match, the query is considered resolved along
with the annotation.

4. [Phase 2.2] If 5, 6 disagree, the query is
sent to annotator 7 who annotates the query.
If 7 matches any of 5 or 6, then the query is
resolved to the matching annotation else the
example is discarded.

As can be seen, the overall query generation and
annotation process is similar for contextual and
non-contextual examples. However, contextual ex-
amples require more care in annotation therefore
we additionally ask trained in-house linguists who
also speak the language to verify the plausibility
of each example and annotations and exclude ones
that are out of scope or unclear as discussed earlier.

We manually analyzed 6K examples to ver-
ify the efficacy of our approach. We as-
sessed the correctness of the parse and the
plausibility of the user utterance. We used
3 labels to assess the semantic parse qual-
ity: ‘Accuracy:GOOD’, ‘Accuracy:BAD:INTENT’,
‘Accuracy:BAD:SLOT’. We used 2 labels to as-
sess the utterance: ‘Acceptability:HIGH’ and
‘Acceptability:LOW’.

‘Accuracy:GOOD’ is used when the top-
level intent and all slot values are accurate.
‘Accuracy:BAD:INTENT’ is used when an intent
is not accurate. ‘Accuracy:BAD:SLOT’ is used
when the intent is accurate but one or more slot
values are not accurate. ‘Acceptability:HIGH’
is used when the utterance is likely to be spo-
ken or typed by Assistant users, and is grammat-
ically and contextually correct, otherwise we use
Acceptability:BAD.

Before post-processing, annotators agreed on
utterance plausibility (acceptability) for 92.9% of
examples, and agreed on full semantic parse anno-
tation (accuracy) for 90.7% of examples.

The breakdown of intent and argument errors in
contextual examples can be found in Table 3 for
five of the six languages (Spanish was not included
in this analysis due to capacity constraints).
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Language Bad Intent Bad Argument

German 2.8% 3.7%
English 2.9% 8.5%
French 0.0% 2.5%
Hindi 1.9% 4.8%
Japanese 4.3% 2.1%

Table 3: Type of accuracy errors in examples by lan-
guage from our human evaluation.

Post-processing. One of the common annotation
errors we found is that code-switched examples
often had the wrong language ID (LangID) associ-
ated with them. To address this, we use a language
ID classifier to determine the dominant language
in code-switched examples.

Some arguments (due to fine-grained domain
modeling) were often confused for other argu-
ments that have similar (but distinct) semantics,
e.g., ListItem vs. ExistingListItem, resulting
in inconsistent annotations and contributing to the
error rate discussed earlier. To address this, we
merged pairs of argument names where the distinc-
tion rarely matters in practice. To make our data
uniform, we add synthetic context and previous
turns to non-contextual examples. Examples that
are missing previous turns are augmented to reuse
previous turns from other examples by first sam-
pling the number of previous turns using a negative
binomial distribution with r = 5, p = 0.8, then
sampling one of the collected conversations that
has this many turns. Examples that are missing a
given type of structured context, e.g., contacts, are
augmented by randomly sampling contact names
from related argument values specified by our data
contributors, which results in realistic and diverse
contexts.

We do another quality check to measure Accu-
racy and Acceptability after post-processing by ran-
domly sampling 500 queries from each language
(except Spanish due to capacity constraints). We
ask 3 independent annotators (same as the ear-
lier quality check) to rate the queries. After post-
processing, we find that linguists agree, defined by
2 out of 3 annotators independently agreeing, on
utterance plausibility (acceptability) for 98.8% of
examples and agree on full semantic parse anno-
tation (accuracy) for 93.24% of examples. This
shows our post-processing decreased the data noise
significantly.

4 Experiments

In this section, we demonstrate a few experimental
setups which are enabled by PRESTO, provide
baseline results for future work, and summarize
our findings.

4.1 Setup
Each example in the dataset is designated as train,
development or test with respective probabilities
0.50, 0.15 and 0.35, which enables us to have large
test sets even when doing focused evaluation on a
particular phenomenon of interest as in §4.3. All
data splits are provided as part of the data release.
We use the t5x library (Roberts et al., 2022) to fine-
tune mT5’s public checkpoint (Xue et al., 2021) on
the train portion of the data (unless otherwise stated
in k-shot experiments).

For all experiments, we report exact match ac-
curacy of the predicted semantic parse, which
gives the model one point for each example where
the intent and all the arguments are correctly pre-
dicted and zero points otherwise. All experiments
are based on the mT5-Base model (580M param-
eters),6 except the scaling experiments in §A.1
which demonstrate the effect of model scaling to
mT5-Large (1.2B parameters), mT5-XL (3.7B pa-
rameters), and mT5-XXL (13B parameters). All
models (except the monolingual models discussed
in §4.5) are fine-tuned on the union of training ex-
amples from all languages in PRESTO. Few shot
experiments for code switching, user revisions and
disfluencies all share the same training set, e.g., the
5-shot model across all three sections consist of 5
code-switching examples, 5 cancellations, 5 within-
turn corrections, 5 intent cross-turn corrections, 5
argument cross-turn corrections and 5 disfluency
examples, in addition to all examples which do not
represent any of these phenomena.

Features. The input sequence fed to the model
consists of the last user utterance which needs to
be parsed, followed by previous turns (both user
and assistant turns) in reverse chronological order,
followed by some representation of the structured
context (more on this in §4.4), with a separator
token between consecutive fields. An example is
shown in Figure 4.

Hyper-parameters We do a rough hyperparam-
eter tuning and fine-tune the model for 20K steps.

6https://github.com/google-research/t5x/blob/
main/t5x/examples/t5/mt5/base.gin
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Input:
No, Henry Moore in my contacts | Calling Henry

Moore Foundation (Henry Moore Studios & Gardens)

| Place a call to Henry Moore [SEP] Lists: School

Supply, Cleaning, ... [SEP] Contacts: Charlotte

Taylor, Henry Moore, ... [SEP] Notes: Meeting

tomorrow, ...

Output:
Initiate_call( callee = Personal_contact( person

= Henry Moore ) )

Figure 4: Example serialization and output of features.
The top box shows the encoding for the first input in
Fig. 1. The output sequence is a depth-first traversal of
the semantic parse.

We use the Adafactor optimizer with 0.8 decay rate
and 0 step offset. We have a max input length of
512 for training and 1024 for inference and a batch
size of 128.

4.2 Overall Results

Before diving into focused evaluations on various
phenomena of interest, it is instructive to examine
the overall model performance on this dataset when
trained on 100, 1K, 10K examples, as well as the
full the training set. The results are shown in Fig. 5,
and they demonstrate a linear increase in model
performance as the number of training examples
grows exponentially.

We next assess how difficult it is for mT5-based
models to parse examples with different linguis-
tic phenomena. Table 4 shows the exact match
accuracy for a multilingual model trained on ex-
amples without these phenomena. Each column
corresponds to a different test set with examples
that have user revisions, disfluent utterances, code-
switching, or none of the above. Unsurprisingly,
the models perform much worse on examples with
these phenomena when they are not exposed to
them in training. In contrast, when the model is
exposed to a lot of training examples with these
phenomena, as in Table 7, the performance gap
across the different test sets is smaller, except for
code-switching.

4.3 Results on Linguistic Phenomena

We evaluated how well an LLM-based model
parses examples with different linguistic phenom-
ena when fine-tuned on a large number of mul-
tilingual examples but only a limited number of

examples with the relevant phenomena. We trained
several mT5-base models on different training sets
with varying numbers of examples with each lin-
guistic phenomenon: 0, 5, 25, 125, 625, 3125, and
15,625 examples 7. We then evaluated the models
on a test set with only examples of the relevant
phenomena.

Code-Switching As seen in Fig. 5, when no
code-switching examples were used in training,
the model’s exact match accuracy ranged between
56-72%, performing best on Japanese and worst
on Hindi. Even at 0 shot, we saw a relatively high
performance for this phenomenon. We hypothe-
size that this is due to using a LangID to identify
code-switching utterances, which may cause code-
switched utterances to leak into the training set.

User revisions Similar to code-switching, this
setting has the training dominated by examples
without user revisions, while the test set only in-
cluded examples with user revisions. The zero-shot
exact match accuracy ranged between 18-28%. Un-
like code switching, adding only 25 examples of
each type of user revisions notably improved the
performance on user revisions. After the first few
examples, the performance improved linearly as
the number of examples with relevant phenomena
grew exponentially from 25 to 125 to 625. The
performance slowed down when the number of ex-
amples reached 15K.

Disfluencies Here, we turn to disfluent utterances
and try to estimate how well our models fare on
them with various number of disfluent examples
in the training set. Fig. 5 shows the results for the
focused test set with disfluent utterances. In the
zero-shot setup, the performance starts at a higher
accuracy range for all languages, compared to use
revisions. As the number of training examples
grows exponentially, we observe a linear increase
in exact match accuracy for all languages.

4.4 Structured Context

PRESTO provides an opportunity to examine how
structured context can be used to improve conver-
sational parsing models. We use a focused test set
that highlights context by only including contextual
examples (first approach in §3)).

7For user revisions, 5 examples would mean 5 examples
with intent corrections + 5 with argument corrections + 5 with
within-turn corrections + 5 with cancellations
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Figure 5: Scaling plots of the baseline multilingual mT5 model on test set of PRESTO for: (a) disfluencies, (b)
code-mixing, (c) user revisions, and (d) all inclusive (i.e. sampling uniformly from the overall PRESTO training
data mixture).

We linearize and prepend the context tokens to
the T5 parser input with [SEP] tokens as shown in
the example presented in 4.1. Initially, we simply
linearized the entire context and added that as a
feature. We noticed that naively prepending all the
context had too much noise and was not resulting
in performance improvements. Hence to represent
context in the input sequence, we first identified
context notes, contact names and list names which
had a trigram similarity greater than 0.6 with the
last user utterance and only used the last two turns.
We call this ‘filtered context representation’ since
it filters out parts of the context which are unlikely
to provide useful information for the parser.

First, we examine how the performance in-
creases on the focused test set as we include more

contextual examples to the training set. In particu-
lar, we fine-tune the mT5-Base model with filtered
context representation on all the non-contextual
training examples in addition to 10, 100, 1K or
10K contextual training examples. Table 5 provides
average performance for 5 languages with and with-
out context. We notice very little improvement with
addition of the context features. Our interpretation
for this result is that, even though the data contribu-
tors were encouraged to use the structured context
when conversing with the virtual assistant, most
utterances can be understood without referencing
the structured context. For example, it is easy for
the model to parse the utterance “add apples to my
shopping list”, with no knowledge about what lists
the user have.(See §3 for more details on contextual
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Language No Phenomenon User Revisions Disfluency Code-Switching

German 81.76 23.56 64.91 56.81
English 85.16 22.45 63.78 67.43
Spanish 81.26 19.94 61.31 62.60
Japanese 83.41 22.95 54.31 71.71

Hindi 76.60 26.94 54.89 58.10
French 84.27 15.25 67.42 64.21
Overall 82.38 21.51 61.26 63.16

Table 4: Exact match accuracy results (%) on the test set for the zero-shot multilingual mT5 model (i.e. trained on
all examples with no marked phenomena).

vs. non-contextual examples.)

Number Non-Contextual Contextual
of Examples Model Model

10 21.23 23.94
100 40.84 41.90
1000 64.29 64.93

10000 80.28 80.50

Table 5: Average performance (exact match accuracy
(%)) on the contextual test set across all the languages
for contextual vs non contextual models. It can be seen
that in low resource setup contextual models outperform
non-contextual model, i.e. modeling context helps.

4.5 Monolingual vs. Multilingual Models
In previous sections, we train a single parser on
training examples from all languages in PRESTO,
as proposed in Ammar et al. (2016). A more tra-
ditional approach is to train several monolingual
models. Figure 6 shows how the monolingual mod-
els compare to multilingual models with varying
amounts of training data. Our results show that
in lower data regimes there is a clear gap between
monolingual and multilingual models, but when
using all training instances in the dataset, mono-
lingual and multilingual models converge towards
similar performance, in terms of overall accuracy.

5 Conclusion

We introduce PRESTO, a over 550K-examples,
six-language dataset for parsing realistic task-
oriented dialogs. PRESTO is enriched with a high
representation of contextual examples, code switch-
ing, user revisions and disfluencies. Our initial re-
sults demonstrate that it is possible for our models
to perform well on various linguistic phenomena,
but only when the model is exposed to a very large
number of training examples with the given phe-
nomenon. We observe that feeding a simple rep-
resentation of the structured context to the model
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Figure 6: Average test set performance of multilingual
and monolingual models. In low resource setting, we
can see that a multilingual model performs better than a
monolingual one.

does not yield large improvements on contextual
examples. We also notice that multilingual models
perform better than monolingual models in lower
data regimes.

Open Questions. By introducing a new dataset
with unique characteristics, this work deliberately
asks more questions than it answers. Some of the
obvious modeling questions which this dataset can
help answer are: How do we train models which
perform well on conversational phenomenon like
code-switching, user revisions and disfluencies,
with a relatively small number of training examples
that exhibit these phenomena? How do we identify
examples for which context is critical to under-
standing the user’s utterance? How can structured
context be represented in our models most opti-
mally? How can we increase cross-lingual super-
vision in multilingual models to make them more
data efficient? We hope that PRESTO is useful in
answering these and other questions about conver-
sational semantic parsing.
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Limitations

The PRESTO dataset was collected before the re-
lease of the ChatGPT API8, resulting in the absence
of any performance testing on the newly collected
phenomena during data collection. Furthermore,
the extensive size of the dataset poses challenges in
testing models such as ChatGPT on PRESTO with-
out incurring supplementary expenses. Pan et al.
(2023) employed a multi-turn prompt framework
to evaluate ChatGPT’s performance on comparable
datasets and reported a Joint Goal Accuracy (JGA)
of 64.23 on MultiWOZ2.4, compared to the state-
of-the-art (SOTA) finetuned score of 75.90. Table 2
demonstrates that MultiWOZ is less intricate than
PRESTO. Thus, we consider the PRESTO dataset
to remain a challenging benchmark for such mod-
els. Subsequently, future research can focus on
conducting additional modeling experiments.

Ethical Considerations

The PRESTO dataset does not incorporate copy-
righted material or otherwise violate intellectual
property of third parties since all the raw text was
directly collected from trained data contributors
who received fair market compensation for their
work. All data contributors were vetted to be native
speakers for the contributed data, although their na-
tionalities may vary. See Section 3 for more details
on data collection, and Section 2 for more details
on data characteristics.
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A Appendix

A.1 Model Scaling
We present the results on the overall dataset as well
as the model scaling results in this section. Table
7 presents results on the test sets if we use all the
available training data.

The experiments presented so far use mT5-Base
since it incurs lower cost than larger models and
provides reasonable performance on many NLP
tasks. In this section, we examine larger model
sizes impact the results on this dataset. As a case
study, we focus on the 125-shot models for code
switching, disfluencies and user revisions. Fig. 7
demonstrates the impact of increased model size
on the overall test results. As expected, the larger
models consistently give better results but are still
lower than the best results we were able to achieve
by using the full training set with mT5-Base (dis-
cussed earlier in Fig. 5). Fig. 7 demonstrates a
similar pattern for the focused evaluation on user
revisions, and we see a similar pattern for other
phenomena. These results confirm that mT5-Base
strikes a good balance between model size and per-
formance, and we recommend using mT5-Base for
extensions of this work.

10831



Intent German English Spanish French Hindi Japanese

Add_contact 2779 2931 3382 3148 2122 3527
Add_item_to_list 944 2959 2913 986 1958 2503
BuyEventTickets 2550 2463 2883 2842 1697 3049
Cancel 1479 3029 2061 1775 2318 2525
Cancel_ride 2252 2353 3239 3047 2053 3098
Check_order_status 2700 2877 3448 3455 2136 3934
Create_list 844 594 745 1063 778 1023
Create_note 1566 1700 1903 1819 1568 1998
Find_parking 4562 1210 4387 2345 3117 2692
GetGenericBusinessType 3130 2613 2782 2904 1676 3139
Get_bill 2249 2466 2922 2582 1857 3275
Get_health_stats 2477 2512 2827 2847 1982 2879
Get_list 701 705 698 676 856 761
Get_message_content 2102 2142 2371 2343 1320 2879
Get_note 1737 1905 2022 2277 1978 2138
Get_product 2341 2076 2483 2438 1574 3344
Get_security_price 2175 2333 2707 2425 1752 3245
Initiate_call 1822 4292 2239 1965 1807 2250
Log_exercise 2602 2708 2050 2663 1962 3049
Log_nutrition 2219 2459 2667 2605 1786 3204
Open_app 2488 2497 3367 3076 2069 3643
Order_menu_item 224 860 659 736 155 740
Order_ride 2175 2342 2857 2992 1809 2993
Other 8457 17499 5650 10937 9163 13737
Pause_exercise 2821 2995 3109 3149 1830 3495
Pay_bill 2280 2304 2837 2823 1834 3048
Play_game 2640 2667 2889 3048 1941 3074
Post_message 2597 2224 3065 3278 2049 3529
Record_video 2609 2295 3317 3369 1934 3864
Resume_exercise 2367 2060 3136 2929 1991 2896
Send_digital_object 2307 3127 2804 2652 2016 2905
Start_exercise 2719 3030 3272 3182 2031 3311
Stop_exercise 2719 2814 3207 3127 2078 3432
Take_photo 3950 2630 5266 4367 4910 4349
Overall 83584 95671 96164 95870 72107 109528

Table 6: Intent distribution by language for PRESTO.

Language No Phenomenon User Revisions Disfluency Code-Switching

German 82.41 81.33 84.19 72.50
English 86.18 85.36 86.20 75.99
Spanish 82.95 82.26 82.81 72.22
Japanese 84.91 82.22 80.46 84.41

Hindi 78.30 73.24 75.49 73.24
French 85.42 82.99 85.82 75.98
Overall 83.66 81.85 82.92 75.88

Table 7: Exact match accuracy results (%) for the multilingual mT5 model trained on the full training set of
PRESTO.
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Figure 7: Scaling plots for increasing the model capacity. This scaling study was done using 125 shot training set.
As expected larger models generally perform better.
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