
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 10087–10099
December 6-10, 2023 ©2023 Association for Computational Linguistics

Expand, Highlight, Generate:
RL-driven Document Generation for Passage Reranking

Arian Askari1, Mohammad Aliannejadi2, Chuan Meng2

Evangelos Kanoulas2, Suzan Verberne1

1Leiden University {a.askari,s.verberne}@liacs.leidenuniv.nl
2University of Amsterdam {m.aliannejadi,c.meng,e.kanoulas}@uva.nl

Abstract

Generating synthetic training data based on
large language models (LLMs) for ranking
models has gained attention recently. Prior
studies use LLMs to build pseudo query-
document pairs by generating synthetic queries
from documents in a corpus. In this paper,
we propose a new perspective of data augmen-
tation: generating synthetic documents from
queries. To achieve this, we propose DocGen,
that consists of a three-step pipeline that uti-
lizes the few-shot capabilities of LLMs. Doc-
Gen pipeline performs synthetic document gen-
eration by (i) expanding, (ii) highlighting the
original query, and then (iii) generating a syn-
thetic document that is likely to be relevant to
the query. To further improve the relevance be-
tween generated synthetic documents and their
corresponding queries, we propose DocGen-
RL, which regards the estimated relevance
of the document as a reward and leverages
reinforcement learning (RL) to optimize Doc-
Gen pipeline. Extensive experiments demon-
strate that DocGen and DocGen-RL signifi-
cantly outperform existing state-of-the-art data
augmentation methods, such as InPars, indi-
cating that our new perspective of generating
documents leverages the capacity of LLMs in
generating synthetic data more effectively. We
release the code, generated data, and model
checkpoints to foster research in this area1.

1 Introduction

Data augmentation for information retrieval (IR)
has gained attention as a promising research
area. Previous studies use large language mod-
els (LLMs) (Zhao et al., 2023) to generate synthetic
training data for retrievers (Jeronymo et al., 2023;
Dai et al., 2023; Boytsov et al., 2023; Bonifacio
et al., 2022), significantly improving effectiveness
of unsupervised retrievers. Specifically, these stud-
ies all build pseudo query–document pairs by gen-

1https://github.com/arian-askari/
docgen

erating synthetic queries given documents in an
existing corpus.

However, previous work suffers from the fol-
lowing limitations: (i) generated synthetic queries
tend to have a larger lexical overlap with relevant
documents than human queries, leading to a mis-
match between synthetic and real data; (ii) generat-
ing queries from a document in an existing corpus
cannot cover queries for which the relevant infor-
mation is spread over multiple documents; more-
over, in reality, there could be difficult and complex
queries for which there are very few to zero rele-
vant documents in existing corpora; thus a retriever
trained on such data is less likely to learn to retrieve
effectively for complex queries.

To overcome these limitations, we propose to
generate synthetic documents from given queries,2

This paradigm has three benefits: (i) taking user
queries as input makes the resulting training data
more representative of real information needs;
(ii) generating synthetic documents enables us to
create relevant documents for complex queries that
have few or no relevant documents in an existing
corpus; LLMs are pre-trained on a vast number
of corpora, and have the potential in generating
relevant documents for complex queries by aggre-
gating relevant information they have seen during
pre-training; (iii) Yu et al. (2023) show that generat-
ing a document is closer to the language modeling
objective of the LLM pre-training than generat-
ing queries, thus generating documents can better
utilize the knowledge stored in LLMs parameters,
producing higher-quality text.

We use the few-shot capabilities of LLMs (Dong
et al., 2022) to generate synthetic documents given
queries. Our preliminary experiments identified
two challenges: (i) feeding raw queries to an LLM
could result in low-quality synthetic documents3;

2In this paper, we interchangeably use the words ‘docu-
ment’ and ‘passage.’

3This observation is based on open-source LLMs, which

10087

https://github.com/arian-askari/docgen
https://github.com/arian-askari/docgen

Filtering the pairs of query and
synthetic document that are

unlikely to be relevant

Generating a synthetic
document per query

by DocGen
A set of queries

Training a MonoT5 re-ranker
on the filtered data

Figure 1: The illustration of training passage reranking using the DocGen.

we think it is because raw queries contain limited
helpful information to trigger the knowledge stored
in an LLM; and (ii) it is important to ensure the
close relevance between a query and its correspond-
ing synthetic document. To address the first chal-
lenge, we propose a three-stage pipeline for doc-
ument generation, named DocGen pipeline, that
effectively uses the few-shot capabilities of LLMs.
The idea of the DocGen pipeline is to enrich raw
queries before generating synthetic documents to
effectively trigger the knowledge stored in an LLM.
Specifically, the DocGen pipeline consists of three
steps: (i) query expansion, which expands a raw
query to clarify the information need, (ii) query
highlighting, which highlights the important terms
of the expanded query, and (iii) synthetic document
generation, which generates the final synthetic doc-
ument given the query after expansion and high-
lighting. To solve the second challenge, we propose
DocGen-RL, which regards the relevance between
a generated document and its corresponding query
as a reward function, and propose to leverage rein-
forcement learning (RL) to optimize the DocGen
pipeline. Our preliminary experiments show that
query highlighting is a challenging step; ineffec-
tive highlighting, i.e., highlighting words that are
not semantically the most important words in the
query, has a negative impact on the final relevance.
Therefore, DocGen-RL optimizes query highlight-
ing stage through RL.

The commonly used ranking pipeline consists of
a first-stage retriever, e.g., BM25 (Robertson and
Walker, 1994), that efficiently retrieves a set of doc-
uments from the full document collection, followed
by one or more rerankers (Nogueira et al., 2020)
that improve the initial ranking. Currently, the
most effective rerankers are T5-based rankers with
a sequence-to-sequence architecture. In this pa-
per, we refer to these rerankers as MonoT5. In the
common reranking set-up, BM25 (Robertson and

contrasts with closed-source LLMs used for commercial pur-
poses, such as ChatGPT and GPT 3.5/4.0. These closed-source
LLMs seem capable of generating higher-quality text directly
from raw queries. However, we do not consider them to ensure
our research remains independent from commercial organi-
zations. Also, for closed models, it is unclear if there is data
leakage between their pre-training data and the datasets we
used for evaluation in this paper.

Walker, 1994) is widely leveraged (Anand et al.,
2021; Nogueira et al., 2020) for finding the top-k
documents to be reranked. In this work, we focus
on data augmentation for the reranking stage where
BM25 is used for first-stage passage retrieval and
MonoT5 is used for reranking passages.

Our main contributions are as follows:
• We propose a new direction on data augmenta-

tion for IR: generating synthetic documents from
queries. We devise the DocGen pipeline, a three-
step few-shot learning-based pipeline, which im-
proves the quality of synthetic document genera-
tion by expanding and highlighting queries.

• To enhance the relevance between generated syn-
thetic documents and their corresponding queries,
we propose DocGen-RL, which regards the rele-
vance as a reward and leverages RL to optimize
the DocGen pipeline.

• We conduct a comprehensive analysis of the pro-
posed methodology. Through rigorous evaluation
and experimentation, we thoroughly examine the
impact of each step of the DocGen pipeline and
RL training, shedding light on their strengths,
limitations, and potential areas of improvement.

2 Related Work

Data augmentation for IR using LLMs. In-
Pars (Bonifacio et al., 2022), Promptagator (Dai
et al., 2023), and InPars-v2 (Jeronymo et al.,
2023) utilize LLMs to generate synthetic queries
for given documents. Particularly, InPars-v2
achieves state-of-the-art results on the BEIR bench-
mark (Thakur et al., 2021) by using an open-source
language model, GPT-J-6B (EleutherAI, 2023), for
query generation and a powerful external reranker,
MonoT5-MS MARCO (Nogueira et al., 2020), to
filter the top-10k high-quality pairs of synthetic
query–document pairs. Pseudo queries have also
been used beyond data augmentation. For instance,
Abolghasemi et al. (2023) leverages the pseudo
queries for the estimation of retrievability bias in
document retrieval.

Synthetic document generation given queries for
data augmentation has not been explored in prior
work. The recent work by Askari et al. (2023a,b)
compares the effectiveness of models trained by

10088

Original query
“converting stereo

signal to mono signal
is called”

Expanded query
“What is the conversion
of stereo signal to mono

signal?”

Expanded and
Highlighted query

“What is the [conversion]
of [stereo signal] to

[mono signal]?”

Document
generation w/ ICR

Document
generation w/ ICR

Document
generation w/ ICR

“Converting stereo signal to
mono signal is called”

“The stereo signal is the same as the mono signal. The
stereo signal is the same as the mono signal. The”

“The conversion of stereo signal to mono signal is a
process that converts a signal from a digital to a analog

signal. The signal is then converted back to digital.”

Expanding
query w/ ICR

Highlighting
query w/ ICR

Figure 2: The DocGen’s pipeline: query expansion, query highlighting, and synthetic document generation. Few-
shot examples (three) are provided at each step.

ChatGPT-generated and human-written passages.
That study has two limitations: ChatGPT is a
closed-source LLM, and they only investigate the
zero-shot setting of the LLM. In contrast, we fully
investigate the effectiveness of open-source LLMs
with using few-shot (three) examples in a unified
framework for modeling the task of data augmenta-
tion for IR models. Gao et al. (2022) generates a
hypothetical document and encodes the document
into an embedding vector by an unsupervised con-
trastively learned encoder to retrieve similar real
documents based on vector similarity.

Generating documents from queries is also ex-
plored by Yu et al. (2023). They propose Gen-
Read for the open-domain question answering task,
achieving state-of-the-art performance. GenRead
first prompts an LLM to generate contextual docu-
ments based on a given question, and then reads the
generated documents to produce the final answer.
Our work differs with GenRead as we focus on data
augmentation for passage reranking, however, we
can use GenRead as a strong baseline for generat-
ing documents for given queries to build synthetic
query–document pairs. Recently, (Gabburo et al.,
2023) propose data augmentation techniques to im-
prove a generative QA model using supervision
from automatic question answering evaluators.

Reinforcement learning on LLMs. RL has
been applied to enhance models in various nat-
ural language processing tasks. These tasks in-
clude machine translation (Wu et al., 2016; Kiege-
land and Kreutzer, 2021), summarization (Stien-
non et al., 2020; Paulus et al., 2017), dialogue
systems (Jaques et al., 2020), question genera-
tion (Pang and He, 2021), and more. Ramamurthy
et al. (2023) gives an extensive overview of re-
search on RL for LLMs up to 2022. Li et al. (2023)
train a policy language model with RL leading to
significant performance improvements across sum-
marization and dialogue response generation with

limited training data. Ramamurthy et al. (2023)
present RL4LMs library for faciliating training gen-
erative language models with RL and show how
controlling the stability of RL could achieve high
effectiveness for training LLMs. They implement
proximal policy optimization (PPO)4 as the policy
gradient method as recent works have shown PPO
to be strictly superior to reinforce in multiple do-
mains. To the best of our knowledge, there is no
work on using RL on LLMs for IR data generation.

3 Synthetic Document Generation

In this section, we present the details of our pro-
posed method, DocGen, and its reinforcement
learning extension, DocGen-RL.

Task definition. Given a query q ∈ Q, where Q
is a set of queries, the goal of synthetic document
generation is to generate a document d, such that
d is relevant to q, and use C = {d, q} collection to
train a retriever or reranking model.

3.1 DocGen

We tackle the document generation task for IR,
specifically the passage reranking task. DocGen
consists of three main components illustrated in
Figure 1: (i) document generation: DocGen
pipeline that generates an initial set of synthetic
documents for given queries; (ii) consistency filter-
ing: it filters out the low-quality query–document
pairs, using a consistency filtering approach (Dai
et al., 2023); and (iii) reranking: it fine-tunes
a MonoT5 reranker on the filtered synthetic data.
Next, we detail different components of the Doc-
Gen pipeline.

3.1.1 Few-shot Guided Document Generation
As illustrated in Figure 2, the document generation
pipeline of DocGen itself consists of three steps,

4We refer readers to (Schulman et al., 2017) for a detailed
explanation.

10089

namely, (i) query expansion; (ii) query highlight-
ing; and (iii) document generation. We implement
each of the three steps using a prompt composed
of three examples for few-shot learning.

Prompt design. Each prompt is the concatena-
tion of a prefix Pi and a query q where the prefix
Pi is the prompt template for step i and consists of
N pairs of examples, e.g., for query expansion, the
Pi equals {(q1, q∗1), ..., (qN , q∗N)} where qN refers
to the original query and q∗N refers to the expanded
query. For each step, we manually design a prompt,
which is always the same regardless of the input
query q, i.e., we can potentially generate millions
of synthetic training examples using only N manu-
ally annotated examples. Given a query q in step i,
we feed Pi||q to the LLM that generates the desired
output.

Query expansion. Our preliminary experi-
ments reveal that query expansion and highlighting
improve the quality of the generated documents.
We observe that expanding short keyword-based
queries to longer queries in the form of natural
language while highlighting the important words
enhances the ability of LLMs to generate docu-
ments with higher quality. It is noteworthy that
using state-of-the-art IR methods on query expan-
sion is out of the scope of our study since we do
not apply query expansion to improve document
retrieval. Instead, our goal is to re-construct the
query in natural language for which the LLM can
generate documents more effectively. The prompt
template can be seen in Figure 3 in the appendix.

Query highlighting. Weller et al. (2023) shows
that using specific terms or phrases can trigger the
LLM’s memory to manipulate its output. For exam-
ple, in their work they show that adding the phrase
“As Wikipedia indicates” in the prompt manipulates
the LLM to recall the text from Wikipedia more
often. Similarly, we find that there are terms in
BLOOM’s training data (Scao et al., 2022) that
are highlighted with square brackets. Therefore,
inspired by Weller et al. (2023) finding and our pre-
liminary analysis, we highlight important words of
the query using square brackets to manipulate the
LLM to pay more attention to those words while it
considers the expanded query in the document gen-
eration process. As demonstrated in Figure 2, we
highlight the important words of a query by adding
square brackets around them, e.g., “What is the
[conversion] of [stereo signal] to [mono signal]?”
Examples of this prompt template and analysis on

optimal character for highlighting can be seen in
Figure 4 and Section A.3 in the appendix.

Document generation. For few-shot document
generation, we use the same examples – with mod-
ified queries that are expanded and highlighted –
from the prompt template provided by Bonifacio
et al. (2022). The InPars prompts consist of three
examples, each containing a query and a relevant
document. The prompt template can be seen in
Figure 5 in the appendix.

3.1.2 Consistency Filtering
To ensure the quality of the generated documents
we apply the common consistency filtering ap-
proach, originally proposed for synthetic query gen-
eration (Dai et al., 2023). Consistency filtering has
been proved crucial for synthetic data generation
on QA tasks (Lewis et al., 2021). Dai et al. (2023)
shows that consistency filtering based on the gen-
erated data alone can work well. Inspired by these
works, we first use the expanded and highlighted
query and synthetically generated document pairs
to train an initial retriever which we call MonoT5-
CF. Given a query–document pair (q, d), we use the
MonoT5-CF to predict the most relevant passages
for q. We keep the query–document pair in the final
dataset, only when d is the top-1 document returned
by the retriever. One can argue that this technique
is flawed because the filtering model (MonoT5-CF)
is trained on the same noisy synthetic data that it in-
tends to filter. However, Dai et al. (2023) show this
filtering technique substantially reduces the num-
ber of synthetic data and significantly improves
retrieval performance.

3.1.3 Reranking
We fine-tune a MonoT5 on the filtered data from
the previous step and call it DocGen reranker.

3.2 RL-guided Document Generation

DocGen-RL is motivated by the challenges we
encounter during query highlighting in few-shot
guided document generation. We find out that when
using few-shot examples, the model occasionally
unreasonably highlights words that are not seman-
tically the most important words of the query. For
example, in some cases stop words, question marks,
or other punctuation marks are highlighted. It is
important to emphasize that highlighting the query
words is not a straightforward task with a single
correct solution. The ultimate goal is to highlight
query words that lead to generating higher-quality

10090

documents. Given the nature of the task and its
dependence on the document generation module,
one naive solution would be to try all possible high-
lighting combinations and find the optimum, which
is an NP-hard problem.

To address this challenge, we employ RL to en-
sure and improve the robustness of query highlight-
ing and ultimately enhance the quality of document
generation. During RL training, we optimize the
process of query highlighting with the goal of gen-
erating documents of higher quality that are more
relevant to the highlighted query. To achieve this,
we pass the highlighted query to the LLM, gener-
ate a document with few-shot learning, and use the
predicted relevance by DocGen as the reward for
the LLM that highlights the query. We optimize the
LLM for highlighting while retaining the few-shot
examples of the prompt during RL training. By
using the DocGen reranker as our reward function,
we make our reward function completely based on
few-shot learning with three examples, dependent
only few shots (three examples), as we train Doc-
Gen reranker without any supervision of the actual
dataset, i.e., MS MARCO.

3.2.1 Optimization Objective
Our goal is to optimize the query highlighting
tasks in an RL setup by a policy language model
(PLM) (Schulman et al., 2017) in order to improve
the quality of LLM’s synthetic document genera-
tion. To achieve this, we maximize the relevance
measure, R, between the query after expansion
and highlighting, and the generated document, y.
The relevance measure R is the predicted relevance
score by the DocGen reranker. Formally, we aim
to maximize the following:

Ex∼D,z∼pPLM(·|x),y∼pLLM(·|x,z)[R(x,y)]. (1)

In the three-step pipeline of DocGen, we freeze
the parameters of the LLMs for the first (expanding
query) and the third (generating documents) steps,
our aim is to optimize the LLM for the second step
(highlighting query) as a policy LM and maximize
the above objective 1 by using proximal policy
optimization (PPO). We use DocGen reranker as
our reward function.

The process of generating a sequence of high-
lighted query tokens can be seen as a Markov de-
cision process (MDP). In this process, there are
different states, actions, rewards, and probabilities
of transitioning between states. During each step,
the agent chooses an action, which is a token, from

the vocabulary of the LLM based on the current
weight values of the LLM. The vocabulary of the
LLM represents the set of possible actions for the
policy LM (agent). The policy LM takes into ac-
count the input query and previous tokens to gener-
ate the next token. The process continues until an
end-of-sequence token is generated, indicating the
completion of the query.

4 Experimental Setup

Retrieval methods. We use a two-stage retrieval
architecture (Nogueira and Cho, 2019) consisting
of initial retrieval with BM25, followed by a neu-
ral reranker. The collection is indexed using py-
serini.5 We retrieve 1000 candidate documents
for each query using BM25. Subsequently, we
rerank the candidate documents using MonoT5,
which is an adaptation of the T5 model (Raffel
et al., 2020) for text ranking proposed by Nogueira
et al. (2020). We fine-tune MonoT5-base (220M
parameters) with a constant learning rate of 10−3

and an equal number of positive and negative exam-
ples in each batch of size 64. We did not conduct
experiments with the 3B and 11B versions due to
their computational cost.

Baselines for data augmentation. We select
the state-of-the-art data augmentation method us-
ing LLMs for the passage reranking task, InPars,
as our main baseline. In addition to the InPars, we
replicate GenRead (Yu et al., 2023) that recently
has set a new state-of-the-art for the open-domain
question answering task, in which the focus is not
on data augmentation for training rerankers, but
the goal is to generate a relevant document for the
given query and then generate the final answer from
the generated document. We consider the few-shot
variation of GenRead as another baseline for gener-
ating documents given the query. We use the same
prompts released by the author.6 Moreover, we
replicate Query2Doc (Q2D) (Wang et al., 2023)
that generate documents given a query in order to
expand the query and improve retrieval effective-
ness using the expanded query. We adapt Q2D for
data augmentation by using their prompt and gener-
ating documents. We use the generated documents
for building the training data.

To ensure a fair comparison, we do not compare
our results with InPars-v2 (Jeronymo et al., 2023)
and Promptagator (Dai et al., 2023) results. InPars-

5https://github.com/castorini/pyserini
6https://github.com/wyu97/GenRead

10091

https://github.com/castorini/pyserini
https://github.com/wyu97/GenRead

Table 1: Main results. On each dataset, we generate synthetic data given the queries from the training set for
document generation methods and given the randomly sampled documents from the corpus for query generation
methods. Note that on DL’20, we still utilize the training queries of MS MARCO since TREC-DL is solely an
evaluation query set based on the corpus of MS MARCO. Significance is shown with † for DocGen compared
to the best baseline (GenRead) and with * for DocGen-RL compared to DocGen. We use MonoT5 with 220M
parameters for all the rerankers. The cut-off for nDCG and MRR is 10 and for MAP is 1000, respectively. Statistical
significance was measured with a paired t-test (p < 0.05) with Bonferroni correction for multiple testing.

Retriever Data Augmentor
NQ MS MARCO DL’20 HotpotQA Fever

nDCG MRR MAP nDCG nDCG nDCG

First-stage retriever
BM25 (replicated) .329 .187 .286 .480 .633 .651

Rerankers
MonoT5 InPars (Bonifacio et al., 2022) .335 .259 .360 .576 - -
MonoT5 InPars (replicated) .337 .223 .357 .569 .627 .653
MonoT5 GenRead (replicated) .368 .230 .354 .570 .629 .668
MonoT5 Q2D (replicated) .309 .158 .252 .437 .610 .634

Rerankers w/ DocGen
MonoT5 DocGen (Ours) .467† .275† .398† .580† .647† .693†
MonoT5 DocGen-RL (Ours) .517∗ .332∗ .421∗ .618∗ .663∗ .720∗

Human Annotations
MonoT5 – .567 .381 .491 .714 .695 .802

v2 uses the reranker that is trained on MS MARCO
to filter the generated synthetic data; after the syn-
thetic data filtering and generation, InPars-v2 first
warms up a passage reranker using the whole train-
ing set of MS MARCO and then continue training
the reranker on the generated synthetic data. How-
ever, DocGen has not used the supervision from
MS MARCO for either synthetic data filtering or
passage reranker training. Promptagator performs
first-stage retrieval (full ranking) with customized
prompts per dataset, which is different from our ap-
proach where we focus on reranking with a single
prompt for all the datasets.

To have a fair comparison between data augmen-
tation approaches in our replication, we use the
same LLM (BLOOM-560M) and same filtering
approach for all of the data augmentation method-
ologies. We then generate an equal amount of syn-
thetic data which is 100, 000 synthetically gener-
ated queries or documents followed by (Bonifacio
et al., 2022).

Dataset and metrics. We conduct our ex-
periments on the MS MARCO-passage collec-
tion (Nguyen et al., 2016) and the TREC Deep
Learning track (TREC-DL’20) (Craswell et al.,
2021), as well as the BEIR versions of Natural
Questions (NQ) (Kwiatkowski et al., 2019), Hot-
PotQA (Yang et al., 2018), and Fever (Thorne

et al., 2018) datasets. We report the official
metrics for each dataset, which are NDCG@10
for BEIR’s datasets (NQ, HotPotQA, and Fever),
MRR@10 for MS MARCO, and NDCG@10 and
MAP@1000 for TREC-DL’20. The MS MARCO-
passage dataset contains about 1 million natural
language queries (average length: 7.5 words) and
has been extensively used to train neural retrievers
for ranking because of the large number of queries.
Following prior work on MS MARCO (Khattab
and Zaharia, 2020; Lin et al., 2021; MacAvaney
et al., 2020; Zhuang and Zuccon, 2021; Zhuang
et al., 2021), we use the dev set (∼ 7k queries)
for our empirical evaluation. TREC-DL’20 con-
sists of 54 queries, and the retrieval for these
queries is based on the passage corpus of MS
MARCO. We follow the common practice on
TREC-DL (Craswell et al., 2021, 2020) and use
nDCG@10 and MAP@1000 for evaluation.

LLM selection. In our preliminary experiments,
we examine four LLMs, namely, LLaMA-7B (Tou-
vron et al., 2023), Alpaca-Lora (Wang, 2023), Flan-
T5-xxl (Chung et al., 2022), BLOOM-560M (Scao
et al., 2022). We observe that the smallest and
most efficient model, BLOOM-560M, consistently
generates higher-quality documents compared to
the other models for our document generation task.
Therefore, we select BLOOM-560M as the main

10092

LLM for our experiments. We found that Alpaca-
Lora and Flan-T5 tend to generate less informative
and shorter text. LLaMA tends to produce noisy
text, e.g., LaTeX Code.

Training policy LLM with RL. We train the
policy network for 30k episodes, 5 epochs per
batch with a batch size of 2 and a learning rate
of 2× 10−6. We set the other hyperparameters to
the optimal parameters that are suggested in (Li
et al., 2023). If the agent (i.e., LLM) chooses an
action (i.e., token), which is not a token in the given
query that is going to be highlighted, we assign a
penalty reward of −0.25, drawing inspiration from
(Li et al., 2023) that gives the same penalty for find-
ing hint keywords from a text to do summarization.

5 Results

In this section, we address the following research
questions, assessing the effectiveness of our pro-
posed methods, DocGen and DocGen-RL, from
different perspectives:

• RQ1: What is the effectiveness of DocGen
compared to the existing state-of-the-art base-
lines for data augmentation in IR models?

• RQ2: To what extent does employing RL im-
prove our pipeline?

• RQ3: What is the impact of each step of few-
shot learning and reinforcement learning on
DocGen and DocGen-Rl?

• RQ4: To what extent does scaling LLM or
MonoT5 improve the proposed method?

Main results (RQ1 and RQ2). Table 1 presents
the results of training MonoT5 on the augmented
data using DocGen and DocGen-RL, comparing
it to the previous state-of-the-art few-shot learn-
ing data augmentation method, InPars, and other
competitive baselines including GenRead (Yu et al.,
2023). BM25 achieves competitive scores to InPars
and GenRead on HotpotQA and Fever. Overall,
both variations of our proposed method, DocGen
and DocGen-RL, outperform all the baselines and
demonstrate significant improvements in retrieval
performance across multiple datasets.

Ablation and RL analysis (RQ3). To inves-
tigate the impact of each step of few-shot learn-
ing and reinforcement learning on DocGen and
DocGen-Rl, we conduct an ablation study, of which
the results are shown in Table 2, to evaluate the im-
pact of different components and variations on the
performance of DocGen and DocGen-RL models
in terms of nDCG@10 on NQ-test. The first sec-

Table 2: Ablation study on DocGen and RL-training
analysis on DocGen-RL using nDCG@10 for evalua-
tion.

Dataset NQ-test

Ablation study on DocGen
DocGen w/o expanding .370
DocGen w/o highlighting .363
DocGen w/o expanding & highlighting .351
DocGen .467

RL-training analysis on DocGen-RL
DocGen + only RL on highlighting
(DocGen-RL)

.517

DocGen + only RL on expanding .473
DocGen + only RL on doc generation .448

Table 3: Impact of scaling on DocGen. Evaluation on
NQ-test in terms of nDCG@10.

BLOOM-560M and T5-base (220M) .467
BLOOM-3B .482
T5-large (770M) .495

tion of the table focuses on the ablation study of
DocGen’s few-shot learning-based pipeline. It ex-
plores the impact of removing specific components
on the model’s performance. The results for these
settings indicate that highlighting is more important
than expanding while both steps do contribute to
the effectiveness of the model. The second section
of the table presents the analysis study conducted
on DocGen-RL. The results in second section show
that RL training on highlighting can achieve the
highest improvement for DocGen. Similarly, like
RL training for highlighting, we keep other steps
frozen when we perform RL training for expand-
ing or document generation, and we use the same
reward function. RL training for expanding queries
can slightly improve effectiveness, while RL train-
ing for document generation decreases effective-
ness. This could be because generating a document
is a more challenging task, and training the LLM
on this task using RL could be more challenging.

Scaling impact (RQ4). We investigate the im-
pact of scale on DocGen from two perspectives:
(i) the number of parameters of BLOOM for gen-
eration, and (ii) the number of parameters of the
trained MonoT5 on the augmented data by Doc-
Gen’s pipeline. To address (i), we analyze to what
extent DocGen improves by increasing the number
of LLM’s parameters and evaluate the effective-
ness of DocGen with a version of BLOOM that

10093

Table 4: Analysis of the overlap between synthetic and realistic data on the NQ dataset. Overlap refers to the average
number of words overlapping between a query and a document. Q, D, and W refer to the queries and documents
and words. The term "Expanded" refers to the fact that we expand the human queries in the DocGen pipeline. As
we remove highlighting marks from the final training data constructed by DocGen, expanding the query is the only
step in the DocGen pipeline that has an effect on the length of the query.

Augmentor Query Documents Overlap Avg # W in Q Avg # W in D

InPars (Bonifacio et al., 2022) Synthetic Human 6.54 6.78 -
GenRead (Yu et al., 2023) Human Synthetic 4.39 - 57.02
DocGen Expanded Synthetic 2.22 7.72 69.89
DocGen-RL Expanded Synthetic 2.58 7.72 71.24

- Human Human 3.20 9.15 79.02

Table 5: DocGen and DocGen-RL VS. human super-
vised data using nDCG@10 for evaluation.

Dataset TREC DL’20

100k generated doc before CF
DocGen .580
DocgGen-RL .618

1M generated doc before CF
DocGen .652
DocgGen-RL .688

Supervised (Human)
MonoT5-MS MARCO .714

is about 5.5 times bigger, with three billion pa-
rameters (BLOOM-3B) instead of the version with
BLOOM 560 million parameters. For (ii), we fine-
tune MonoT5 with 770 million parameters, which
is about 3.5 times larger, instead of the version
with 200 million parameters. Table 3 shows that
we achieve a significant improvement over the re-
sults by increasing the scale of either BLOOM or
MonoT5 parameters.

6 Discussion

Gap between synthetic and realistic data. We in-
vestigate to what extent different data augmentation
methods are close to the human data in terms of the
average length of queries and documents, as well
as the average number of word overlaps within the
query and document. Table 4 shows that the gener-
ated documents by DocGen and DocGen-RL, and
the modified expanded queries, are closer to the hu-
man data compared to the other data augmentation
methods. Moreover, we observe that generating
queries from documents by InPars (Bonifacio et al.,
2022) leads to a high lexical overlap between the

query and generated document, as the LLMs tend
to select the important words from the document
as the query words during query generation, which
is dissimilar from human queries in that there can
be cases that the relevant document has less mutual
words with the query. That is why a semantical
search is important. We see that InPars, which
generates queries, has the highest overlap between
queries and documents, and GenRead, which also
generates documents similarly to DocGen, has less
lexical overlap compared to InPars.

Can generated documents replace human-
annotated documents? We investigate this ques-
tion by employing DocGen and DocGen-RL to
generate synthetic documents for the one mil-
lion queries of the training set queries of MS
MARCO. We then compare these results with
training MonoT5 on the MS MARCO training
set vs. synthetic data generated by DocGen and
DocGen-RL. Table 5 demonstrates the promising
potential of utilizing DocGen and DocGen-RL as
alternatives to human-annotated datasets as we
achieve higher effectiveness that is slightly less
than human-annotated data by increasing the size
of our synthetic dataset.

Computational cost analysis. Table 6 repre-
sents an analysis of the inference time between
DocGen and InPars. We report two variants of In-
Pars: (i) the original InPars (Bonifacio et al., 2022)
implementation which adopts GPT-J-6B, and (ii)
a more efficient variant which adopts BLOOM-
560M. We observe that both DocGen and DocGen-
RL are over twice as efficient as InPars-GPT in
inference (107 seconds vs. 237 seconds). How-
ever, they are less efficient than InPars-BLOOM
(72 seconds vs. 107 seconds). We believe that
the additional computational costs can be justified

10094

Table 6: Efficiency analysis of different data augmentation methods for information retrieval.

Data Augmentor LLM Latency nDCG@10 on NQ

InPars (Bonifacio et al., 2022) GPT-J-6B 237 seconds 0.335

DocGen BLOOM-560M 107 seconds 0.467

DocGen-RL BLOOM-560M 107 seconds 0.517

InPars (replicated) BLOOM-560M 72 seconds 0.337

Table 7: Impact of DocGen and DocGen-RL on building training dataset for further fine-tuning MonoT5-
MSMARCO vs. fine-tuning MonoT5 from scratch.

Data Augmentor Retriever nDCG@10

DocGen MonoT5 0.467
DocGen MonoT5-MSMARCO 0.492
DocGen-RL MonoT5 0.517
DocGen-RL MonoT5-MSMARCO 0.539

by the large performance gain that both models
achieve (nDCG@10 on NQ: 0.517 (DocGen-RL)
vs. 0.337 (InPars-BLOOM)).

Impact of DocGen on a trained retriever. To
analyze the impact of DocGen on the effective-
ness of the already trained retriever model, we
fine-tuned starting from the checkpoint of MonoT5-
MSMARCO with 220M parameters7, pre-trained
on MS MARCO, and analyze to what extent fur-
ther fine-tuning it on the augmented data will have
an impact on its effectiveness. Table 7 shows that
DocGen can make improvements in this scenario
as well while this impact is not quite large. This
observation is in line with InPars V2 ((Jeronymo
et al., 2023)) which shows that further fine-tuning
from MonoT5-MSMARCO does not lead to a large
improvement. This is because further fine-tuning
a well-trained MonoT5 could diverge the retriever
from an optimal weight.

7 Conclusions

This paper presents a new perspective for construct-
ing training datasets in information retrieval with-
out human labels. It proposes two novel query-to-
document generators, called DocGen and DocGen-
RL. The motivation behind this approach is to
overcome the limitations of existing methods that
generate queries from documents. Additionally,
we automatically enhance low-quality queries be-

7urlhttps://huggingface.co/castorini/monot5-base-
msmarco

fore generating documents. Extensive experiments
demonstrate that both DocGen and DocGen-RL
significantly outperform existing approaches, in-
cluding InPars. This work showcases the potential
of leveraging LLMs for document generation and
highlights the significance of document augmen-
tation in information retrieval. We emphasize the
importance of improving the quality of training
datasets. The findings of this study contribute to
advancing the state-of-the-art in IR and provide
valuable insights for future research in this domain.

Limitations

We showed in this paper that generative LLMs can
create data to train effective retrieval models. We
should stress that other aspects of evaluation have
not been investigated in this paper, specifically the
effect of biased information in the generated doc-
uments on biases in the document ranking. It is
well-known that LLMs have biases reflected in their
output. In this work we do not study the effect of
such biases on the performance of the reranker, po-
tentially biasing the retrieved documents. Another
problem of generative LLMs is that the factuality of
the output cannot be guaranteed. Even though fac-
tually incorrect information in the generated data
(as a result of LLM’s hallucination) is not likely
to be harmful in the IR context, because only in-
formation that is truly contained in the document
collection can be retrieved by a retrieval model.
We do not systematically study and quantify the
effect of hallucinated data on the performance of

10095

the ranker.

Ethics Statement

Reiterating the importance of understanding and
quantifying LLMs bias in generating data, we be-
lieve that this can lead to unforeseen ethical con-
sequences. Therefore, we need to carefully study
potential biases that exist in the data and formalize
their impact on the generated data and the trained
model. While in this work we demonstrate the po-
tential of LLMs in generating synthetic data to im-
prove IR systems, we believe that such approaches
should be applied with great care in real-world
search systems and the system designers should
take into account the existence of such biases.

References

Amin Abolghasemi, Suzan Verberne, Arian Askari, and
Leif Azzopardi. 2023. Retrievability bias estimation
using synthetically generated queries. In Proceed-
ings of the 32nd ACM International Conference on In-
formation and Knowledge Management, CIKM ’23,
page 3712–3716, New York, NY, USA. Association
for Computing Machinery.

Mayank Anand, Jiarui Zhang, Shane Ding, Ji Xin, and
Jimmy Lin. 2021. Serverless bm25 search and bert
reranking. In DESIRES, pages 3–9.

Arian Askari, Mohammad Aliannejadi, Evangelos
Kanoulas, and Suzan Verberne. 2023a. Generating
synthetic documents for cross-encoder re-rankers:
A comparative study of chatgpt and human experts.
arXiv preprint arXiv:2305.02320.

Arian Askari, Mohammad Aliannejadi, Evangelos
Kanoulas, and Suzan Verberne. 2023b. A test col-
lection of synthetic documents for training rankers:
Chatgpt vs. human experts. In Proceedings of the
32nd ACM International Conference on Informa-
tion and Knowledge Management, CIKM ’23, page
5311–5315, New York, NY, USA. Association for
Computing Machinery.

Luiz Bonifacio, Hugo Abonizio, Marzieh Fadaee, and
Rodrigo Nogueira. 2022. InPars: Unsupervised
dataset generation for information retrieval. In Pro-
ceedings of the 45th International ACM SIGIR Con-
ference on Research and Development in Information
Retrieval, page 2387–2392, New York, NY, USA.
Association for Computing Machinery.

Leonid Boytsov, Preksha Patel, Vivek Sourabh, Riddhi
Nisar, Sayani Kundu, Ramya Ramanathan, and Eric
Nyberg. 2023. Inpars-light: Cost-effective unsuper-
vised training of efficient rankers. arXiv preprint
arXiv:2301.02998.

Hyung Won Chung, Le Hou, Shayne Longpre, Bar-
ret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

Nick Craswell, Bhaskar Mitra, Emine Yilmaz,
and Daniel Campos. 2021. Overview of the
trec 2020 deep learning track. arXiv preprint
arXiv:2102.07662.

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel
Campos, and Ellen M Voorhees. 2020. Overview
of the trec 2019 deep learning track. arXiv preprint
arXiv:2003.07820.

Zhuyun Dai, Vincent Y Zhao, Ji Ma, Yi Luan, Jianmo
Ni, Jing Lu, Anton Bakalov, Kelvin Guu, Keith Hall,
and Ming-Wei Chang. 2023. Promptagator: Few-
shot dense retrieval from 8 examples. In ICLR.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiy-
ong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and
Zhifang Sui. 2022. A survey for in-context learning.
arXiv preprint arXiv:2301.00234.

EleutherAI. 2023. Gpt-j-6b: a transformer model
trained using ben wang’s mesh transformer jax.

Matteo Gabburo, Siddhant Garg, Rik Koncel-
Kedziorski, and Alessandro Moschitti. 2023. Learn-
ing answer generation using supervision from auto-
matic question answering evaluators. arXiv preprint
arXiv:2305.15344.

Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan.
2022. Precise zero-shot dense retrieval without rele-
vance labels. arXiv preprint arXiv:2212.10496.

Natasha Jaques, Judy Hanwen Shen, Asma Ghande-
harioun, Craig Ferguson, Agata Lapedriza, Noah
Jones, Shixiang Shane Gu, and Rosalind Picard. 2020.
Human-centric dialog training via offline reinforce-
ment learning. arXiv preprint arXiv:2010.05848.

Vitor Jeronymo, Luiz Bonifacio, Hugo Abonizio,
Marzieh Fadaee, Roberto Lotufo, Jakub Zavrel, and
Rodrigo Nogueira. 2023. Inpars-v2: Large language
models as efficient dataset generators for information
retrieval. arXiv preprint arXiv:2301.01820.

Omar Khattab and Matei Zaharia. 2020. Colbert: Effi-
cient and effective passage search via contextualized
late interaction over bert. In Proceedings of the 43rd
International ACM SIGIR conference on research
and development in Information Retrieval, pages 39–
48.

Samuel Kiegeland and Julia Kreutzer. 2021. Revisiting
the weaknesses of reinforcement learning for neu-
ral machine translation. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 1673–1681.

10096

https://doi.org/10.1145/3583780.3615221
https://doi.org/10.1145/3583780.3615221
https://doi.org/10.1145/3583780.3615111
https://doi.org/10.1145/3583780.3615111
https://doi.org/10.1145/3583780.3615111
https://doi.org/10.1145/3477495.3531863
https://doi.org/10.1145/3477495.3531863
https://huggingface.co/EleutherAI/gpt-j-6b
https://huggingface.co/EleutherAI/gpt-j-6b

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, et al. 2019. Natural questions: a benchmark
for question answering research. Transactions of the
Association for Computational Linguistics, 7:452–
466.

Hugo Laurençon, Lucile Saulnier, Thomas Wang,
Christopher Akiki, Albert Villanova del Moral, Teven
Le Scao, Leandro Von Werra, Chenghao Mou, Ed-
uardo González Ponferrada, Huu Nguyen, et al. 2022.
The bigscience roots corpus: A 1.6 tb composite mul-
tilingual dataset. Advances in Neural Information
Processing Systems, 35:31809–31826.

Patrick Lewis, Yuxiang Wu, Linqing Liu, Pasquale Min-
ervini, Heinrich Küttler, Aleksandra Piktus, Pontus
Stenetorp, and Sebastian Riedel. 2021. Paq: 65 mil-
lion probably-asked questions and what you can do
with them. Transactions of the Association for Com-
putational Linguistics, 9:1098–1115.

Zekun Li, Baolin Peng, Pengcheng He, Michel Galley,
Jianfeng Gao, and Xifeng Yan. 2023. Guiding large
language models via directional stimulus prompting.
arXiv preprint arXiv:2302.11520.

Jimmy Lin, Rodrigo Nogueira, and Andrew Yates. 2021.
Pretrained transformers for text ranking: Bert and
beyond. Synthesis Lectures on Human Language
Technologies, 14(4):1–325.

Sean MacAvaney, Franco Maria Nardini, Raffaele
Perego, Nicola Tonellotto, Nazli Goharian, and Ophir
Frieder. 2020. Expansion via prediction of impor-
tance with contextualization. In Proceedings of the
43rd International ACM SIGIR conference on re-
search and development in Information Retrieval,
pages 1573–1576.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. Ms marco: A human generated machine read-
ing comprehension dataset. In CoCo@ NIPs.

Rodrigo Nogueira and Kyunghyun Cho. 2019. Pas-
sage re-ranking with bert. arXiv preprint
arXiv:1901.04085.

Rodrigo Nogueira, Zhiying Jiang, Ronak Pradeep, and
Jimmy Lin. 2020. Document ranking with a pre-
trained sequence-to-sequence model. In Findings
of the Association for Computational Linguistics:
EMNLP 2020, pages 708–718.

Richard Yuanzhe Pang and He He. 2021. Text gener-
ation by learning from demonstrations. In Interna-
tional Conference on Learning Representations.

Romain Paulus, Caiming Xiong, and Richard Socher.
2017. A deep reinforced model for abstractive sum-
marization. arXiv preprint arXiv:1705.04304.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

Rajkumar Ramamurthy, Prithviraj Ammanabrolu,
Kianté Brantley, Jack Hessel, Rafet Sifa, Christian
Bauckhage, Hannaneh Hajishirzi, and Yejin Choi.
2023. Is reinforcement learning (not) for natural
language processing?: Benchmarks, baselines, and
building blocks for natural language policy opti-
mization. In Proceedings of the Eleventh Inter-
national Conference on Learning Representations
(ICLR 2023).

Stephen E Robertson and Steve Walker. 1994. Some
simple effective approximations to the 2-poisson
model for probabilistic weighted retrieval. In SI-
GIR’94, pages 232–241. Springer.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon,
Matthias Gallé, et al. 2022. Bloom: A 176b-
parameter open-access multilingual language model.
arXiv preprint arXiv:2211.05100.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. 2020. Learn-
ing to summarize with human feedback. Advances
in Neural Information Processing Systems, 33:3008–
3021.

Nandan Thakur, Nils Reimers, Andreas Rücklé, Ab-
hishek Srivastava, and Iryna Gurevych. 2021. BEIR:
A heterogeneous benchmark for zero-shot evaluation
of information retrieval models. In NeurIPS.

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018.
Fever: a large-scale dataset for fact extraction and
verification. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages
809–819.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Eric Wang. 2023. Alpaca-lora: Instruction-following
llama model.

10097

https://github.com/tloen/alpaca-lora
https://github.com/tloen/alpaca-lora

Liang Wang, Nan Yang, and Furu Wei. 2023.
Query2doc: Query expansion with large language
models. arXiv preprint arXiv:2303.07678.

Orion Weller, Marc Marone, Nathaniel Weir, Dawn
Lawrie, Daniel Khashabi, and Benjamin Van Durme.
2023. " according to..." prompting language mod-
els improves quoting from pre-training data. arXiv
preprint arXiv:2305.13252.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
2016. Google’s neural machine translation system:
Bridging the gap between human and machine trans-
lation. arXiv preprint arXiv:1609.08144.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D Manning. 2018. Hotpotqa: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369–2380.

Wenhao Yu, Dan Iter, Shuohang Wang, Yichong Xu,
Mingxuan Ju, Soumya Sanyal, Chenguang Zhu,
Michael Zeng, and Meng Jiang. 2023. Generate
rather than retrieve: Large language models are
strong context generators. In The Eleventh Inter-
national Conference on Learning Representations.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

Shengyao Zhuang, Hang Li, and Guido Zuccon. 2021.
Deep query likelihood model for information re-
trieval. In European Conference on Information Re-
trieval, pages 463–470. Springer.

Shengyao Zhuang and Guido Zuccon. 2021. Tilde:
Term independent likelihood model for passage re-
ranking. In Proceedings of the 44th International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pages 1483–1492.

A Appendix

A.1 Prompts
Figure 3, 4, and 5 show the prompts for expanding
the orignal query, highlighint the expanded query,
and document generation given expanded and high-
lighted query.

A.2 Safeguard Data Leakage
In order to being sure that there is no data leakage
between the evaluation datasets in our experiments
and the training set of the BLOOM, we assess in the
BLOOM training data documentation (Laurençon

Example 1:
Query: Is a little caffeine ok during pregnancy?
Query Expanded: What is the recommended
amount of caffeine intake during pregnancy,
and are there any potential risks associated
with consuming small amounts of caffeine
while pregnant?

Example 2:
Query: What fruit is native to Australia?
Query Expanded: Which fruit is exclusive to
Australia and provide some additional details
about it?

Example 3:
Query: How large is the canadian military?
Query Expanded: What is the size of the
canadian military ahd what is the number of
active personnel and reserve members?

Example 4:
Query: {query_text}
Query Expanded:

Figure 3: Query expansion with in-context-reasoning
prompt.

Example 1:
Query: What is the recommended amount of caffeine intake
during pregnancy, and are there any potential risks associated
with consuming small amounts of caffeine while pregnant?
Query Highlighted: What is the recommended amount of
[caffeine] intake during [pregnancy], and are there any potential
risks associated with consuming small amounts of [caffeine]
while [pregnant]?

Example 2:
Query: Which fruit is exclusive to Australia and provide some
additional details about it?
Query Highlighted: Which [fruit] is exclusive to [Australia] and
provide some additional details about it?

Example 3:
Query: What is the size of the canadian military ahd what is the
number of active personnel and reserve members?
Query Highlighted: What is the size of the [canadian military] ahd
what is the number of active personnel and reserve members?

Example 4:
Query: {query_text}
Query Highlighted:

Figure 4: Query highlighting with in-context-reasoning
prompt.

10098

https://openreview.net/forum?id=fB0hRu9GZUS
https://openreview.net/forum?id=fB0hRu9GZUS
https://openreview.net/forum?id=fB0hRu9GZUS

Example1:
Query: What is the recommended amount of [caffeine] intake
during [pregnancy], and are there any potential risks associated
with consuming small amounts of [caffeine] while [pregnant]?
Relevant Document: We don't know a lot about the effects of
caffeine during pregnancy on you and your baby. So it's best to
limit the amount you get each day. If you are pregnant, limit
caffeine to 200 milligrams each day. This is about the amount in
1½ 8-ounce cups of coffee or one 12-ounce cup of coffee.

Example 2:
Query: Which [fruit] is exclusive to [Australia] and provide some
additional details about it?
Relevant Document: Passiflora herbertiana. A rare passion fruit
native to Australia. Fruits are green-skinned, white fleshed, with
an unknown edible rating. Some sources list the fruit as edible,
sweet and tasty, while others list the fruits as being bitter and
inedible.assiflora herbertiana. A rare passion fruit native to
Australia. Fruits are green-skinned, white fleshed, with an
unknown edible rating. Some sources list the fruit as edible,
sweet and tasty, while others list the fruits as being bitter and
inedible.

Example 3:
Query: What is the size of the [canadian military] ahd what is the
number of active personnel and reserve members?
Relevant Document: The Canadian Armed Forces. 1 The first
large-scale Canadian peacekeeping mission started in Egypt on
November 24, 1956. 2 There are approximately 65,000 Regular
Force and 25,000 reservist members in the Canadian military. 3
In Canada, August 9 is designated as National Peacekeepers'
Day.

Example 4:
Query: {query_text}
Relevant Document:

Figure 5: Document generation with in-context-
reasoning prompt.

et al., 2022) if any of the BEIR collection datasets
or MSMARCO dataset are involved in the training
dataset of the BLOOM. We made sure that there
is no mutual dataset within BLOOM training data,
BigScience Corpus (Laurençon et al., 2022), and
our evaluation datasets.

A.3 Optimal character for highlighting.

To determine the most effective highlighting char-
acter, we compare various characters, including
less than and greater than symbols (‘<>’), aster-
isks (‘**’), square brackets(‘[]’), parentheses (‘()’),
and curly braces (‘{}’). We evaluate these high-
lighting characters based on their impact on the
quality of training data by assessing the perfor-
mance of MonoT5 fine-tuned on augmented data
for NQ queries using each highlighting character.
Table 8 demonstrates that using parentheses and
square brackets as highlighting characters leads to
improvement while using other highlighting char-
acters can even lead to a drop in effectiveness. We
think this is because probably those symbols do
not trigger any part of the memory of the LLM
and act as noise. The square bracket that is used
by DocGen is shown to be an optimal highlighting
character.

Table 8: Impact of highlighting character on DocGen.
Evaluation on NQ-test in terms of nDCG@10.

Highlighting character

‘<>’ (e.g., what are <calling cards>?) .301
‘{}’ (e.g., what are {calling cards}?) .319
‘**’ (e.g., what are *calling cards*?) .360
‘()’ (e.g., what are (calling cards)?) .391
‘[]’ (i.e., what are [calling cards]?) .467

DocGen w/o highlighting .363

Example 4:
Query: what goes on the bottom of shepherd's pie
Relevant document: \begin{itemize}
 \item 50g butter

\begin {itemize}\item melted
 \end{ulis}t
 \n\item flour
 \uline{15g} \
 \linebreak
 \lipsum[1]
 \hfill
 \vspace{2pt}
 \textbf{
 \textit{ }
 \textbullet
 \par
 \noindent
 \bigskip
 \newline
 \hline
*
**\end {enumerate}*\n *\end* \\\\\\ \\
 &&&\n\\\\ \ \\ \ \ \\ \\ & \ & & \\ & &\n \\\\ &&&& \& \&\&\\& &\\\n \
&&&&\&\
&&& \\& &\\ \\&&&&

Figure 6: Example of a noisy generated document by
LLaMA.

A.4 Example of a noisy generated document
by LLaMA

Figure 6 provides an example of a generated docu-
ment by LLaMA that has a large amount of noisy
text. This could show an example of why LLaMA
is not suitable for our task. We observed that for
more than half of the queries of Natural Question
(NQ) dataset, LLaMA produces noisy text.

10099

