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Abstract

Large language models (LLMs) have proven
to be very superior to conventional methods in
various tasks. However, their expensive com-
putations and high memory requirements are
prohibitive for deployment. Model quantiza-
tion is an effective method for reducing this
overhead. The problem is that in most previous
works, the quantized model was calibrated us-
ing a few samples from the training data, which
might affect the generalization of the quantized
LLMs to unknown cases and tasks. Hence in
this work, we explore an important question:
Can we design a data-free quantization method
for LLMs to guarantee its generalization per-
formance?

In this work, we propose EasyQuant, a training-
free and data-free weight-only quantization al-
gorithm for LLMs. Our observation indicates
that two factors: outliers in the weight and
quantization ranges, are essential for reducing
the quantization error. Therefore, in EasyQuant,
we leave the outliers (less than 1%) unchanged
and optimize the quantization range to reduce
the reconstruction error. With these methods,
we surprisingly find that EasyQuant achieves
comparable performance to the original model.
Since EasyQuant does not depend on any train-
ing data, the generalization performance of
quantized LLMs are safely guaranteed. More-
over, EasyQuant can be implemented in parallel
so that the quantized model could be attained
in a few minutes even for LLMs over 100B. To
our best knowledge, we are the first work that
achieves comparable performance with data-
dependent algorithms under a data-free setting
and our algorithm runs over 10 times faster than
the data-dependent methods.

1 Introduction

Recent work has already proved the superior per-
formance of Transformer (Vaswani et al., 2017)
based LLMs (Workshop, 2023; Zhang et al., 2022;
Touvron et al., 2023; Brown et al., 2020; Rae et al.,

2021; Smith et al., 2022; Chowdhery et al., 2022;
Zeng et al., 2022) on various tasks over traditional
methods, and has attracted massive interest in how
to improve and utilize those LLMs. However, the
model size also grows dramatically along with im-
proved performance. Hence the memory footprint
and computational cost become the bottleneck for
deploying those models. One promising solution to
alleviate this overhead is model quantization (Fran-
tar et al., 2023a; Xiao et al., 2023), where we quan-
tize weight only or weight and activation both i
order to reduce memory consumption and compu-
tational cost.

Although model quantization is a well-studied
area for normal-sized models, such as BERT (De-
vlin et al., 2018) and GPT-2 (Radford et al., 2019),
it is still a quite challenging task for LLMs. One
major reason is that previous lossless model quan-
tization algorithms require retraining for the quan-
tized model, which is too expensive for models
over billions of parameters. Beyond this, previous
models are usually designed for specific domain
tasks, which means the training data are sampled
from limited task domains. However, recent LLMs
are usually trained on various domains of data cor-
pus, and they have shown to be quite effective for
multi-domain zero-shot tasks. In this case, if we
only retrain the quantized LLMs using partial do-
main corpus, the generalization ability of LLMs
might get worse. Therefore both efficiency and
generalization guarantees are very important for
designing LLMs quantization algorithms. To date,
for low-bits weight-only quantization, several post-
training algorithms have been proposed (Frantar
et al., 2023a; Yao et al., 2022). However, those
methods also require a small calibration set sam-
pled from training data, which still takes at least
several hours. Moreover, the use of those calibra-
tion data also brings the risk of making the model
overfit to the calibration set.
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Figure 1: Pipeline of EasyQuant. We first find all the outliers in weight and keep them in full precision
(fp32/fp16/bf16). Afterward, we optimize the quantization range (denoted as qrange) in order to approximate
the normal values more precisely. In the end, the normal values are quantized into lower bits (denoted as Q[·]) with
optimized quantization ranges and we set the outliers unchanged in weight.

Our Contribution: In this work, we propose
a novel data-free model quantization algorithm,
namely EasyQuant, that potentially improves the
performance of low-bits quantized LLMs. The gen-
eralization ability of LLMs is inherently guaran-
teed since EasyQuant does not need any input data.
By running EasyQuant for only a few minutes, we
can quantize public-available OPT-176B, BLOOM-
176B, and LLAMA-65B into lower bits without
significant loss on various benchmarks. To our best
knowledge, this is the first data-free LLM quan-
tization algorithm for LLM quantization without
notable system overhead.

Moreover, our work reveals the essential fac-
tors that cause the performance degradation of the
quantized LLMs. We show that the outliers in
weights are more critical to the model’s perfor-
mance compared to the normal elements. Beyond
this, we propose to use a gradient-based method
for optimizing the quantization range. These two
strategies can also be used in other scenarios, such
as weight-activation quantization and quantization-
aware training (QAT).

Last but not least, we develop efficient CUDA
kernels for outlier isolation in dequantization, and
proved that hold 1% outliers in weights unquan-
tized brings negligible (less than 0.1%) overhead
w.r.t to overall latency. We also propose to im-
plement EasyQuant in parallel for quantizing each
weight in the model, which means a 175B-sized
model can be quantized into 4-bits within 10 min-
utes.

2 Background and Motivation

The most widely used quantization method, namely
rounding to nearest-number (RTN), quantizes a

tensor x into k-bits representation according to

Q[x] = s×
⌊

clamp
(x
s
, lmin, lmax

)⌉
. (1)

Here s is the quantization scale, lmin and lmax are
the lower and upper bound for clipping, and ⌊·⌉
is the rounding operator. Usually we set lmin =(
−2k−1 + 1

)
and lmax = 2k−1 and set s to be the

maximum absolute value in x.
There are two major directions for finding the best
configuration in weight-only LLM quantization.
The first is to minimize the reconstruction error
of the weight parameter (denoted as W ), which is
defined as

r(W ) := ∥Q[W ]−W∥2.

Notice that in this case we only need to have access
to the weight itself, therefore it is data-free.
Beyond this, recent studies (Frantar et al., 2023a;
Yao et al., 2022) propose to use the output error,
defined as

e(W ) =
∑

X∈D
∥Q[W ]X −WX∥2 ,

where D is a calibration set sampled from the orig-
inal training data, for optimization. This regulation
tries to mimic the outputs from the original model
directly hence achieving a more promising result
than reconstruction-based methods.

Data-dependent calibration might weaken the
generalization ability of LLMs However, the
performance gain from using calibration data might
jeopardize the generalization of the quantized
model, because it brings the risk of making the
model overfit to the calibration set. For example,
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Figure 2: Smaller reconstruction error cannot guarantee a better model performance. Straightforwardly shrinking
the quantization ranges will clip most of the outliers to be very small, hence the perplexity increases severely
since those outliers are critical for preserving the model’s performance. However, when keeping those outliers
unquantized, the quantized model achieves a better performance as the reconstruction error decreases continuously.
This result clearly suggests that the outliers are more important than the normal values in weight, and optimizing the
quantization ranges using gradient defined in (2) can significantly increase the accuracy of quantized models. More
details about the experiment can be found in Section 5.

both ZeroQuant and GPTQ involve changing the
original weight by training or OBS in order to min-
imize the output error, therefore the distribution
of the weight’s parameters might deviate from the
original. Since the calibration data is usually sam-
pled from a few specific domains, the performance
of the calibrated model on other tasks may not be
guaranteed.

Data-free quantization is challenging, but very
important Although it’s more challenging to use
the reconstruction error as a regulation because it
can only optimize the quantized model indirectly,
still it is a very important direction for researching
because the generalization ability of the model is
inherently guaranteed when using data-free quanti-
zation since it uses no training data. Therefore in
this paper, we aim to answer the following ques-
tion:

How can we efficiently recover the performance
of the quantized model without using any input
data?
In this work we propose EasyQuant, a data-free fast
algorithm that could significantly improve the per-
formance of quantized LLMs in a data-free setting,
and more importantly, even outperforms the results
from data-dependent quantization algorithms. Our
experiments reveal that the performance gap of the
lower bits (e.g. 4-bits) quantized LLMs origins
from two factors:

1. Setting the quantization range as the maxi-
mum absolute value of the weight induces a
large reconstruction error for low-bits quanti-
zation.

2. The outliers in the weight matrix, which ac-

count for less than 0.1% of the parameters, im-
pose a very important influence on the model’s
performance.

In EasyQuant, we use quantization range mini-
mization and outlier isolation to address these two
challenges, and our results prove that EasyQuant
achieves a significant improvement over RTN.

3 Insight behind EasyQuant

As mentioned above, the weight’s outliers and
quantization ranges are essential to the quantized
model’s performance. Below we present the sup-
porting experiments in detail.

3.1 The quantization range can be efficiently
optimized using gradient

Although the quantization operation itself is non-
differentiable, the gradient of the reconstruction
error (∥Q[x] − x∥2) w.r.t. the quantization range
s is differentiable in most cases. We proved that
the gradient of the quantization range s admits (see
Section 4 for more details)

∂∥Q[x]− x∥2
∂s

= 2
∑

i

(
(Q[xi]− xi)

⌊xi
s

⌉)
.

(2)

With this gradient, the reconstruction error can be
quickly minimized within hundreds of steps (see
Figure 2 for more details). This result indicates that
by shrinking the quantization range, most of the
parameters in weight can be approximated more
precisely. However, as shown in Figure 2, the per-
formance of the quantized weight gets even worse
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as the reconstruction error decreases. This is a very
counter-intuitive result.

Through in-depth analysis, we realized that
when decreasing the quantization range, more
salient parameters outside the quantization range
would be clipped out. Although most of the weights
get approximated more precisely as indicated by
the decreased reconstruction error, the salient pa-
rameters are poorly represented. As the model per-
formance drops severely in this case, we realized
that those outliers are way more important than the
normal elements for the model’s performance.

3.2 Outliers in weight are very important, but
not sufficient

Before we further discuss the influence of those
outliers, we first provide a (nσ) criterion for defin-
ing the outliers in weight. For any weight W , we
say its (i, j)-th number Wi,j is an (nσ) outlier if

|Wi,j −mean(W )| ≥ n ∗ var(W ), (3)

where mean(W ) and var(W ) are the mean and
variance of W .

Now the question is: Can we hold those out-
liers unchanged and straightforwardly compress
the normal elements into lower bits? Unfortunately,
our result suggests that excluding the outliers from
quantization solely is not enough. As shown in
Table 1, the performance gap still exists even when
we hold 1% numbers in fp16. The problem is that
if we keep too many numbers in fp16, the overhead
of the dequantization kernel would also increase
and result in a decreased overall throughput.

3.3 EasyQuant potentially improve the
performance

As shown in Section 3.1 and Section 3.2, optimiz-
ing the quantization ranges directly reduces the
model’s performance drops severely because of the
clipped outliers. These key observations inspire
us to design EasyQuant, in which we isolate the
outliers from quantization first and then optimizing
the quantization range for the remaining elements.
As shown in the right part of Figure 2, with outliers
being kept unquantized, the performance of the
quantized model increases continuously under de-
creased reconstruction. This clearly proves we can
potentially improve the performance of quantized
LLMs with this strategy.

4 Methodology

4.1 Driving of the gradient in (2)

Let’s say the original scale s gets an infinitely small
variation ∆s, which means

⌊
x

s+∆s

⌉
=

⌊x
s

⌉
, if

x

s
−
⌊

x

s+∆s

⌉
̸= 0.5.

Therefore we get

Qs+∆s[x] =(s+∆s)

⌊
x

s+∆s

⌉

=(s+∆s)
⌊x
s

⌉
,

this leads to

∂Q[x]

∂s
=

Qs+∆s[x]−Qs[x]

∆s
=

⌊x
s

⌉
.

This gives us

∂∥Q[x]− x∥2
∂s

=2

〈
Q[x]− x,

∂Q[x]

∂s

〉

=2
〈
Q[x]− x,

⌊xi
s

⌉〉

=2
∑

i

(
(Q[xi]− xi)

⌊xi
s

⌉)
.

4.2 Algorithm description

In EasyQuant, for each weight W , we first select all
(nσ) outliers (using (3)) and store its index Io(W ).
Afterward, for the normal elements, we optimize
the per-channel quantization range using an opti-
mizer (in our case we use Adam for example) with
gradients defined in (2). The final quantized weight
from EasyQuant can be formulated as

QEasyQuant[W ]

=Masko(W ) ∗W + (1−Masko(W )) ∗Q[W ],
(4)

where Masko is a mask tensor defined as

Maskoi,j(W ) =

{
1 if (i, j) ∈ Io(W ),
0 if (i, j) /∈ Io(W ).

(5)

The detailed description of EasyQuant is in Algo-
rithm 1.
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Threshold n (BLOOM-7B) Baseline 1 2 4 6

PPL on WikiText2 11.37 12.153 12.495 12.518 12.536

Table 1: Isolating outliers in weight from quantization can increase the model’s performance. Here n refers to the
hyper-parameter in the outlier criterion (nσ) as defined in (3) and baseline is the result from unquantized model.
Notice that even with 10%(n = 1) numbers being held unquantized, there is still a large gap to the baseline. This
means isolating the outliers is not enough to fully recover the accuracy of quantized models.

Algorithm 1 EasyQuant
1: Initialize: outlier threshold n, hyper-parameters for opti-

mizer A, original weight W .
2: Quantize:
3: According to (3), compute the index Io(W ) of the

(nσ) outliers in W .
4: Optimizing the quantization range s using optimizer

A with gradient defined in (2).
5: Quantize W into Q[W ].
6: Dequantize:

QEasyQuant[W ] = Masko(W ) ∗ W +
(1−Masko(W ) ∗ Q[W ], where Masko(W ) is
defined in (5).

5 Experiment

Baselines: We compare EasyQuant with several
baselines in the INT4 quantization setting below:

• RTN: The model’s weights are naively quan-
tized according to (1).

• ZeroQuant: The algorithm proposed in Yao
et al. (2022). Authors treat each layer as
a small neural network and use the origi-
nal as the teacher model to distill the quan-
tized one. This is equivalently minimizing∑

x∈D ∥f(W T ;x) − f(WS ;x)∥2 where x
are the input activations, W T is the weight
of the original model and WS is the quantized
model.

• GPTQ: This algorithm is proposed in Frantar
et al. (2023a). Authors use the same objective
function

∑
x∈D ∥f(W T ;x)−f(WS ;x)∥2 as

in ZeroQuant. But they utilize OBS for min-
imizing the loss function instead of using a
gradient-based optimizer.

Experiment Setup. For all models, we set the
outlier threshold n ∈ [2.5, 3] in order to ensure that
the outliers account less than 1% of all numbers.
For BLOOM and LLAMA, we use n = 3. When
optimizing the quantization ranges, we use Adam
as the optimizer and set the learning rate 1e − 3
for BLOOM and 1e− 4 for LLAMA. We choose
the quantization ranges from step 100 for BLOOM

and 500 for LLAMA. We use symmetric quanti-
zation since the normal values are symmetrically
distributed with the outliers being excluded. For a
fair comparison, we use per-channel quantization
for weight in all algorithms (which means each
column shares one common quantization range).

Evaluation Tasks. As for the evaluation tasks,
we mainly focus on perplexity-based tasks, as they
are known to be particularly sensitive to model
quantization Frantar et al. (2023b). The perplex-
ity tasks we include are WikiText2 (Merity et al.,
2016), Penn Treebank (Marcus et al., 1994) and C4
(Raffel et al., 2020). The zero-shot tasks’ results
are also provided, such as PIQA (Tata and Patel,
2003), ARC (Boratko et al., 2018) and StoryCloze
(Mostafazadeh et al., 2017).

Implementation. Since each weight can be quan-
tized in parallel, therefore we use 8∗ A100 for run-
ning EasyQuant, and we finish the quantization in
1 ∼ 10 mins for all models. We store the index and
value for all outliers together with the quantized
normal values. Our dequantization kernel is built
using CUDA.

5.1 Experiment Analysis

We focus our study on LLM by quantizing the
entire BLOOM, and LLAMA model families to
4-bit.

Perplexity-base tasks. We first study perplexity-
based tasks. On LLaMA models, Table 2 shows
that EasyQuant outperforms GPTQ in most cases.
For LLaMA-65B, GPTQ drops 4.21 points on
PTB, performing worse than the 9 × smaller
full-precision 7B model, while EasyQuant still
performs well on this task. On the other tasks,
EasyQuant losing only 0.4–0.7 points. BLOOM
shows a similar pattern (see Table 10 in ap-
pendix): EasyQuant drops only 0.1-0.16 points
on perplexity-based tasks. Notice that we observe
a smaller gap between our method and GPTQ on
C4. It is mostly because, as a data-calibrated quan-
tization method, GPTQ uses C4 dataset for calibra-
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Perplexity-based Task Perplexity-based Task

WikiText2 PTB C4 WikiText2 PTB C4

LLAMA–7B

fp16 5.68 8.80 7.08

LLAMA–33B

fp16 4.10 7.30 5.98
RTN 6.29 11.25 8.12 RTN 4.54 8.65 6.54
GPTQ 6.09 11.56 7.78 GPTQ 4.45 8.44 6.40
EasyQuant 6.01 10.72 7.71 EasyQuant 4.34 8.45 6.37

LLAMA–13B

fp16 5.09 8.07 6.61

LLAMA–65B

fp16 3.53 6.91 5.62
RTN 5.53 9.77 7.23 RTN 3.99 10.67 6.45
GPTQ 5.36 9.49 7.07 GPTQ 4.13 11.12 6.38
EasyQuant 5.29 9.37 6.97 EasyQuant 3.98 9.61 6.30

Table 2: Perplexity results for LLAMA model family

tions.

Zeroshot tasks. For most zero-shot tasks,
EasyQuant achieves harmless performance with
only 0.1 %-0.52% accuracy drops as shown in
Table 10 in appendix and outperforms GPTQ on
most cases. Here we simply use the implementa-
tion of GPTQ on LLAMA from its git.1 We note
that EasyQuant can be further improved via finer-
granularity grouping. However, we will not include
this overhead in this paper.

outlier ratio overhead
0.01% 0.027ms
0.10% 0.055ms
0.50% 0.093ms
1% 0.117ms
5% 0.186ms
10% 0.212ms

Table 3: Overhead of outlier isolation on A100

Practical Latency. We evaluate the overhead
of EasyQuant by comparing the overhead of out-
lier isolation, int4 dequantization, and matrix mul-
tiplication with batch size 1, sequence length
1024, on a single A100 GPU. The matrix size is
14336× 53746 which is the same as the first FFN
layer in 176B BLOOM. For outlier isolation, we
test the latency of outliers ratio (fraction of outliers
within the weight) in 6 settings: (0.01%, 0.10%,
0.50%, 1%, 5%, 10%). The matrix multiplication
takes 83ms and dequantization takes 5ms. There-
fore from Table 3 we can see that recovering the
outliers in weight brings almost no overhead to the
overall latency.

Ablation study. To understand the effect of un-
structured outliers, we show the perplexity result of
EasyQuant without outlier isolation or quantization

1https://github.com/qwopqwop200/GPTQ-for-LLaMa

range optimization. As discussed in Section 3, both
strategies impose a very important influence on the
final model performance.

We further conduct experiments proving whether
the performance gain mainly comes from the out-
lier isolation: Actually, outlier isolation is a very
important component of EasyQuant, but still not
enough to fully recover the performance loss from
quantization. Keeping even 10% of weights as fp16
outliers still admits about 8% ppl increase while
EasyQuant admits only 1% ppl increase. Below
we present the result of 4-bit quantized BLLOM-
7B when we just keep 1% outliers in fp16 without
quantization range optimization on various bench-
marks.

Benchmark EasyQuant 1% fp16 outlier
WikiText2(PPL) 11.66 12.52

PTB (PPL) 21.42 23.32
C4(PPL) 15.46 16.44

PIQA (ACC) 73.61% 72.74%

Table 4: Using outlier isolation solely is not enough to
fully recover the performance loss. EasyQuant consis-
tently outperforms outlier isolation in all benchmarks.

Outlier influence. The outlier isolation is a key
component in EasyQuant, but it can only impose
an indirect influence on the model accuracy. The
interesting phenomenon we find is that the outliers
behave like a gating mechanism: without outlier
isolation, the model achieves a much worse perfor-
mance under a small reconstruction error; however,
when keeping those outliers in fp16, the quantized
LLM attains a continuously decreased ppl under
smaller reconstruction error:

Moreover, we have also conducted a comple-
mentary experiment testing the direct influence of
the weight outlier: We prune 1% of the values (
according to its magnitude) in weights into 0 and
see the ppl results (as shown in Table 6). It has
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reconstruction error int4 outlier fp16 outlier
4.8E4 12.65 12.50
3.5E4 14.73 11.61
2.7E4 19.71 11.25
2.3E4 NA 11.10
1.9E4 NA 11.02

Table 5: ppl results on Wikitext2 of BLOOM-7B with
and without outlier isolation.

shown that the largest value (outliers) imposes the
same influence on the model performance as the
normal values (median), which means those out-
liers share the same direct influence on the model
accuracy with normal values. Therefore outlier
isolation imposes a key influence on the model
accuracy indirectly.

pruned weights PPL
smallest (top-0% 1%) 11.66
median (top-49% 50%) 19.16
largest (top-99% 100%) 19.17

Table 6: ppl results after pruning 1% weight with differ-
ent magnitude

Outlier distribution. We also explore the outlier
distribution along different modules and layers. It
shows that the fraction of outliers shares different
patterns in different modules and layers (as shown
in Table 7 and 8). FFN.2 has a significantly higher
fraction of outliers. However, it shows no pattern
along the layer index.

module name outlier fraction (%)
Att.qkv 0.2993
Att.output 0.5036
FFN.1 0.288
FFN.2 0.7560

Table 7: Outlier fraction distribution in different mod-
ules in BLOOM-7B under 3-sigma threshold

Quantization range. The dynamic of the quanti-
zation range is shown in Table 9. Roughly speak-
ing, this range decreases fast in the early stage of
training, which means a smaller quantization range
will make most of the parameters to be quantized
more precisely. After certain steps of training, the
quantization range becomes stable, this means we
have already achieved the optimal range.

Layer index outlier fraction (%)
1 0.3187
5 0.8579
10 0.3953
15 0.3975
20 0.3962
25 0.4399
30 0.3954

Table 8: Outlier fraction distribution in different layer
index in BLOOM-7B under 3-sigma threshold

steps quantization range
0 0.078
10 0.069
50 0.052
100 0.048
150 0.047
200 0.047

Table 9: The dynamic quantization range of different
optimization steps. Here we take the quantization range
of the Att.qkv module in layer 1 as an example.

6 Related Work

Model Quantization Traditional model quanti-
zation algorithms mainly focus on the cases where
both parameters and activations of the model are
quantized (Lin et al., 2015; Hubara et al., 2016;
Tailor et al., 2021; Ni et al., 2020). However, di-
rectly quantizing the model will greatly decrease
the accuracy of the models, and one important tech-
nique to improve the performance is Quantization
Aware Training (QAT) (Jacob et al., 2018), where
it simulates the quantization procedure in training
to improve the accuracy of the quantized model
further. For Transformer based models, the bound-
ary of the compression level has been continuously
advanced. For example, 8-bits quantized transform-
ers as in FullyQT (Prato et al., 2019) and Q8BERT
(Zafrir et al., 2019), 4-bits quantized BERT in Wu
et al. (2023) and tenary case as in TernaryBERT
(Zhang et al., 2020).

Model Quantization for LLMs. For quantizing
LLMs, due to their prohibitive training expense,
we can only use a few training data for calibration.
There are two major directions: 1) weight-only
quantization, where the weights are quantized into
lower bits. In Frantar et al. (2023a); Yao et al.
(2022), authors optimize the output error on the
calibration set using OBS and gradient descent. 2)
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Activation and weight quantization, where both ac-
tivations and weights are quantized into lower bits.
In this case, the major obstacle is the outliers in
activations. LLM.int8() (Dettmers et al., 2022) ad-
dresses this problem by isolating those outliers in
fp16/bf16. However, such implementation leads to
large latency overhead and is even slower than fp16
inference. Recent studies (Wei et al., 2023; Xiao
et al., 2023) found that the outliers only exist in cer-
tain channels, and use the LayerNorm weights (Wei
et al., 2023) and calibrated scales (Xiao et al., 2023)
to smooth those channels. Xiao et al. (2023) has
already proved that we can achieve almost loss-
less W8A8 quantized LLMs using a few calibra-
tion data, without manipulating the original model
weights.

7 Conclusion and Limitations

In this paper, we propose a data-free fast weight-
only quantization algorithm, namely EasyQuant,
for LLMs, that potentially improves the quantized
model’s performance without using any training
data. Our analysis reveals the intrinsic origins of
the performance loss when quantizing the model
weights into lower bits. We show that by isolat-
ing the outliers from quantization, the accuracy
of the quantized LLM increases accordingly with
decreased reconstruction error. Our experiment
proved that EasyQuant significantly outperforms
RTN in a data-free setting, and also behaves bet-
ter than data-dependent algorithms. EasyQuant
can finish the quantization for a 176B-sized model
within 10 minutes and the overhead of dequantiza-
tion in EasyQuant is negligible.
However, we also point out some limitations of
our work: The outlier recovery functionality in
EasyQuant requires extra CUDA kernels for im-
plementation. Moreover, weight-only quantization
can only reduce the memory footprint without any
computation cost reduction, hence the latency of
our model cannot be minimized. In addition, this
outlier isolation will make the weight/activation
quantization more challenging because the weight
includes numbers under different precision. We
have also noticed that EasyQuantcannot outper-
form the data-dependent methods in all tasks, this
motivates us to investigate more effective algo-
rithms in future studies.
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Perplexity-based Task Zero-shot Task

WikiText2 PTB C4 PIQA ARC-easy ARC-Challenge StoryCloze

BLOOM
fp16 22.42 43.69 26.6 65.07% 41.71% 24.15% 61.94%
RTN 25.90 51.10 29.89 63.11% 39.40% 23.89% 60.15%

560M
GPTQ 24.03 46.97 28 64.31% 40.24% 23.46% 61.17%
EasyQuant 23.74 46.86 28.03 63.06% 40.32% 24.15% 59.64%

BLOOM
fp16 17.69 57.96 22.05 67.14% 45.41% 25.68% 63.27%
RTN 22.00 66.85 24.44 65.29% 42.51% 23.34% 60.66%

1.1B
GPTQ 19.05 62.48 23.25 66.05% 44.49% 25.51% 62.32%
EasyQuant 18.51 61.83 22.94 66.65% 43.73% 25.51% 62.06%

BLOOM
fp16 15.39 30.00 19.49 69.97% 48.11% 26.79 % 65.44%
RTN 16.97 33.58 21.26 67.74% 44.70% 26.45 % 62.95%

1.7B
GPTQ 16.48 31.84 20.55 68.77% 44.49% 25.94% 64.48%
EasyQuant 16.01 31.50 20.15 68.99% 46.89% 26.19% 65.37%

BLOOM
fp16 13.48 25.34 17.49 70.51% 53.24% 30.55 % 67.79%
RTN 14.76 27.68 18.76 69.86% 51.35% 29.52% 67.09%

3B
GPTQ 14.2 26.49 18.1 69.42% 52.82% 28.92% 67.22%
EasyQuant 14.01 26.12 17.96 69.80% 50.72% 28.58% 67.35%

BLOOM
fp16 11.37 20.83 15.20 73.72% 57.37% 33.45 % 71.99%
RTN 12.10 22.42 16.06 72.69% 56.14% 32.17 % 70.72%

7.1B
GPTQ 11.73 21.67 15.6 72.96% 56.14% 32.25% 71.36%
EasyQuant 11.66 21.47 15.52 73.23% 55.72% 32.51 % 71.10%

BLOOM
fp16 8.11 14.59 11.71 79.16% 67.47% 44.97 % 76.89%
RTN 8.37 15.00 12.04 79.00% 66.33% 43.17 % 76.00%

176B
GPTQ 8.21 14.75 11.81 79.00% 67.42% 44.10% 76.32%
EasyQuant 8.21 14.75 11.87 79.05% 67.8% 44.45% 77.28%

Table 10: Perplexity and zershot results for BLOOM model family
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