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Contrastively trained vision-language models zss
have achieved remarkable progress in vision 8

ever, recent research has highlighted severe
limitations of these models in their ability
to perform compositional reasoning over ob-
jects, attributes, and relations. Scene graphs
have emerged as an effective way to under-
stand images compositionally. These are graph-
structured semantic representations of images
that contain objects, their attributes, and re-
lations with other objects in a scene. In this
work, we consider the scene graph parsed from
text as a proxy for the image scene graph and
propose a graph decomposition and augmen-
tation framework along with a coarse-to-fine
contrastive learning objective between images
and text that aligns sentences of various com-
plexities to the same image. We also introduce
novel negative mining techniques in the scene
graph space for improving attribute binding and
relation understanding. Through extensive ex-
periments, we demonstrate the effectiveness
of our approach that significantly improves at-
tribute binding, relation understanding, system-
atic generalization, and productivity on multi-
ple recently proposed benchmarks (For exam-
ple, improvements up to 18% for systematic
generalization, 16.5% for relation understand-
ing over a strong baseline), while achieving
similar or better performance than CLIP on var-
ious general multimodal tasks.

1 Introduction

Recent progress in contrastive learning using large-
scale image-text data for joint image-text represen-
tation learning has led to Vision-Language mod-
els (VLMs) like CLIP (Radford et al., 2021) and
ALIGN (Jiaet al., 2021) that show remarkable zero-
shot classification and retrieval capabilities. How-
ever, recent works have shown that these models
struggle at compositional reasoning (Yuksekgonul
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Figure 1: (Left) a) A typical example from the ARO
benchmark for testing attribute understanding of VLMs.
VLMs struggle with matching the image to the cor-
rect caption (in green). (Right) Average scores of Mo-
saiCLIP (our method) compared with NegCLIP and
CLIP on prominent compositionality benchmarks for
measuring b) Systematic Generalization c) Attribute,
Relation, and Word Order understanding.

et al., 2022; Thrush et al., 2022; Ma et al., 2022).
In particular, they struggle with binding correct
attributes to the correct objects, understanding rela-
tions between objects, generalizing systematically
to unseen combinations of concepts and to larger
and more complex sentences.

Some works have made progress on this problem.
Yuksekgonul et al. (2022) show that hard negative
mining of images and text during fine-tuning is a
promising first step to improving compositionality.
However, performance gains are highly dependent
on how clean the training data is, and generaliz-
ing to unseen combinations of concepts remains
a challenge. Doveh et al. (2023) use LLMs for
hard negative mining and Cascante-Bonilla et al.
(2023) explore using synthetic datasets to improve
compositional understanding in VLMs. Synthetic
datasets lead to a domain gap compared to natural
datasets. We aim to develop a general-purpose ap-
proach for improving compositionality of all such

869

Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 869-893
December 6-10, 2023 ©2023 Association for Computational Linguistics



contrastively trained VLMs.

In this paper, we consider a scene graph repre-
sentation of the image and text. We observe that
multiple sub-graphs of the text scene graph with
different semantic complexities can be matched
with the same image. Performing this matching
improves fine-grained and hierarchical understand-
ing of text and thereby, of images. We achieve this
by developing a scene graph-based text decompo-
sition strategy that creates a scene graph for any
given text, decomposing it into sub-graphs, and
matching an image to multiple sentences derived
from these sub-graphs (See Fig. 2 for an overview).
Each sub-graph represents a distinct part of the
image, aligning well with CLIP’s original image-
text matching objective. Focused on improving
attribute binding and relation understanding, we de-
velop novel hard negative graph creation strategies
which helps VL contrastive learning. We provide
a novel Image-to-Multi-Text contrastive loss for
matching individual images to multiple sentences.
Our approach of matching texts of different com-
plexity (from coarse-grained to fine-grained) to the
image leads to fine-grained and hierarchical text
understanding. Our resulting model is MosaiCLIP.

Our approach leads to significant improvements
across compositionality benchmarks. For example,
Figure 1 b) and c) shows that MosaiCLIP improves
performance by 11.5% and 9.1% on CREPE and
ARO dataset over a strong baseline and by > 20%
over CLIP. Our contributions encompass:

* A novel graph-based text decomposition and
augmentation framework and a coarse-to-fine
contrastive learning objective for matching im-
ages to text sub-graphs of varying complexity.

» Hard-negative mining techniques using graph
transformations of the text scene graphs, that
are seamlessly coupled with our text decom-
position strategy, and applied over any text.

* A thorough analysis for understanding why
MosaiCLIP improves vision-language com-
positionality, disentangling the effect of im-
age and text encoders and providing a novel
tree-score based analysis showing that Mo-
saiCLIP exhibits improved hierarchical text
understanding.

» Extensive experiments over three model ar-
chitectures, two pre-training datasets, three

fine-tuning datasets and test over four compo-
sitionality benchmarks (11 datasets) to prove
the efficacy of MosaiCLIP for improving com-
positionality.

2 Related Work

Contrastive Vision-Language Pre-training:
Large-scale contrastive learning for Vision and
Language is utilized to create models like CLIP
(Radford et al., 2021) and ALIGN (Jia et al.,
2021).  These models showcase impressive
performance on a variety of tasks, including image
classification, text and image retrieval, image
captioning (Mokady et al., 2021), object detection
(Zhong et al., 2022; Li et al., 2022c) etc.

Visio-Linguistic = Compositionality: Various
studies have introduced benchmarks for assess-
ing the compositional reasoning abilities of
vision-language foundation models (VLMs).
For instance, Winoground (Thrush et al., 2022)
is a handpicked collection of 400 test cases,
each comprising two images and two sentences.
Sentences have the same word content and
differ in word-order. Diwan et al. (2022) show
that the Winoground dataset tests additional
challenges along with compositionality, including
handling ambiguous image-text pairs and unusual
examples. Yuksekgonul et al. (2022) proposed
the ARO benchmark for probing VLMs ability to
understand Attribute, Relations, and Word-Order.
Ma et al. (2022) proposed CREPE for measuring
two aspects of compositionality: systematic
generalization and productivity. All benchmarks
suggest that contrastively trained VLMs have
severe difficulty in compositional reasoning. As
a remedy, NegCLIP (Yuksekgonul et al., 2022)
and Teaching SVLC (Doveh et al., 2023) create
targeted rule-based and LLM-guided hard negative
sentences, SyViC (Cascante-Bonilla et al., 2023)
fine-tunes CLIP with million scale synthetic
images-text pairs, for improving relational and
attribute understanding. We observe that previous
methods are either highly dependent on how clean
the training data is, use expensive LLM’s for data
augmentation or use synthetic datasets that require
special solutions to resolve the synthetic-to-real
domain gap. We hence develop a coarse-to-fine
contrastive learning framework that matches
images with texts of multiple complexities, which
serves as a general-purpose solution to improve
fine-grained and hierarchical text understanding,
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thereby improving compositionality.

Scene Graphs are structured representations of
visual scenes, consisting of objects, their attributes,
and relationships between objects. Scene graphs
are beneficial for a range of tasks including image
retrieval (Wu et al., 2019; Johnson et al., 2015),
image captioning (Yang et al., 2019), and image
generation (Johnson et al., 2018) among others.

3 Methodology

3.1 Overview

Here we present the key high-level ideas of our
approach. We first present a graph-centric view
of the standard image-text matching objective in
CLIP, which serves as a motivation to develop our
approach (Sec. 3.2). We create scene graphs de-
rived from the text, decompose them into multiple
sub-graphs (Sec. 3.3) and apply augmentations on
these sub-graphs to create negative sub-graphs (Sec.
3.4) which are used as hard negatives in a batch.
Sec. 3.5 formally defines the Image-to-Multi-Text
and Text-to-Image losses used for a batch of V-L
inputs which is key for learning from multiple pos-
itive and negative texts derived from sub-graphs.
Matching images with coarse-to-fine sub-graphs
results in improved fine-grained and hierarchical
understanding of text. Sec. 3.6 provides a two-
stage curriculum learning strategy for improved
fine-tuning performance.

3.2 Image-Text-Graph Alignment

Our approach builds on the idea that the standard
image-text contrastive learning in CLIP can be
viewed as a matching between an image scene
graph and its sub-graph. Formally, given an image-
text pair (/,T'), the image can be viewed by its
scene graph, Gy = (Vr, £r). The text scene graph
is given by Gr = (Vp,&Er). Then Gr C gj.
According to this assumption, during contrastive
learning in CLIP, we implicitly bring the repre-
sentation of the image scene graph close to one
of its sub-graph (the text scene graph). Now, let
Sg = {glg C G} represent the set of sub-graphs
of a graph G. According to the assumption above,
g € Sg, = g € Sg,. Hence Vg € Sg,, (9,Gr)
becomes a correct matching pair during contrastive
learning. We match multiple sub-graphs of the
text scene graph to the same image, while also
including hard negative sub-graphs in the batch.
Matching between graphs is an implicit concept,

and all graphs are first converted to text via tem-
plates, converted to embeddings using transformer-
based (text) encoders, and matched to image em-
beddings.

3.3 Scene Graph Guided Text Decomposition

Scene graphs are succinct representations of im-
ages. However, an image scene graph generator
used for generating a scene graph for any given
input image is expensive to train since it requires
supervised scene graph annotations for training (Li
et al., 2017; Xu et al., 2017; Zhang et al., 2019),
and also leads to issues like low coverage or biased
generations against the long tail nature of objects
and relationship annotations. We instead use the
text scene graph created using an off-the-shelf text
scene graph parser! (Wu et al., 2019). This serves
as a proxy for the scene graph of (part of) the im-
age and is assumed to be a sub-graph of the image
scene graph, as also depicted by Figure 2.

Let the text scene graph obtained be G =
(Vr, E), where Vp represent the nodes of the
graph, which are either objects or their attributes.
FEr are the edges of the graph that represent rela-
tions between objects. See Fig. 2 for an example
of a text scene graph. As shown in the figure, we
decompose this scene graph into multiple positive
sub-graphs Py = {g1,92,93, gk}, k < M,
where M is the max number of decomposed sub-
graphs and is a hyperparameter. Each sub-graph
is a representation of a part of the image. We then
convert sub-graphs to sentences so that they can
be easily processed by transformer-based (text) en-
coders commonly used to train CLIP. For this, we
use a simple template-based approach. For e.g.,
we create templates of the form "{N;} {R} { N2}"
if we need to convert a graph having two nodes
(N1, N») and a relation R, into a sentence format.
Corresponding to each sub-graph, we obtain one
positive text for the image, creating a positive text
set P, = {tl,tQ,tg, s ,tk}.

3.4 Negative Sub-Graph Creation

Corresponding to sub-graphs in F;, we create neg-
ative sub-graphs N, = {"g1,"g2,"¢g3,- - }. Sub-
graphs in [V, are a minimally perturbed versions of
the positive sub-graphs in P,;. Similar to positive
sub-graphs, we convert sub-graphs in N, to text
using the same template-based approach, and ob-
tain N; = {"t1,"ta, ts, - - }. Texts in Ny serve

"https://github.com/vacancy/SceneGraphParser
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(b) Hard negative sub-graph creation from
positive sub-graphs (Sec. 3.4).

(c) Coarse-to-fine contrastive learning (Sec. 3.5).

Figure 2: Overview of our approach. a) Depiction of the scene graph of an image (hypothetical) and a scene graph

parsed from text. The text scene graph is a sub-graph of
into sub-graphs from which b) minimally perturbed h

the image scene graph. The text scene graph is decomposed
ard-negative sub-graphs are created. ¢) The Ground truth

similarity matrix used for a batch of data during contrastive learning. Solid boxes represent a match between the

image and the corresponding text. Different from CLIP,

as hard negative texts in a given batch, see Fig.
2. We focus on creating negative sub-graphs that
improve the attribute binding and relation under-
standing capabilities of the model, for which we
use the following strategies for negative graph cre-
ation: We first consider an external set of objects
(W), attributes (A), and relations (R).

1) Node Swapping and Replacement: We swap
nodes in sub-graphs, these can be swaps of nodes
which are attributes or objects. We also replace
nodes with external nodes from N, A based on
their type. 2) Edge Replacement: We replace
edges with randomly sampled edges from the exter-
nal relations set, K. 3) Connecting Sub-graphs:
Here we join two sub-graphs. For this, we use
one sub-graph from P, and another random graph
created using nodes and edges sampled from ex-
ternal sets NV, A, R. This creates an overall hard
negative graph. Sub-graphs are joined by sim-
ply joining nodes from both graphs through a ran-
domly sampled edge from R. These strategies
result in minimally perturbed hard negative sub-
graphs for improving attribute and relation under-
standing. We define multiple graph transforma-
tions {fy : G — P(G)} — frel, fattr, fobj using
the above techniques and create hard negative sub-
graphs. See Appendix Sec. B for more details
regarding negative sub-graph creation.

each image can be matched to multiple texts in our method.

3.5 Coarse-to-Fine Contrastive Learning in
Image-Text-Graph Space

Given an image-text batch during training B =
{(z;,t;)}]~, consider separately the batch of im-
ages By = {x;}?_, and a batch of texts Br
{t;}7,. The sentences in the text batch are first
converted to scene graphs to obtain a batch of scene
graphs Bg = {G;}", followed by decomposi-
tion to sub-graphs to obtain the positive sub-graph
batch By = {g;}/",, m > n. r negative sub-
graphs are sampled and added to the batch to obtain
= {g;}"". We convert these sub-graphs to
text to obtam the final text batch B, = {¢/}7".
Consider an image encoder model fy parame-
terized by 6, a text encoder fy parameterized by
¢. For any image x, text t, & = fg(x) is the un-
normalized image feature, and © = f,4(t) is the
unnormalized text feature. As common practice,
the features are normalized to obtain u = u /|||
and v = ©/||9||. The Image-to-Multi-Text con-
trastive loss is given by:

|B1]

Z P

exp(Tul vy)
Z‘ tl exp(Tul

Zl

keP(

12t
v;)

where P(i) = {k|k € [1,|BY**|], g, C Gi}-
The Text-to-Image contrastive loss is only calcu-
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lated for the positive texts. It is given by:

T )
exp(Tup(j)'v])
B

j=1 ZL:ﬁl eXP(TUz‘T"’j )
where g, ;) C G;. By = [B}”; B/”], in which
By, B9 represent the texts in B;, obtained from
positive and negative sub-graphs respectively. The
overall 10ss 18 Lyosicie = (L)y; + L5;) /2.

3.6 Curriculum and Robust Fine-tuning

For fine-tuning experiments, we develop a two-
stage curriculum learning strategy motivated by
recent work (Goyal et al., 2022; Wortsman et al.,
2022; Kumar et al., 2022) that show how fine-
tuning can distort pre-trained features and closely
mimicking the contrastive pre-training objective
while fine-tuning CLIP can help mitigate this prob-
lem (Goyal et al., 2022). However, our coarse-to-
fine contrastive learning objective naturally devi-
ates from pre-training in two ways. a) Existence
of hard negative texts in the batch, and b) Hav-
ing multiple positive and negative texts for an im-
age. This can lead to a gap in pre-training vs fine-
tuning objective, and a lower than optimal perfor-
mance after fine-tuning. To solve this, our two-
stage curriculum learning strategy first fine-tunes
the model while sampling (at max) a single posi-
tive and negative sub-graph per image, followed by
fine-tuning it with multiple positive and negative
sub-graphs. The hardness of data in this curriculum
learning setup is defined by the amount of differ-
ence the fine-tuning setup has as compared to the
pre-training setup. According to this intuition, it
is easier for the model to first learn to handle hard
negatives in a batch and then learn to handle mul-
tiple positive and hard negative sentences at once.
We see consistent improvements using this strategy
compared to a direct one-step fine-tuning, which
we term as MosaiCLIPNocurric 1n our ablations. For
better performance on non-compositonal tasks, we
use the robust fine-tuning approach (Wortsman
et al., 2022) of weight space ensembling of the
vision encoder, before and after fine-tuning. This
model is called MosaiCLIPwisg-Fr

4 Experiments

Evaluation Datasets: We test MosaiCLIP and
baselines on large scale benchmarks that require
compositional reasoning: CREPE-Systematicity
(Ma et al., 2022) measures systematic generaliza-
tion, ARO (Yuksekgonul et al., 2022) measures

attribute, relation and word-order understanding,
SVO (Hendricks and Nematzadeh, 2021) measures
verb (relation) understanding, VL-Checklist (Zhao
et al., 2022) measures relation, attribute and ob-
ject understanding. We use CREPE-Productivity
(Ma et al., 2022) for measuring model’s ability to
productively generalize to more complex and long
sentences. Methods for improving compositional-
ity should be tested on general downstream tasks
used to evaluate the quality of learned representa-
tions of language and vision. For this, we utilize the
popular ELEVATER benchmark (Li et al., 2022a)
consisting of 20 datasets and ImageNet (Deng et al.,
2009) following prior work (Doveh et al., 2023).
Baselines: We compare with all recent techniques
used for improving compositionality of CLIP style
models including NegCLIP (Yuksekgonul et al.,
2022), Teaching SVLC (Doveh et al., 2023) and
Syn-CLIP (Cascante-Bonilla et al., 2023) along
with CLIP (Radford et al., 2021) as well as CLIP-
FT (fine-tuned) on datasets we use. See Appendix
Sec. F for more details.

Training and Evaluation Details:

Fine-tuning: NegCLIP (Yuksekgonul et al., 2022)
was developed by fine-tuning CLIP on the COCO
dataset (Lin et al., 2014), however, COCO images
might overlap with benchmarks like CREPE and
ARO which may lead to confounding of results.
Hence we consider 2 additional similar sized fine-
tuning datasets randomly sampled from CC-12M
(Sharma et al., 2018; Changpinyo et al., 2021) and
YFCC-15M (Thomee et al., 2016) and call them
CC-FT, YFCC-FT. We also use CC3M (Sharma
et al., 2018) for comparing with recent baselines.
We fine-tune the commonly used OpenAl CLIP-
ViT-B32 model and report results on all datasets,
except for CREPE dataset which tests the system-
atic generalization for which we used OpenCLIP
(Ilharco et al., 2021) models pre-trained on {CC-
12M, YFCC-15M}, fine-tune them on {CC-FT,
YFCC-FT}, and report results on {CC-12M,YFCC-
15M} splits of CREPE. See Appendix E.3 for more
information on evaluation datasets.

Pre-training: We pre-train MosaiCLIP, NegCLIP
and CLIP on two prominent large-scale pre-training
datasets, CC-12M and YFCC-15M, and use two
different backbones (ResNet-50 and Swin-Tiny)
following prior work (Yang et al., 2022) and report
zero-shot performance on all test datasets. See
Appendix H.1 for hyperparameters details.
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FineTun. data — CoCo | CC-FT | YFCC-FT |

Benchmark —— ARO VLC SVO | ARO CREPE VLC SVO | ARO CREPE VLC SVO | Meta
Method | Rel. Attr. Ord. Avg. Avg. |Rel. Attr. Ord. CU AU Avg. Avg. |Rel. At Ord. CU AU Avg. Avg. | Avg.
Random 500 500 200 50.0 50.00|50.0 50.0 20.0 14.3 20.0 50.0 50.00[50.0 50.0 20.0 143 20.0 50.0 50.00|38.35
CLIP 59.8 63.2 53.3 70.8 83.58|59.8 63.2 53.3 45.1 350 70.8 83.58[59.8 632 53.3 39.8 39.5 70.8 83.58|60.60
CLIP-FT 58.9 65.3 384 71.3 90.15|58.1 63.3 42.7 45.8 35.6 70.1 88.56|51.4 63.1 253 36.4 38.3 68.9 85.27|57.73
NegCLIP 81.7 727 857 75.6 9020|715 654 84.5 53.1 37.5 724 8836|57.8 63.1 52.1 388 39.0 70.4 83.90|67.57
MosaiCLIP 82.6 78.0 87.1 814 90.67|80.4 69.8 855 72.4 40.9 77.6 8873|743 66.9 84.4 48.8 415 75.1 85.36|74.29

Table 1: Fine-tuning results on the ARO, CREPE - Systematicity, VL-Checklist (VLC) and SVO benchmark
(total 10 datasets). Abbreviations — Rel.:= VG-Relation, Attr.:= VG-Attribution, Ord:=Average of ARO-Flickr and

ARO-COCO Order results, CU: HN-Comp-Unseen, AU: HN-Atom-Unseen. See Sec. 4.1 for more details.

FineTun. data — CC3M

Benchmark — VL-Checklist | ARO
Method Obj. Attr. Rel. | Rel. Attr. Ord.
CLIP 81.6 67.6 63.1]59.9 63.6 53.3
CLIP-FT 79.0 647 543|417 59.3 252
Syn-CLIP'! -- 704 694|714 669 65.1
Teaching SVLC*? 85.0 72.0 69.0| -- -- --
MosaiCLIP 86.4 73.7 71.9|83.7 78.0 79.4

!(Cascante-Bonilla et al., 2023)*(Doveh et al., 2023)

Table 2: MosaiCLIP vs contemporary works that use
Fsynthetic data or 'LLM’s. See Appx. D.1 for details.

4.1 Results

In this section we provide experimental results in
both pre-training and fine-tuning settings to show
the efficacy of our approach. These are as follows:

Fine-tuning: = Main fine-tuning results are
shown in Table 1 and 2, where we fine-tune
CLIP models using our method and compare it
to baselines. Notably, we see that the general-
ization performance on unseen compounds and
atoms as measured by the CREPE dataset is
up to 18% higher than NegCLIP. Additionally
MosaiCLIP shows upto 16.5%, 5.3%, 32.3% of
improvement over NegCLIP in understanding
relations, attributes and word order respectively.
MosaiCLIP also shows consistent improvements
in the verb understanding task as measured by the
SVO dataset. Additional Comparisons: We also
compare with latest contemporary works in Table
2 and Appendix Sec. D.1. We find significant
improvements (upto 14% on ARO) over models
that use LLMs or synthetic data for making CLIP
more compositonal.

Pre-training: Table 3 shows pre-training results
over all benchmarks. @ CREPE results show
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Figure 3: MosaiCLIP’s average score difference with
NegCLIP on 20 datasets from ELEVATER benchmark.

a significant gain in ability to systematically
generalize to unseen combinations of concepts.
Across pre-training settings, MosaiCLIP improves
over NegCLIP by up to 42.5%,4.9% when
evaluated against HN-Comp (CU), HN-Atom
(AU) hard negatives respectively. Significant
improvements are observed in attribute and relation
understanding, giving gains of up to 8.3%, 12.0%
respectively across pretraining settings. We also
note that order understanding of MosaiCLIP is
worse than that of NegCLIP for the CC-12M
pre-training dataset, while better than NegCLIP
for the YFCC-15M dataset. Notably, there is a
large variance in NegCLIP’s performance across
pre-training datasets as seen in Table 3, and it also
performs poorly when the pre-training dataset has
higher noise (e.g. YFCC-15M). MosaiCLIP is
fairly consistent and more robust to the change in
the pre-training dataset. In Appendix C.5 we find
that MosaiCLIP can provide improvements over
NegCLIP while using as low as 0.3x of the total
pre-training or fine-tuning data.

Results on classification and retrieval: On
average, MosaiCLIP achieves +3.3%,+6.3%
better performance on the ELEVATER classifi-
cation benchmark compared to NegCLIP and
CLIP while pre-training and maintains similar
accuracy as CLIP while fine-tuning. We also try
using our method along with the robust fine-tuning
technique (WiSE-FT) so that performance degra-
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Pre-training data — CC-12M \ YFCC-15M \
< Benchmark — ARO CREPE VLC SVO | ARO CREPE VLC SVO | Meta
- _ [
< Method | Rel. Attr. Ord. CU AU Avg. Avg. \Rel. Attr. Ord. CU AU Avg. Avg. \ Avg.
Random 50.0 50.0 20.0 14.3 20.0 50.0 50.00‘50.0 50.0 20.0 14.3 20.0 50.0 50.00‘36.33
— CLIP 51.0 56.6 25.5 44.1 373 65.6 82.21|53.8 562 184 39.6 41.7 66.2 76.27|51.03
.£ NegCLIP 82.4 66.8 59.7 80.3 39.6 70.0 82.04|73.6 589 355 47.1 415 66.0 76.10|62.82
& MosaiCLIP 84.3 76.8 555 92.1 445 724 85.62|74.7 66.1 358 89.6 45.3 71.8 77.87|69.46
o CLIP 529 59.7 22.6 429 36.7 66.2 82.13|57.8 55.1 183 389 389 64.8 75.60|50.90
2 NegCLIP 80.5 66.5 60.5 82.0 41.4 69.5 82.03|68.0 585 37.1 67.2 41.5 66.1 75.18|64.00
&~ MosaiCLIP 82.0 78.5 554 92.6 444 72.6 83.80|76.3 689 382 90.2 45.0 723 77.42|69.83

Table 3: Pre-training results on all compositionality benchmarks (4 benchmarks, 10 datasets) over four expt. settings
(two pre-training datasets, two backbones). See Table 1 for abbreviations and Sec. 4.1 for more details.
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Figure 4: a) Results on CREPE-Productivity dataset b) Tree-score comparison of MosaiCLIP with NegCLIP:
MosaiCLIP shows improved hierarchical understanding of language. ¢) and d) Selectively fine-tuning of image,
text encoders and measure performance on different datasets. Also see similar results for SVO in Figure 10.

Model COCO Flickr30K AVG.
2T T2I I2T T2I

CLIP 20.7 13.1 362 24.1 | 235

NegCLIP 20.1 129 38.6 233 | 23.7

MosaiCLIP 259 16.5 44.5 29.5 | 29.1

Table 4: Comparison of Recall@1 scores of MosaiCLIP
with NegCLIP and CLIP. All models are pre-traind on
YFCC-15M with swin-Tiny backbone

dation during fine-tuning is minimal, as shown
in Appendix Table 9. See Fig. 3 for average
results on ELEVATER over four training settings
and Table 4 for results on retrieval benchmarks
where we see a +5.4 point improvement over
NegCLIP. We use the popular Karpathy splits
having a 5K and 1K sized test set for obtaining the
COCO and Flickr30k retrieval scores respectively.
Hence MosaiCLIP’s training strategy improves or
maintains the quality of learned representations
while improving compositonality. Figures 11-14
show detailed results on ELEVATER.

Productivity: As defined by Ma et al. (2022),
a productive VL model can handle arbitrarily
long and complex sentences and is an important

aspect of compositionality. Although we do not
explicitly train our models for generalization
to longer sentences, the improved hierarchical
language understanding using our methods lead
to an emergent behavior such that MosaiCLIP
generalizes better than NegCLIP and CLIP to
more complex sentences. We can see this effect
in Fig. 4 a) and Appendix Fig. 8 and 9. We
report the average of retrieval over swap and atom
splits and find MosaiCLIP significantly improves
over NegCLIP by upto 15% across different text
complexities (4-12).

Application to more advanced VLMs: While
our focus in this work has been on CLIP style,
dual encoder models due to their various benefits,
we believe our methods are model agnostic and
aimed at improving contrastive learning through
our coarse-to-fine learning framework and negative
mining techniques. In this section we test our
model on an advanced VLM, BLIP. We modified
BLIP’s original image-text contrastive learning
objective and create two variants, one called
BLIP+NegCLIP where we use NegCLIP style
hard negatives and the other BLIP+MosaiCLIP
which uses our methods of scene graph guided
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text decomposition and negative sub-graph
creation. We fine-tune BLIP model taken from
the official BLIP repository and use the “BLIP
w/ ViT-B and CapFilt-L. model (pre-trained on
129M examples)” as our base model. Results for
fine-tuning experiment using COCO dataset is
shown in Table 5. We use the hyperparameters
used by the official codebase (for the task of
fine-tuning on COCO dataset for image-text
retrieval). For each setting, we report performance
of four models, namely BLIP (before fine-tuned
version), BLIP-FT (vanilla fine-tuned version),
BLIP+NegCLIP, BLIP+MosaiCLIP. The model are
evaluated on the ARO dataset to measure attribute,
relation and word-order understanding, using the
evaluation scripts provided by the authors of the
dataset (Yuksekgonul et al., 2022). We find that

Model Rel Attr Ord Avg
BLIP 535 91.0 535 66.0
BLIP-FT 58.9 884 589 687
BLIP+NegCLIP 63.6 90.7 63.6 726
BLIP+MosaiCLIP 69.9 91.1 69.9 77.0

Table 5: Comparison of BLIP (Li et al., 2022b) and fine-
tuned version of BLIP with BLIP models that have in-
tegrated NegCLIP and MosaiCLIP methodology while
training. Fine-tuning has been performed on COCO.

compared to vanilla fine-tuning, both NegCLIP and
MosaiCLIP methodologies bring improvements
to relation and word order understanding, while
maintaining or improving performance on attribute
understanding. The MosaiCLIP methodology
significantly improves relational reasoning perfor-
mance and word-order understanding compared to
the NegCLIP methodology, up to 6.3%. Attribute
understanding performance remains nearly the
same as the baseline BLIP performance, with the
MosaiCLIP methodology bringing in slight gains
over NegCLIP’s methodology. On average Mo-
saiCLIP’s methodology brings more improvements
to BLIP than NegCLIP or vanilla fine-tuning.

4.2 Analysis

We provide a detailed analysis of our models and
baselines, across different dimensions as follows:

Disentangling MosaiCLIP improvements:
We quantify the relative importance of the vision
and language side by freezing the language and
vision encoder individually while fine-tuning all

models. See Fig. 4 c,d for the results. Notably,
we find that 1) Language encoder has significant
scope for improvement over NegCLIP’s language
encoder, and MosaiCLIP is able to successfully
exploit this potential and deliver an enhanced
compositional understanding of language, which is
evident by performance increase of +3.7, +6.9%
over NegCLIP when only the language en-
coder is fine-tuned, as shown in Fig. 4 c,d.
2) Improvements brought by MosaiCLIP over
NegCLIP in the text encoder are always higher
than improvements in the image encoder. This is
evident from Fig. 4 c,d where the performance
increase over NegCLIP when only the language
encoder is fine-tuned is always higher as compared
to when only the image encoder is fine-tuned;
for example, 3.7% > 0.0%, 6.9% > 1.8% for
ARO-Relation, ARO-Attribution. 3) MosaiCLIP
brings significant improvements on the image
encoder side (higher than NegCLIP) without using
any image negative mining, unlike NegCLIP.

MosaiCLIP improves hierarchical text under-
standing: For further understanding MosaiCLIP’s
improved compositional understanding, we
provide a novel analysis by considering the
recently proposed Tree-Score (Murty et al., 2022)
that measures the degree to which a transformer
(text) encoder processes text in a hierarchical
manner. We hypothesize that having tree-like
hierarchical computation over language can be one
leading factor for explaining the compositionality
(or lack thereof) of CLIP-like models. Along
with this, we have previously shown that the
language encoder has the most prominent effect
in improving compositionality in the case of
MosaiCLIP . These two reasons motivate the use
of tree-score to compare the language encoder’s
hierarchical understanding capability. Fig. 4
a) shows that MosaiCLIP’s language encoder
has higher tree-scores than NegCLIP’s language
encoder, suggesting that MosaiCLIP performs
more tree-like computations. This explains the im-
proved language compositionality of MosaiCLIP
since a hierarchical tree-structured computation
allows the language encoder to better understand
input text compositionally, thereby improving
vision-language compositionality.  This is in
line with the hypothesis that human’s semantic
understanding of sentences involves a hierarchical
(tree-structured) computation which has significant
evidence (Crain and Nakayama, 1987; Hale et al.,
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Figure 5: Qualitative analysis on ARO dataset (Top: ARO-Attribution, Bottom: ARO-Relation). Models highlighted
in blue match the image to the correct sentence (in green) while the models in white match the image to the

incorrect sentence (in red). Here, models are taken from our fine-tuning experiments on COCO from Table 1.

2018; Pallier et al., 2011) and this leads to their
compositional generalization capability.

MosaiCLIP is Robust: Noisy texts often
have meaningful sub-texts which can be exploted
by MosaiCLIP, hence MosaiCLIP often achieves
consistent performance increase regardless of
noise in the pre-training or fine-tuning dataset.
For example, NegCLIP achieves significantly
low performance on ARO when fine-tuned with
YFCC-FT (having more noise in text) as compared
CC-FT or COCO as shown in Table 1. NegCLIP
takes a > 10% hit in performance across various
ARO datasets when the fine-tuning dataset is
changed from COCO to YFCC, whereas, Mo-
saiCLIP achieves similar performance using both
datasets. Appendix Sec. D.3 shows that pre-trained
MosaiCLIP is robust to natural distributon shifts.

Qualitative Analysis: We take MosaiCLIP,
NegCLIP and CLIP fine-tuned on COCO and
filter out examples from the ARO dataset where
MosaiCLIP and NegCLIP’s disagree. Some
notable examples in Fig. 5 include cases where
NegCLIP and CLIP often struggle to understand
simple concepts like understanding the color of the
cat and table (top-left Fig. 5 or understanding the
"is holding" relation b/w sandwich and the box in
bottom-right Fig. 5.

4.3 Ablations

Table 6 and Appendix Tables 8,9 show the effect of
curriculum learning and robust fine-tunining where
we find that curriculum learning can bring consis-
tent improvements of up to 1.2% on average and
robust-finetuning (WiSE-FT) technique performs
the best on zero-shot tasks (i.e. minimal forget-
ting while fine-tuning), while still improving over
NegCLIP by about 5% on compositional reasoning
tasks. Table 7 shows the effects of different kinds
of sub-graphs sampled during training. More de-
tails including the effect of sampling larger number

of sub-graphs are presented in Appendix Sec. C.

Benchmark — ARO CREPE VLC SVO ‘Meta
Method | Rel. Attr. Ord. CU AU Avg. Avg. ‘Avg.
MosaiCLIP 80.4 69.8 855 724 409 77.6 88.73|73.6

MosaiCLIPxocurric 79.0 69.6 80.6 71.1 402 77.7 88.91|72.4
MosaiCLIPyispr 78.8 69.4 82.6 67.5 41.2 764 88.08|72.0

Table 6: Effect of Curriculum learning and Robust Fine-
tuning (MosaiCLIPyw;sg.pr) using CC-FT data.

Fine-tuning data — COCO CC-FT YFCC-FT
Method | Rel. Attr. | Rel. Attr. | Rel. Attr.
MosaiCLIP 82.6 78.0 ‘ 80.4 69.8 ‘ 74.3 66.9
without f.¢; 81.7 76.6 | 78.8 68.7 | 73.5 66.2
without fatir 777 732|705 682 ]69.0 659

without fr.e;, fattr 79.0 704 | 68.8 649 | 574 63.6

Table 7: Effect of different positive-negative sub-graph
types sampled while training. Results are presented on
the ARO benchmark.

5 Conclusion

We present a method to improve the compositional
reasoning capabilities of contrastively trained large
vision-language models. In particular, we provide a
coarse-to-fine contrastive learning framework and
a scene graph-based text decomposition strategy
for matching subgraphs of the text scene graph
having varying complexity to an image during con-
trastive learning. We also develop hard negative
graph creation strategies focused on improving at-
tribute binding and relation understanding capabili-
ties. Our techniques leads to significant improve-
ments in compositional reasoning capabilities. We
investigate the reasons for improved composition-
ality and present a novel finding based on language
encoder tree-scores, suggesting that our models
learn improved fine-grained and hierarchical text
understanding, which is likely the key reason for
improved vision and language compositionality of
MosaiCLIP as compared to baselines.
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6 Limitations

Computational Cost: Although MosaiCLIP leads
to significant performance increase on several
benchmarks that test compositional reasoining,
it requires a higher per-batch computational cost
while training. For this we give a detailed analysis
on the computational cost in Appendix C.6 and
show that simply providing more compute to prior
methods in the form of larger batch sizes does not
improve compositional reasoning. We also show
ways to tackle this computational cost, by using
less data in Appendix C.5, since MosaiCLIP is
data efficient and can provide improvements over
baselines with as low as 0.3x of the total data. This
along with our ablations in Appendix C.1 gives
some control to any practitioner to vary either the
training dataset size or the number of sub-graphs
in our method, and obtain a clean tradeoff between
accuracy and compute. As future work we would
like to develop a coarse-to-fine grained objective
requiring minimal extra computation cost per batch.
Future work should also look at decreasing the
extra computational cost incurred by contemporary
methods like Syn-CLIP (Cascante-Bonilla et al.,
2023) and Teaching SVLC (Doveh et al., 2023).

Other Vision Language Models: In our current
work we primarily aim to improve the compo-
sitionality of CLIP-Style, dual-tower models
trained using large scale contrastive learning,
since they severely lacked compostional reasoning
capabilities as shown by (Yuksekgonul et al., 2022).
Many other VLMs exist such as those that undergo
cross modal interactions between vision and
language such as BLIP (Li et al., 2022b), X-VLM
(Zeng et al., 2021), LXMERT (Tan and Bansal,
2019). Although our methods show promise in
improving more advanced VLMs like BLIP as
shown in Section 4 and Table 5, a more thorough
analysis will be beneficial to study the extent to
which our methods can improve vision-language
contrastive learning for these models.

Sentence Templates: For simplicity, we currently
use manually curated templates to convert sub-
graphs to sentences, however, this can lead to
similar looking and synthetic sentences. Large
language models like GPT-4 (OpenAl, 2023),
BLOOM (Mitchell et al., May 2021-May 2022)
should be looked into for developing sentences
from scene-graphs, by directly giving the LLM a

scene-graph as input and requiring it to generate
a sentence. This approach might be effective but
may also lead to higher computational cost while
training.
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Appendix

A Background

Contrastive Language-Image pre-training (Rad-
ford et al., 2021) (CLIP) aims to learn general-
purpose representations of vision and language us-
ing paired image-text data. This is achieved using
contrastive learning in the image-text space. In
particular consider a pre-training dataset of size
n,DCXxT,D = {x;,t;} . Here X and
T are the space of images and text, respectively,
and x;, t; are images and text in the dataset. Also,
consider access to image and text encoders, that we
represent by fy : X — R and f, : T — R?re-
spectively. To learn distributed representations for
images and text, the following contrastive losses
are used:

|ZB|: exp(Tul v;) 0
’B‘ -1 Zl | Lexp(tulv;)

Lig; =

|B]

;)
’L2t ‘B‘ Z g

B
= S ep(rulv))

Where B represents the batch during one iteration
of training. w;,v; are the {2 normalized embed-
dings of 4;, v;, where w; = fy(x;), 0; = fy(ts).
T is the temperature parameter and is trainable. The
overall loss is Leip = (Li2i + Liot) /2.

exp(Tu;‘-F

2

B Scene Graph Decomposition

Here we provide additional details for text scene
graph decomposition. Denote the text scene graph
obtained from the scene graph parser by Gr =
(Vr, Er), where Vp represent the nodes of the
graph, which are either objects or their attributes.
FEr are the edges of the graph that represent rela-
tions between objects. Let G denote the set of all
possible scene graphs. We first consider an external
set of objects (), attributes (.A), and relations (R)
that we use for creating negative sub-graphs. In
practice, we create this set from Visual Genome
(VG) dataset (Krishna et al., 2016). Following
Zhang et al. (2021), we sample a total of 1594
entities that have 30 instances of them in the VG
dataset. The attribute and Relation list contains
524, and 50 unique instances, respectively. Hence
N =

sample all possible sub-graphs having one or two

objects in them, and these can have multiple at-
tributes for the objects. We develop and use scene
graph transformations that take a sub-graph as in-
put and return a (set of) modified versions of the
graph (minimally-perturbed negative sub-graphs
for the image). For this, we define three graph
transformations as follows:

* forj : G — P(G) takes input a single object
scene graph, where the object has attributes
A,. For each attribute, a € A,, a random
attribute a’ is sampled uniformly at random
from .A. We finally obtain a set of sub-graphs
Gop; € P(G) where P(.) denotes the power
set. Each g € G; contains one object node
connected with an attribute node which is sam-
pled from A.

* free : G — P(G) takes input sub-graphs
having one relation edge and gives output a
set of sub-graphs G,.; € P(G) where each
g € G, has either object nodes shuffled, re-
placed by an external object node n’ sampled
uniformly at random from A/, and/or relation
replaced by external relation 7’ sampled uni-
formly at random from R. Along with this,
we also join the input positive sub-graph with
a random sub-graph created by sampling ran-
dom nodes and edges from N/, A, R.

* fatr : G — P(G) takes input sub-graphs
having one relation edge and gives output a
set of sub-graphs G € P(G) where each
g € Gy has attribute nodes shuffled, and/or
replaced by an external attribute node a’ sam-
pled uniformly at random from 4.

fobj, fattr broadly aims at improving the model’s
attribute understanding, while f..; broadly tar-
gets improved relation understanding. For each
positive sub-graph, we sample all possible neg-
ative subgraphs using fop;, frel, fattr and make
positive-negative sub-graph pairs (gpos, , {gneg; } )-
These pairs can be classified into three categories
C = {Cobjs Crel, Cattr } according to the transforma-
tion that created the negative sub-graphs. We sam-
ple sub-graph pairs from these categories according
to probabilities p;, i € {1, 2,3} corresponding to
the three categories respectively, and > p; = 1.
These probabilities are hyperparameters; see Ap-
pendix Section H.1 for more details. Multiple sub-
graph pairs can have common positive or negative
sub-graphs, and sampling these pairs would result
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in duplication, hence for each image, we make sure
to deduplicate sub-graphs so that all sub-graphs,
and therefore the text made from them are unique
for a given image in a batch. After sampling, all
sub-graphs are transformed to text using simple
templates, as explained in Section 3.3.

C Ablations and Model Analysis
C.1 Sampling more subgraphs

We analyze the effect of increasing the maximum
number of sub-graphs sampled for any given image
in a batch of data during training. See Figures 6
and 7, in which we test the performance on ARO
and CREPE benchmarks (averaged over three fine-
tuning datasets considered in this work), as we
increase the max positive and negative sub-graphs
per image. We find that as we increase both pos-
itive and negative sub-graphs for an image, the
performance steadily increases up to a point for all
datasets, after which the performance can either
flatten out, increase, or even decrease in some of
the datasets. This is intuitive since a larger num-
ber of positive and negative sub-graphs per image
leads to a gap w.r.t the pre-training stage as de-
scribed in Sec. 3.6. Also, different compositional
splits require different reasoning skills, and as we
keep sampling positive and negative sub-graphs for
an image, it is natural for certain types of positive
and negative sub-graphs to be more pronounced,
depending on the dataset statistics, and this can
have varied effects on different datasets.

Relation Attribution

Accuracy
3

(1/1) (1/2) (2/4) (3/6) (4/8) (5/10)(6/12) (1/1) (1/2) (2/4) (3/6) (4/8) (5/10)(6/12)
Number of (pos, neg) subgraphs

Figure 6: Effect of increasing the number of positive
and negative subgraphs on ARO benchmark when fine-
tuning MosaiCLIP. Results are averaged over 3 fine-
tuning datasets considered in this work

C.2 Effect of different sub-graph types

Here we analyze the effect of sampling different
kinds of sub-graphs from the original scene graph
of the text. In particular, we measure the effect of
graph transformations that we define in Appendix

Comp Comp Unseen

70 70.0

Accuracy
2 8 2 8 8
g 2

o o

@«
4

/1) (1/2) (2/4) (3/6) (4/8) (5/10)(6/12)  (1/1) (1/2) (2/4) (3/6) (4/8) (5/10)(6/12)
Number of (pos, neg) subgraphs

Figure 7: Effect of increasing the number of positive and
negative subgraphs on CREPE - Systematicity bench-
mark, when fine-tuning MosaiCLIP (Here we use Open-
CLIP RN-50 model pre-trained on CC-12M and fine-
tune it on CC-FT).

Sec. B. Results are presented in Table 7. We
observe that both f,.; and f,s, as described in
Appendix Sec. B, are useful for improving relation
and attribute understanding (as measured on the
ARO benchmark), across fine-tuning datasets.

C.3 Effect of curriculum training

As shown in Table 8, in all fine-tuning results,
we can see consistent improvements when using
our curriculum learning strategy, such as upto 2%
on systematic generalization, and sometimes more
than 6% as seen for ARO-Order results when the
fine-tuning dataset is YFCC-FT.

C.4 Effect of robust fine-tuning

Among many other techniques developed for mit-
igating forgetting in large models when they are
fine-tuned, one prominent one is robust fin-tuning-
WIiSE-FT, (Wortsman et al., 2022). Following
Wortsman et al. (2022) we perform weight-space
ensembling on the image encoder before and after
fine-tuning using our method and call this model
MosaiCLIPwjisg-rr- The results on compositional-
ity benchmarks can be seen in Table 8 while re-
sults on 21 multimodal tasks from ELEVATER and
ImageNet can be seen in Table 9. We find that
MosaiCLIPwisg-pr has a slight performance de-
crease on some compositonal benchmarks as com-
pared to MosaiCLIP, however, it is significantly
better than NegCLIP on most benchmarks. The
real benefit of using MosaiCLIPw;sg pr is that it
leads to least forgetting, and there is little to no
performance degradation on 21 tasks as showin in
Table 9.
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FineTun. data — €oco | CC-FT | YFCC-FT |
Benchmark ~ — ARO VLC SVO | ARO CREPE VLC SVO | ARO CREPE VLC SVO | Meta
Method | Rel. Attr. Ord. Avg. Avg. |Rel. Attr. Ord. CU AU Avg. Avg. |Rel. At Ord. CU AU Avg. Avg | Avg.

45.1 35.0 70.8 83.58(59.8 63.2 53.3 39.8 39.5 70.8 83.58|60.60
53.1 37.5 724 88.36|57.8 63.1 52.1 38.8 39.0 704 83.90|67.57

CLIP 59.8 63.2 53.3 70.8 83.58(59.8 63.2 53.3
NegCLIP 81.7 72.7 857 75.6 90.20|71.5 654 84.5
MosaiCLIP 82.6 78.0 87.1 81.4 90.67 |80.4 69.8 85.5

MosaiCLIPyocurric 81.6 76.8 87.4 81.4 90.20|79.0 69.6 80.6
MosaiCLIPwisprr 82.5 76.2 86.6 80.3 89.65|78.8 69.4 82.6

724 409 77.6 8873|743 669 84.4 48.8 41.5 75.1 85.36|74.29
71.1 40.2 77.7 88.91|74.1 67.2 77.8 46.6 40.5 75.7 84.97|73.23
67.5 41.2 764 88.0869.4 67.0 79.4 48.1 43.6 742 83.71|72.88

Table 8: Ablating the effect of Curriculum learning and Robust fine-tuning. MosaiCLIPNocurric refers to the version
of our model without any curriculum learning. MosaiCLIPw;sg.-pr refers to the version where the image encoder of
the final model (after fine-tuning) and before fine-tuning are weight-space ensembled. CLIP and NegCLIP scores

are also shown for reference. See Appendix Sec. C.3.

Method 7ZS5(21) Compositional Score
(Meta Avg.)
CLIP 56.4 60.60
NegCLIP 56.8 67.57
MosaiCLIPnocumic  95.8 73.23
MOS&iCLIPWiSE_FT M 72.88
MosaiCLIP 55.7 74.29

Table 9: Zero Shot accuracy on 21 multimodal datasets
from ELEVATER and ImageNet. Results are average
of the three fine-tuning datasets. MosaiCLIP has negli-
gible drop in performance in general (compared to the
gains on compositionality benchmarks), and one can
boost performance by using MosaiCLIPy;sg rr which
has equal performance as compared to NegCLIP on
21 muldimodal datasets. Meta Avg. Compositional
Score is taken from Table 8. Second best results are
underlined. Conclusion: One can use MosaiCLIP for
getting the best compositional reasoning capabilities
with minimal performance degradation on multimodal
tasks, and use MosaiCLIPw;sg pr for no degradation in
performance on multimodal tasks, while still perform-
ing well on compositional reasoning.

C.5 Data efficiency

We find that our technique leads to significant data
efficiency requiring about 0.3x-0.6x fo the total
fine-tuning or pre-training data to match or exceed
NegCLIP performance. Results are shown in Ta-
bles 10 and 11.

C.6 Computational cost

Even though MosaiCLIP uses the same global
batch size of image-text pairs, it requires more com-
pute as compared to NegCLIP or CLIP owing to the
fact that decomposing sub-graph leads to a larger
effective text-batch size and hence a larger con-
trastive learning matrix. It is a common practice in
literature to trade-off larger compute for improving

Method Fraction of data ARO | SVO
Rel. Attr. | Avg.

NegCLIP Full 73.6 58.9 ‘ 76.10
0.3x 71.6 60.6 | 70.82

0.5x 743  60.8 | 74.04

MosaiCLIP  0.6x 747 638 | 75.76
0.8x 770 663 | 77.22

Full 747 66.1 | 77.87

Table 10: Data efficiency of MosaiCLIP during pre-
training. Numbers in blue are lowest numbers that are
within 1% or greater than NegCLIP performance. Pre-
Training dataset: YFCC-15M.

Method Fraction of data ARO | SVO
Rel. Attr. | Avg.

NegCLIP Full 71.5 654 ‘ 88.36
0.3x 70.8 67.7 | 88.70

0.5x 745 68.6 | 88.80

MosaiCLIP  0.6x 753 69.3 | 88.76
0.8x 782 69.8 | 88.98

Full 79.0 69.6 | 88.91

Table 11: Data efficiency of MosaiCLIP during fine-
tuning. Numbers in blue are lowest numbers that are
within 1% or greater than NegCLIP performance. Fine-
tuning dataset: CC-FT. Curriculum learning has not
been used for these experiments.

CLIP’s compositionality, as also done by previous
methods Syn-CLIP (Cascante-Bonilla et al., 2023)
that generate data using external graphics engines,
and Teaching-SVLC (Doveh et al., 2023) which
use LLMs requiring massive compute even during
inference.

Providing NegCLIP with more compute: One
can argue that providing more compute to Neg-
CLIP can lead to better performance, however, on
the contrary we found that NegCLIP’s performance
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decreases as batch size is scaled (from 256 to 4096,
much beyond MosaiCLIP’s text or image batch
size), as shown in Table 12.
Performance-Compute Tradeoff: It is to be noted
that MosaiCLIP performance continues to increase
up to a threshold, as sub-graphs are increased as
shown in Table 7 and 6 hence this provides a clean
tradeoff between number of sub-graphs and com-
pute, and a practitioner can choose the number of
sub-graphs their compute availablility. Along with
this, in Appendix Sec. C.5 we showed that we
can achieve improved performance compared to
NegCLIP with as low as 0.3x data closing the gap
between NegCLIP and MosaiCLIP compute even
more. It is to be noted that MosaiCLIP is a drop in
replacement for CLIP after training and requires
the same inference cost as CLIP.

Batch Size (B) ARO | SVO

Rel. Attr.  Avg.
512 689 656 88.68
1024 67.6 651 88.93
2048 657 642 88.72
4096 62.5 637 88.11

Table 12: Performance of NegCLIP with increasing
batch size. A batch size of B corresponds to an effective
batch size of 8*B in NegCLIP after image and text
negative mining. Fine-tuning dataset: CC-FT.

D Additional Results and Experiments

D.1 Comparison with recent baselines

We compare with recently published and contem-
porary works (Cascante-Bonilla et al., 2023; Doveh
et al., 2023). Doveh et al. (2023) show that one can
create rule-based hard negative sentences and Large
Language Models (LLMs) based hard negative sen-
tences and use them when training CLIP style mod-
els to obtain an improved model that is better at
handling tasks that require compositional reason-
ing. We fine-tune on CC3M (Sharma et al., 2018)
for a fair comparison with Doveh et al. (2023). Re-
sults are reported in Table 13. A fair comparison
with Syn-CLIP Cascante-Bonilla et al. (2023) is not
possible since their synthetic dataset is not released.
However in Table 13 we find that performance dif-
ference is large between MosaiCLIP and Syn-CLIP
showing that our general coarse-to-fine grained
approach is better than using targeted synthetic
datasets for inducing compositional understanding
in VLMs. Comparisons with Doveh et al. (2023) in

Table show that our approach is competitve or bet-
ter at attribute, relation and object understanding as
measured by the VL-Checklist benchmark (Zhao
et al., 2022). Zero Shot performance on 21 datasets
suffers minimally using our approach, and is even
better than (Zhao et al., 2022). It is to be noted that
both approaches Syn-CLIP (Cascante-Bonilla et al.,
2023) and Doveh et al. (2023) are orthogonal to
our approach and combining them with our coarse-
to-fine understanding approach will likely result
in much better performance overall, as compared
to individual techniques. In particular, Syn-CLIP
(Cascante-Bonilla et al., 2023) faces the issue of
having long captions for images, and they aver-
age out embeddings of parts of the caption before
matching it to the image. This issue can be eaily
resolved using our framework which can easily
handle multiple positive captions for an image. Per-
forming this ablation would be future work for us,
once synthetic datasets like that used by Cascante-
Bonilla et al. (2023) are open-sourced and gain
more popularity. Our approach can similarly also
include captions generated from LLMs, as explored
by Doveh et al. (2023).

D.2 Standard deviations for fine-tuning
results

Here we provide fine-tuning results on the CC-FT
dataset with standard deviations over 3 random
seeds where OpenAl CLIP-ViT-B-32 is fine-tuned
on CC-FT using MosaiCLIP and baseline tech-
niques. See Table 14 for the results. The main
paper Table 1 have average results for CC-FT while
for COCO and YFCC-FT fine-tuning datasets, the
results are for one seed. We do-not run multiple
pre-training experiments since they significantly
more costly.

D.3 Robustness to natural distribution shifts

We find that pre-trained MosaiCLIP shows robust-
ness to natural distribution shifts as measured by
ImageNet natural distribution shifts benchmark.
Results are presented in Table 15. We believe
that MosaiCLIP sees a larger variety of texts in
the form of sub-graphs which can provide it with
extra supervision for tackling natural distribution
shifts. Intutively, sub-graphs can lead to diversity
of texts being seen by the model during training
and this might lead to broader coverage of concepts
and concept combinations, resulting in improved
robustness. Along with this a coarse to fine hi-
erarchical understanding of texts and thereby, of
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Benchmark — VL-Checklist | ARO | ZS(21)
Method Obj. At Rel. | Rel. Attr. Ord. | Avg.
CLIP 816 67.6 63.1 599 636 533 | 564
CLIP-FT 790 647 543|417 593 252 | 569
Syn—CLIPT (Cascante-Bonilla et al., 2023) -- 704 694 71 4 66.9 65 1 55 3
Teaching SVLC! powhera 20 85.0 720 690 | --  --  -- 54.8
MosaiCLIPN,Curric 864 750 69.6 | 832 786 773 | 549
MosaiCLIPy;sg.Fr 86.5 736 722|826 770 799 | 559
MosaiCLIP 864 737 719|837 780 794 | 535

Table 13: Comparison of MosaiCLIP with recently published and contemporary works Syn-CLIP (Cascante-Bonilla
et al., 2023) and Teaching SVLC Doveh et al. (2023). Results are reported on VL-Checklist, ARO and Average Zero
Shot results on 21 datasets from ELEVATER and Imagenet. Performance numbers of these models are reported
from their respective papers (blank fields (—) are not reported in respective papers). TUses million-scale synthetic
data for fine-tuning. *Uses external Large Language Models (LLMs) like BLOOM (Mitchell et al., May 2021-May
2022) for text augmentation and hard negative text creation. See Sec. D.1 for more details.

Benchmark — ARO | SVO-Probes

Method | Rel. Attr. Ord. ‘ Ob;j. Subj. Verb.
CLIP-FT 58.1+£063 63.34028 42.7+0.18 | 93.17+0.11  88.64+0.17 83.8740.03
NegCLIP 71.54+040 65.4+058 84.540.11 | 92.90+0.09 88.16+0.11  84.0240.02
MosaiCLIPnocurric  79.04+0.66  69.6+0.19  80.6+0.17 | 93.37+0.04 89.7440.13  83.6240.04
MosaiCLIP 80.440.63 69.84021 85.5+0.16 | 93.4540.04 89.39+0.07 83.35+0.05

Table 14: Fine-Tuning Results on CC-FT dataset with standard deviations across 3 random seeds. These results
correspond to the CC-FT fine-tuning results in main paper Table 1. Here the base model which is fine-tuned using

different techniques is OpenAI-CLIP-ViT-B-32.

images should intuitively help in improving per-
formance on robustness benchmarks given that the
model will now be able to recognise details in im-
ages and texts more accuractely.

E Dataset Details

Here we provide detailes about datasets used for
fine-tuning, pre-training and evaluating models in
this study. A summary is shown in Table 16

E.1 Fine-tuning datasets

Following NegCLIP (Yuksekgonul et al., 2022) we
use the COCO dataset released by (Yuksekgonul
etal., 2022) having 109k samples that had hard neg-
ative sentences that (Yuksekgonul et al., 2022) cre-
ate for training NegCLIP. As mentioned in the main
paper, COCO dataset images are used for creating
Visual Genome (Krishna et al., 2016), and this is
further used to create datasets such as CREPE (Ma
et al., 2022), ARO (Yuksekgonul et al., 2022) and
a part of VL-Checklist (Zhao et al., 2022). This
can lead to confounding and potentially mislead-

ing results, since it is unclear if the performance
increase using any method comes from the fine-
tuning dataset (COCO) being close to the domain
of test datasets, or if it’s the fine-tuning method-
ology that leads to an increase in performance.
Hence, for rigourous experimentation of the devel-
oped methods, one must use other datasets to fine-
tune contrastively trained VLMs. We randomly
sample similar sized (100k datapoints) from popu-
lar pre-training datasets CC-12M and YFCC-15M,
and call these smaller datasets CC-FT and YFCC-
FT. To train NegCLIP, hard negative sentences and
images are required, for which we first use the
code released by (Yuksekgonul et al., 2022)? to
create hard negatives sentences as well as sample
three hard negative images for each image based
on OpenAl CLIP ViT-B/32 features, strictly fol-
lowing (Yuksekgonul et al., 2022). For compar-
ing with contemporary works (Doveh et al., 2023),
(Cascante-Bonilla et al., 2023) (as shown in Table

https://github.com/mertyg/
vision-language-models—are-bows
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ImageNet-A  ImageNet-R  ImageNet-S ImageNet-V2

Arch. Data Method Topl Top5 Topl Top5 Topl Top5 Topl TopS

CLIP 6.4 245 426 688 222 455 282 541

CC-12M NegCLIP 6.6 250 431 687 222 454 294 552

& MosaiCLIP 9.1 294 486 743 272 526 336 61.6
=

'z CLIP 109 342 206 420 6.4 16.7  26.1 49.9
70

YFCC-15M  NegCLIP 114 356 200 417 6.0 160 272 507
MosaiCLIP 14.6 40.2 223 449 6.8 177 320 572

CLIP 73 274 414 678 217 443 298 56.4

CC-12M NegCLIP 7.7 277 410 669 21.7 439 302 56.0

= MosaiCLIP 11.1 356 521 769 295 554 37.0 66.5
é CLIP 134 373 172 372 4.9 136 258 494
YFCC-15M  NegCLIP 129 380 180 373 5.1 147 260 490

MosaiCLIP 174 46.6 21.0 42.7 6.5 169 322 579

Table 15: Results on ImageNet - Natural Distribution Shifts datasets. MosaiCLIP leads to improved robustness
to natural distribution shifts. NegCLIP performs similarly as CLIP. Models are zero-shot tested on ImageNet-A
(Hendrycks et al., 2021b), ImageNet-R (Hendrycks et al., 2021a), ImageNet-S(ketch) (Wang et al., 2019) and
ImageNet-V2 (Recht et al., 2019).

Benchmark/Dataset #Examples #Subtasks Subtask Examples Datasets Used
for Creation

Compositional Reasoning (Evaluation)

ARO 77K 3 Attribute, Relation, Visual Genome,
Order understanding COCO, Flickr
CREPE-Systematicity 642K 2 Systematic generalization
generalization Visual Genome
VL-Checklist 410K 3 Attribute, Relation Visual Genome
Object understanding HAKE, VAW, SWiG
SVO-Probes 48K 3 Verbs (Relations) -
understanding
CREPE-Productivity 183K 9 Productivity Visual Genome
Fine-Tuning datasets
COCO 109K - - -
CC-FT 100K - - -
YFCC-FT 100K - - -
CC-3M 3.11M - - -
Pre-Training datasets
CC-12M 11.26M - - -
YFCC-15M 14.20M - - -

Citations: ARO(Yuksekgonul et al., 2022), CREPE(Ma et al., 2022), VL-Checklist(Zhao et al., 2022),
SVO(Hendricks and Nematzadeh, 2021), Visual Genome(Krishna et al., 2016), COCO(Lin et al., 2014),
Flickr(Young et al., 2014), HAKE(Li et al., 2019), VAW (Pham et al., 2021), SWiG(Pratt et al., 2020)

Table 16: Details of datasets used in this study for testing compositional reasoning, for fine-tuning and pre-training
models. See Appendix Sec. E for more details.

2), we use CC3M (Sharma et al., 2018) since it’s  E.2 Pre-training datasets

used by these baselines, and makes a direct com-

parison possible with them. We use popular and standard large scale pre-
training datasets CC-12M (Changpinyo et al., 2021)
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and YFCC-15M (Thomee et al., 2016) for pre-
training all models in this study, including CLIP,
NegCLIP and MosaiCLIP.

E.3 Evaluation datasets

Here we list the evaluation detailes used in this
study and also provide a short description for each
CREPE-Systematicity (Ma et al., 2022): CREPE
provides systematic generalization datasets to test
models trained on popular pre-training datasets
including CC-12M and YFCC-15M. While
creating CREPE, Ma et al. (2022) make sure
to split the dataset into seen and unseen parts,
which correspond to weather the model has seen
or not seen the combination of concepts, when
pre-trained with popular pre-training datasets. We
measure and report performance on both seen and
unseen splits in our work.

ARO (Yuksekgonul et al., 2022): This benchmark
consists of four datasets, including VG-Relation,
VG-Attribution, COCO-Order, and Flickr-Order.
The first two measure attribute and relation
understanding of VL models, respectively, and the
last two measure the word order understanding
of VL models. VG-Relation and VG-Attribution
consist of tuples having an image and two texts
(one positive and one negative), and the model’s
task is to match the image with the correct text.
order datasets have four negative texts and one
positive text for each image, and the task is again
to match the image with the correct text.
SVO-Probes (Hendricks and Nematzadeh, 2021):
This dataset consists of tuples having two images
and one text. All texts and images have a subject,
verb, and object, and the images differ in only one
of subject, verb, or object. This dataset helps in
understanding if VL. models can compositionally
understand combinations of objects having a
relation between them. The original dataset
contains 48K examples.>

CREPE-Productivity (Ma et al., 2022): Produc-
tivity dataset tests the model’s ability to generalize
to longer and more complex sentences, with
complexity ranging from 4 atoms to 12 atoms,
where an atom can be an attribute, relation, or
object. The CREPE-Productivity dataset has a
number of test sets for each sentence complexity
ranging from 4 atoms to 12 atoms.

’Some image links provided by the the original
repository(https://github.com/deepmind/svo_
probes) were broken. In total, 36k data points were retrievd
and used in this study.

VL-Checklist (Zhao et al., 2022): This benchmark
is created by combining annotations from datasets
like Visual Genome (Krishna et al., 2016), SWiG
(Pratt et al., 2020), HAKE (Li et al., 2019), VAW
(Pham et al., 2021). Each image in the resulting
dataset has two captions, a positive and a negative.
The positive caption is taken from the source
dataset of the image, while the negative caption
differs from the positive in only one word which
makes it a hard negative and helps in testing
compositional and fine-grained understanding of
VLMs across various dimensions like attributes,
relations, and size and locations of objects.

F Baselines:

Here we list the baselines used in this study
and also provide a short description for each.
CLIP(Radford et al., 2021): Our first baseline is
CLIP model released by OpenAl CLIP(Radford
et al., 2021) and OpenCLIP (Ilharco et al., 2021).
In particular we use the ViT-B/32 model for
fine-tuning results Table 1 of the main paper,
except for CREPE dataset, which requires using
models pre-traoined on specific datasets, for which
we use ResNet-50 (RN-50) models pre-trained on
CC-12M and YFCC-15M released by OpenCLIP
repository* (Ilharco et al., 2021).

CLIP-FT: For disentangling the effects of
fine-tuning data, and fine-tuning methodology,
we create a CLIP-FT baseline where we simply
fine-tune the pre-trained CLIP model on the dataset
at hand, by using the standard contrastive learning
technique used by CLIP.

NegCLIP(Yuksekgonul et al., 2022) [ICLR 2023]:
NegCLIP is trained using negative mining of texts
and images. Yuksekgonul et al. (2022) create
sentence level hard negatives by swapping different
linguistic elements. They also additionally include
hard-negative images and their corresponding texts
in the batch by fetching K nearest neighbours
(K=3) for each image in the feature space con-
structed using a pretrained CLIP model.
Teaching SVLC(Doveh et al., 2023) [CVPR
2023]: This method uses LLM’s like BLOOM
(Mitchell et al., May 2021-May 2022) along with
rules to create additional positive and negative
sentences for each image while fine-tuning CLIP.
Syn-CLIP(Cascante-Bonilla et al., 2023) [Arxiv

*https://github.com/mlfoundations/
open_clip
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2023]: Syn-CLIP uses a million scale syn-
thetic dataset to fine-tune CLIP and improve
it’s performance on compositional reasoning
tasks. The synthetic data is created using a
3D physics-based simulation platform built on
Unity3D, called ThreeDWorld (Gan et al., 2021).
This contemporary work is complementary to our
data-centric approach and we believe our methods
can help fine-tuning with synthetic datasets as
well. Cascante-Bonilla et al. (2023) in their paper
showed how dense and long captions can be
obtained for synthetic images and which require
splitting into sub-captons followed by averaging of
features from all captions while fine-tuning CLIP.
This is one avenue where we believe our method
can be useful since our method inherently allows
matching of images to multiple texts. This is part
of future work, once such synthetic datasets are
released and are easily available.

G Detailed Experimental Results

In the main paper Table 1 and Table 3 we had
provided concise results for some datasets, based
on lack of space due to extensive experimental
results. Here we provide detailed results on these
datasets:

G.1 VL-ChecKlist: detailed results

Detailed Fine-tuning results on VL-Checklist
dataset are provided in Table 17. These are an ex-
tension to the VL-Checklist results provided in the
main paper Table 1. Detailed Pre-training results
for VL-Checklist dataset are provided in Table 18
which are an extension to the VL-Checklist results
provided in the main paper Table 3.

G.2 SVO-Probes: detailed results

Detailed Fine-tuning results on SVO-Probes
dataset are provided in Table 19. These are an ex-
tension to the SVO-Probes results provided in the
main paper Table 1. Detailed Pre-training results
for SVO-Probes dataset are provided in Table 20
which are an extension to the SVO-Probes results
provided in the main paper Table 3.

G.3 CREPE-Systematicity: detailed results

Here we provide detailed results on CREPE-
Systematicity dataset used for measuring system-
atic generalization. In the main paper we had only
provided the results related to systematic general-
ization (i.e., the unseen split), but here we provide

results on both the seen and unseen split, for both
hard negative retrieval sets (Comp and Atom) that
are used when evaluating performance on CREPE
by Ma et al. (2022). Detailed Fine-tuning results on
CREPE-Systematicity dataset on both the seen and
unseen splits are provided in Table 21. These are
an extension to the CREPE-Systematicity results
provided in the main paper Table 1. Detailed Pre-
training results for CREPE-Systematicity dataset
are provided in Table 22 which are an extension to
the CREPE-Systematicity results provided in the
main paper Table 3.

H Reproducibility

Here we provide necessary details to reproduce our
work, that might not have been included in the main

paper.

H.1 Training and hyperparameter details

Fine-tuning: For all fine-tuning experiments, we
follow Yuksekgonul et al. (2022) for hyperparam-
eters. In particular, all models are fine-tuned for
5 epochs, with a batch size of 256, using a cosine
learning rate schedule with 50 steps of warmup
and random-crop augmentation during training.
AdamW is used for optimization. le — 5 is used
as the initial learning rate. Training is performed
using 4 NVIDIA A100 GPUs for all models. From
the ARO dataset, 10% examples from attribute and
relation splits are used as validation examples, and
the rest are used as the test set for all models. On all
other datasets, we evaluate zero-shot performance.
For MosaiCLIP, we find that sampling a maximum
of 3 positive and 6 negative sub-graphs per image
during fine-tuning gives the best result on the ARO
validation set and hence is used in all our exper-
iments (including pre-training experiments). For
MosaiCLIP, we keep sub-graph sampling proba-
bilities as po = p3. We vary p; in {0,0.08,0.15}
while fine-tuning on the randomly chosen YFCC
dataset. We choose the best model according to
the ARO val-set and keep the hyperparameters the
same for all other fine-tuning datasets.

Pre-training: For pre-training experiments, we fol-
low the training protocol used in Yang et al. (2022);
Radford et al. (2021). In particular, all models are
trained for 32 epochs, with a batch size of 4096, us-
ing a cosine learning rate schedule with 5000 steps
of warmup and random-crop augmentation during
training. AdamW is used for optimization. The
initial learning rate is le — 3, and weight decay is
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Benchmark —

VL-ChecKlist

Fine-tuning data — CC-100K | YFCC-100K | COCO

Method Obj. Attr. Rel. | Obj. Attr. Rel. | Obj. Attr. Rel.
CLIP 81.6 67.6 63.1 | 81.6 67.6 63.1 | 81.6 67.6 63.1
CLIP-FT 819 69.3 60.9 | 80.7 68.1 60.2 | 83.7 66.7 59.3
NegCLIP 82.1 714 703 | 81.0 68.1 67.1 | 852 672 63.0
MosaiCLIPNocurric  86.0 77.2 77.7 | 840 722 75.1 | 89.2 704 726
MosaiCLIPyise.rr  85.3 714 724 | 83.6 69.5 69.6 | 88.5 755 77.0
MosaiCLIP 86.0 76.8 78.4 | 84.1 72.1 748 | 89.0 70.1 713

Table 17: Fine-tuning results on the VL-Checklist benchmark, for testing compositionality in terms of attribute,
relation and object understanding. OpenAl CLIP VIT-B-32 pre-trained model is used as the base model for fine-

tuning. See Sec. G.1 for more details.

Benchmark — VL-Checklist Benchmark — SVO-Probes
Pre-training data — CC-12M |  YFCC-15M Arch. Data Method Obj Subj Verb Avg
Arch. Method Obj. Attr. Rel.‘ Obj. Attr.  Rel. s CLIP 88.43 82.58 79.33 82.21
= NegCLIP 88.38 81.83 79.40 82.04
£ CLIP 752 6L1 606 736 630 620 = S MosaiCLIP 91.89 87.11 82.20 85.62
R= NegCLIP 750 677 674| 712 665 60.3 é
& MosaiCLIP  80.0 729 644 | 793 713 6438 Z z CLIP 83.38 77.09 72.80 76.27
g NegCLIP 84.07 76.87 72.28 76.10
< CLIP 755 627 60.5| 732 628 583 £  MosaiCLIP 86.20 79.24 73.61 77.87
i NegCLIP 754 67.6 655| 729 658 59.7
é h/f(;gsaiCLIP 792 732 653 | 80.1 71.6 65.1 g CLIP 87.86 8254 7945 82.13
: ) : . i ) S NegCLIP 87.58 82.47 79.42 82.03
2 © MosaiCLIP 90.18 85.22 80.48 83.86
Table 18: Pre.-trammg rgsglts on \{L-Checkhst bfench— é = CLIP 2261 7621 7227 75.60
marlF, for testlr.lg composmon.ahty in terms of attribute, ) NegCLIP 81.40 76.05 72.06 75.18
relation and object understanding. Results for both back- £ MosaiCLIP 84.25 79.83 7329 77.42

bones Swin-Tiny and RN-50 are shown. See Sec. G.1
for more details.

Benchmark — SVO-Probes
Method Obj Subj Verb  Avg
CLIP 88.13 83.85 78776 83.58
CLIP-FT 93.17 88.64 83.87 88.56
¥ NegCLIP 9290 88.16 84.02 8836
S. MosaiCLIPnocurric 93.37 89.74 83.62 8891
8 MosaiCLIPwisg-rr 92.65 88.69 8290 88.08
MosaiCLIP 9345 89.39 83.35 88.73
» CLIP-FT 89.63 85.83 80.36 85.27
§ NegCLIP 8843 84.05 79.21 83.90
¢) MosaiCLIPnocurric 89.49 8559  79.83  84.97
g MosaiCLIPwisg.rr 87.86 8497 7830 83.71
> MosaiCLIP 8993 86.45 79.71 85.36
CLIP-FT 93.60 9137 8548 90.15
© NegCLIP 93.59 9143 8558 90.20
8 MosaiCLIPNocurric 94.14  92.22  84.23  90.20
O MosaiCLIPwisgrr 93.13  92.07 83.75 89.65
MosaiCLIP 94.16 93.04 84.82 90.67

Table 19: Detailed Fine-tuning results on the SVO-
Probes dataset. See Sec. G.2 for more details.

Table 20: Detailed Pre-training results on the SVO-
Probes dataset. See Sec. G.2 for more details.

set to 0.1. Training is performed using 64 NVIDIA
A100 GPUs. NegCLIP’s hard negative text cre-
ation method often results in no negative text for
some texts in the pre-training dataset. Removing
all such image-text pairs with no possible hard neg-
ative text results in poor performance for NegCLIP
(due to fewer data to pre-train on). If we include
these image-text pairs, the text batch size might dif-
fer for different GPUs since some image-text pairs
are without hard negative texts and this causes in-
stabilities. We hence keep a cache of sentences
from previous batches and add it to the batch as
negative examples so that all GPUs have the same
text batch size during training. The same is done
for MosaiCLIP since not all images might have
the same number of unique positive and negative
sub-graphs available. For NegCLIP we create hard
negative sentences using code released by (Yuksek-
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(Pre-training, Fine-tuning) data —

CC-12M, CC-100K

YFCC-15M, YFCC-100K

|
Retrieval Set — Comp Atom | Comp Atom
Method Split - Seen Unseen Seen Unseen ‘ Seen Unseen Seen Unseen
CLIP 48.3 45.1 392 35.0 | 42.0 39.8 434 39.5
CLIP-FT 48.5 458  40.0 35.6 | 39.1 364 424 38.3
NegCLIP 55.1 53.1 415 375 | 419 38.8  42.8 39.0
MosaiCLIPnocurric 71.4 71.1 453 40.2 | 50.1 46.6 449 40.5
MosaiCLIPwisg-rr 68.4 67.5 46.1 41.2 | 489 48.1  46.2 43.6
MosaiCLIP 73.1 724  46.2 409 | 523 488 45.7 41.5

Table 21: Fine-tuning results on the CREPE - Systematicity datasets. We take OpenCLIP models pre-trained on
CC-12M, and YFCC-15M, fine-tune them on CC-100K, and YFCC-100K, respectively, and test them on CC-12M,
YFCC-15M split of CREPE dataset, respectively. See Sec. 4.1 for more details. We recalculate CLIP results since
Ma et al. (2022) do not normalize CLIP embeddings before taking the dot product for text and image embeddings,

resulting in an incorrect score.

Pre-training data — CC-12M \ YFCC-15M
Retrieval Set — Comp Atom | Comp Atom
Arch. Method | Split - Seen Unseen Seen Unseen ‘ Seen Unseen Seen Unseen
[ CLIP 459 44.1 417 373 | 40.2 39.6 429 41.7
.g NegCLIP 76.4 80.3 45.1 39.6 | 473 471 432 41.5
(% MosaiCLIP 85.3 92.1 493 44.5 | 80.7 89.6 48.2 45.3
o CLIP 44.9 429 409 36.7 | 38.7 389 40.6 38.9
2 NegCLIP 78.6 82.0 46.8 414 | 615 67.2 435 41.5
~ MosaiCLIP 85.3 92.6 47.8 444 | 80.1 90.2 46.6 45.0

Table 22: Pre-training results on CREPE - Systematicity datasets. Models are pre-trained using CC-12M and
YFCC-15M datasets and tested on the corresponding CC-12M and YFCC-15M split of the CREPE dataset. Results
for both backbones Swin-Tiny and RN-50 are shown. See Sec. 4.1 for more details.

gonul et al., 2022). For MosaiCLIP training, for
each image, we always use one hard negative text
createdusing NegCLIP’s swapping technique, fol-
lowed by positive and negative subgraphs created
using our method. Sub-graph sampling probabili-
ties are kept as po = p3, p1 = 0.15.

H.2 Tree-Score details:

Murty et al. (2022) devised a method to calculate
the tree-score of a transformer over a given dataset
of sentences ID. This tree-score measures the func-
tional tree-structuredness of a given transformer
encoder. See Murty et al. (2022) for exact details
for the algorithm to calculate the tree-scores. We
use the code released by the authors’ for the pur-
pose of calculating tree-scores for CLIP’s language
encoder. In practice we use 5K sentences from the
COCO-validation set as the held ouot test set D
over which we calculate the tree-scores.

Shitps://github.com/MurtyShikhar/TreeProjections

H.3 Computing Infrastructure and
Run-Time:

We use NVIDIA A100 GPUs for all our experi-
ments. Pre-training experiments took about 1.5
days per model while using 64 GPUs. Fine-tuning
experiments on CC-FT, YFCC-FT and COCO took
about 45 mins each and experiments on CC3M
took 5 hours per model, while using 4 GPUs.

H.4 Model Parameters:

We use standrad CLIP models and as part of all
models, is a transformer language encoder having
12 layers, 8 attention heads and 512 as it’s width.
For vision encoders we use 1. ResNet-50 hvaing
23M trainable parameters and 2. Transformer vi-
sion encoders a) Swin-Tiny with patch-size 4 and
window size 7 following (Yang et al., 2022) and b)
ViT-B-32 which has patch size 32, 12 layers and
12 attention heads.
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H.5 Evaluation Metrics:

Strictly following the respective papers and re-
leased code®, for ARO, VL-Checklist, SVO we
use accuracy as the metric as defined by the re-
specitve papers. And for CREPE-Productivty, and
CREPE-Systematicity 7 we use Recall@1 as our
metric of evaluation.

H.6 Summary Statistics of results:

We provide standard deviation results using 3 ran-
dom seeds in Appendix Section D.2 for Fine-tuning
experiments on the CC-FT dataset. For all other
datasets, including the expensive pre-training runs
we use a single seed for our experiments.

SARO: https://github.com/mertyg/

vision-language-models—-are-bows, SVO-Probes
https://github.com/deepmind/svo_probes,
VL-Checklist: https://github.com/om-ai-lab/
VL-CheckList

"CREPE Code: https://github.com/RAIVNLab/
CREPE
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Figure 8: Fine-tuninig Results on CREPE - Productivity
(generalization to longer and more complex sentences).
Fine-tuning datasets are mentioned below each figure.
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Figure 11: Comparing of CLIP, NegCLIP and MosaiCLIP on 20 datasets of from the ELEVATER (Li et al., 2022a)

benchmark. Models in this graph are pretrained with CC-12M data and have Swin-Tiny as the vision backbone. See
Sec. 4.1 for more details.
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Figure 12: Comparing of CLIP, NegCLIP and MosaiCLIP on 20 datasets of from the ELEVATER (Li et al., 2022a)

benchmark. Models in this graph are pretrained with YFCC-15M data and have Swin-Tiny as the vision backbone.
See Sec. 4.1 for more details.
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Figure 13: Comparing of CLIP, NegCLIP and MosaiCLIP on 20 datasets of from the ELEVATER (Li et al., 2022a)

benchmark. Models in this graph are pretrained with CC-12M data and have ResNet-50 as the vision backbone. See
Sec. 4.1 for more details.
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Figure 14: Comparing of CLIP, NegCLIP and MosaiCLIP on 20 datasets of from the ELEVATER (Li et al., 2022a)

benchmark. Models in this graph are pretrained with YFCC-15M data and have ResNet-50 as the vision backbone.
See Sec. 4.1 for more details.
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