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Abstract

The growing concerns and regulations sur-
rounding the protection of user data pri-
vacy have necessitated decentralized training
paradigms. To this end, federated learning
(FL) is widely studied in user-related natural
language processing (NLP). However, it suf-
fers from several critical limitations including
extensive communication overhead, inability
to handle heterogeneity, and vulnerability to
white-box inference attacks. Federated distilla-
tion (FD) is proposed to alleviate these limita-
tions, but its performance is faded by confirma-
tion bias. To tackle this issue, we propose Fed-
erated Interactive Distillation (FedID), which
utilizes a small amount of labeled data re-
tained by the server to further rectify the local
models during knowledge transfer. Addition-
ally, based on the GLUE benchmark, we de-
velop a benchmarking framework across multi-
ple tasks with diverse data distributions to con-
tribute to the research of FD in NLP commu-
nity. Experiments show that our proposed Fe-
dID framework achieves the best results in ho-
mogeneous and heterogeneous federated sce-
narios. The code for this paper is available at:
https://github.com/maxinge8698/FedID.

1 Introduction

The remarkable success of natural language pro-
cessing (NLP) is highly dependent on large-scale
pre-trained language models (PLMs; Devlin et al.
2019; Liu et al. 2019; Yang et al. 2019; Clark
et al. 2020). To fully realize the potential of PLMs,
they are typically trained using large amounts of
combined data that is collected from multiple dis-
tributed user devices (a.k.a., clients) and transmit-
ted to a single data center (a.k.a., server). With the
growing concerns about privacy protection, data
regulations such as the Personal Data Protection
Act (PDPA; Chik 2013) and the General Data Pro-
tection Regulation (GDPR; Voigt and von dem
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Bussche 2017) have imposed strict requirements on
preserving user data privacy, making it impractical
to aggregate such data to a centralized location for
training. Federated learning (FL; Mcmahan et al.
2017) has emerged as a privacy-preserving decen-
tralized training paradigm, in which a federation of
clients is orchestrated by a central server to collabo-
ratively train a shared global model via aggregating
the local models trained on their respective data.
As a result, the private data of massive clients is
effectively exploited in the form of model param-
eter exchange to train a unified model for better
performance than individually working.

Previous work on federated NLP mainly targets
solving either word-level language modeling ap-
plications such as mobile keyboard suggestion (Ji
et al., 2019) and recommendation (Lin et al., 2020),
or biomedical named entity recognition (Liu and
Miller, 2020; Ge et al., 2020; Sui et al., 2020).
More recently, Lin et al. (2022) provide a research-
oriented benchmarking framework for advancing
FL in NLP. However, these federated NLP frame-
works are limited to identical architectures across
the server and clients, making it impossible for
clients to design their models independently accord-
ing to their inconsistent system resources and non-
independent and identically distributed (non-IID)
data. Also, the frequent model parameter exchange
entails expensive communication costs. These ob-
stacles significantly hinder the applicability and
scalability of FL for large-scale PLMs.

Instead, federated distillation (FD) eliminates
the need to share model parameters by transfer-
ring knowledge from the clients to the server us-
ing an unlabeled public proxy dataset (Jeong et al.,
2018; Li and Wang, 2019; Chang et al., 2019; Gong
et al., 2022; Itahara et al., 2021; Hu et al., 2021),
thereby allowing collaboration between heteroge-
neous models with less communication costs. How-
ever, FD suffers from confirmation bias (Arazo
et al., 2020; Pham et al., 2021) induced by incor-
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Figure 1: The framework of FedID.

porating incorrect or even biased predictions on
unlabeled data for knowledge transfer, where the
central model will tend to degenerate.

To tackle this challenge, we propose Federated
Interactive Distillation (FedID), where a small
handful of labeled data is retained in the server,
aiming to provide feedback to the local models to
debias the predictions.

In addition, previous studies on FD tend to de-
sign different partitioning strategies on different
datasets, and only small-scale models are taken
into consideration, which makes it difficult to eval-
uate and compare various FD approaches scaled
to the NLP domain in a systematic and fair man-
ner. For this reason, based on the General Lan-
guage Understanding Evaluation (GLUE) bench-
mark (Wang et al., 2019), we create a unified bench-
marking framework across multiple tasks with di-
verse data distributions to simulate a variety of
federated scenarios for evaluating the effectiveness
of these methods on the decentralized training of
large-scale PLMs, advancing the research of FD
in NLP. Empirical experiments show that our pro-
posed FedID achieves the best results in homoge-
neous and heterogeneous federated scenarios.

The contributions of this paper are summarized
as follows:

• To the best of our knowledge, we are the first
to investigate the application of FD to decen-
tralized learning of large-scale PLMs in ho-

mogeneous and heterogeneous settings.

• We present a novel Federated Interactive Dis-
tillation framework to mitigate the problem of
misleading privileged knowledge caused by
confirmation bias in conventional FD.

• We provide a unified benchmarking frame-
work across multiple NLP tasks with diverse
data distributions to contribute to the research
of FD in NLP community.

2 Related Work

2.1 Federated Learning
FL has gained significant interest and attention in
the NLP field due to its potential for collaborative
training on distributed data sources while preserv-
ing data privacy (Liu et al., 2021). Recent efforts
have made preliminary explorations for the appli-
cation of parameter averaging-based FL (e.g., Fe-
dAvg (Mcmahan et al., 2017)) in the context of
NLP (Tian et al., 2022; Dong et al., 2022; Zhang
et al., 2022; Lin et al., 2022). Despite some suc-
cess, several system-oriented challenges have to be
faced to make FL widely available in NLP, includ-
ing extensive communication overhead, inability
to handle heterogeneity, and vulnerability to white-
box inference attacks.

Several variants of FL have emerged to attempt
to alleviate these issues. FedDF (Lin et al.) builds
prototypical models with the same structure as the
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client models on the server side to enable model
heterogeneity, and allows server-side ensemble dis-
tillation on unlabeled data from other domains to
enhance model aggregation. FedED (Sui et al.,
2020) reduces uplink communication costs by up-
loading the predictions of the local models instead
of the parameters to train the central model, but still
requires broadcasting the parameters of the central
model over the downlink. Accordingly, these solu-
tions still rely on exchanging model parameters and
therefore are unable to completely address these
limitations.

2.2 Federated Distillation
FD is a new algorithmic paradigm for FL with fun-
damentally different communication properties by
exchanging the knowledge obtained during the lo-
cal training in the form of model outputs rather
than model parameters. This shared knowledge
can be an aggregated statistic of model outputs on
local private data (Jeong et al., 2018) or an ensem-
ble of local model outputs computed on a publicly
available proxy dataset (Li and Wang, 2019; Chang
et al., 2019; Gong et al., 2022; Itahara et al., 2021;
Hu et al., 2021). Existing efforts on FD fall into
two main categories:

• The server does not hold any model and
is only used as an aggregator FedMD (Li
and Wang, 2019) adopts a labeled public
dataset for transfer learning among clients to
seek fast improvement across all participants.
Cronus (Chang et al., 2019) combines the lo-
cal private dataset and the pseudo-labeled pub-
lic dataset jointly for local training, where the
pseudo-labels are ensembled with more robust
aggregation rules.

• The server holds a central model that
acts as the target for collaborative train-
ing FedKD (Gong et al., 2022) adopts
a privacy-preserving ensemble strategy on
cross-domain unlabeled data for one-way and
one-shot distillation of the central model. In
addition to server-side distillation, DS-FL (Ita-
hara et al., 2021) also performs client-side dis-
tillation using the ensemble predictions on the
unlabeled public dataset. Instead of transfer-
ring an ensemble of predictions, MHAT (Hu
et al., 2021) achieves information aggregation
by directly using predictions from multiple
clients to train the central model simultane-
ously. However, these methods are generally

subject to confirmation bias caused by trans-
ferring knowledge over unlabeled data, which
greatly limits their performance.

3 Preliminaries

3.1 Problem Definition
Consider a federated training environment with K
clients, where the k-th client holds a labeled private
dataset Dk = {(xki , yki )}

|Dk|
i=1 drawn from the same

or distinct distribution, along with a homogeneous
or heterogeneous local model fk parameterized by
θk. The goal is to train a central model f parame-
terized by θ on the server, but without direct access
to these private data.

3.2 Federated Learning for NLP
In a general FL framework, the training process is
divided into T communication rounds through a
server-client paradigm, where all clients share the
same model architecture coordinated by a central
server. Specifically, at the beginning of federated
training, the server initializes the global model pa-
rameters θ0. At each communication round t, the
training is proceeded as follows:

• Broadcast A subset of the client population
Ct ⊆ {1, 2, ...,K} is sampled to participate
in training, where |Ct| = ε · K, and ε is the
sampling rate. Then the server distributes the
current global model parameters θt−1 to the
participating clients.

• Local training Each participating client k ∈
Ct uses the received parameters to initialize its
local model,

θkt−1 ← θt−1, (1)

and updates it several epochs with its own
private data Dk,

θkt ← θkt−1 − η∇LCE(Dk; θkt−1), (2)

where η is the learning rate of the central
model, and LCE denotes the loss function,
which is usually a categorical cross-entropy
for classification tasks.

• Upload The updated local model parameters
θkt are sent back to the server.

• Aggregation The server collects and aggre-
gates the parameters from clients to obtain the
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global model parameters for the next round,

θt ←
∑

k∈Ct

|Dk|
|D| θ

k
t , (3)

where |Dk| and |D| = ∑
k∈Ct
|Dk| are the num-

ber of local data held by the k-th client and all
participating clients, respectively.

3.3 Federated Distillation for NLP
In a general FD framework, an unlabeled public
dataset D0 = {x0

i }
|D0|
i=1 is hosted by the server and

transmitted to all clients for knowledge transfer be-
fore the federated training starts. At each communi-
cation round t, the training process is summarized
as the following steps:

• Local training Each participating client
trains its local model θkt−1 on its own private
data Dk for several epochs,

θkt ← θkt−1 − ηk∇LCE(Dk; θkt−1), (4)

where ηk is the learning rate of the k-th local
model.

• Local prediction Each participating client
computes its local predictions on the entire
public proxy dataset D0 using its updated lo-
cal model θkt ,

Y k
t = fk(D0; θkt ). (5)

• Upload Participating clients upload their lo-
cal predictions to the server.

• Aggregation The predictions from clients
are collected and aggregated by the server as
ensemble predictions,

Yt =
∑

k∈Ct

|Dk|
|D| Y

k
t . (6)

• Server distillation The ensemble predictions
are treated as teacher knowledge to train the
central model for several epochs,

θt ← θt−1− η∇LCE(Yt, f(D0; θt−1)). (7)

• Broadcast The server broadcasts the ensem-
ble predictions to participating clients.

• Local distillation Each participating client
distills its local model using the received en-
semble predictions on the entire public proxy
dataset,

θkt ← θkt − ηk∇LCE(Yt, fk(D0; θkt )). (8)

4 Federated Interactive Distillation

In existing FD approaches, the central model is
only allowed to passively mimic the local models
by one-way knowledge transfer, leading to confir-
mation bias that heavily fades the superiority of
FD. Instead of directly transmitting the entire pub-
lic dataset and its predictions between the server
and clients, the proposed FedID slices the unla-
beled public dataset into multiple smaller batches
for training, and handles only a small batch of data
and predictions in each communication, which al-
lows for an interaction between the central model
and local models during the knowledge transfer
process, while significantly reducing the load of a
single communication. After each server distilla-
tion, the central model is allowed to feedback its
performance on a small amount of labeled data held
by the server back to each client to adapt its local
model accordingly for rectifying its confirmation
bias. The overall framework of FedID is presented
in Figure 1.

4.1 Server Interactive Distillation
The server samples a batch of unlabeled public data
x0 from D0 and distributes them to each participat-
ing client for local prediction,

ykt = fk(x0; θkt ). (9)

The predictions from clients are uploaded to the
server and aggregated with the same strategy as in
Eq. (6),

yt =
∑

k∈Ct

|Dk|
|D| y

k
t , (10)

together with the batch input x0, which are adopted
to train the central model for knowledge transfer,

θt ← θt−1 − η∇LCE(yt, f(x0; θt−1)). (11)

The updated central model θt is then evaluated
on a batch of data (xval,yval) sampled from the

labeled dataset Dval = {xvali ,yvali }
|Dval|
i=1 held by

the server,

LCE(yval, f(xval; θt))
∆
= LCE(yval, f(xval; θt−1−
η∇LCE(

∑
k∈Ct

|Dk|
|D| f

k(x0;θkt ),f(x
0;θt−1)))).

(12)

In addition to the ensemble predictions yt, the
above-computed validation loss is also broadcast
together to each participating client as feedback.
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Algorithm 1: Federated Interactive Distillation (FedID)

Input: labeled private datasets {Dk}Kk=1; unlabeled public dataset D0; a handful of labeled dataset
Dval held by the server; local models {θk}Kk=1; central model θ; communication rounds T

Output: decentrally trained θ
1 Each client initializes the local model θk0
2 Server initializes the central model θ0

3 for each communication round t = 1, 2, ..., T do
4 m← max(ε ·K, 1)
5 Ct ← randomly sample a subset of m clients from K clients
6 for each client k ∈ Ct in parallel do
7 Update the local model parameters θkt via Eq. (4)
8 end
9 for each mini-batch of unlabeled data x0 ∼ D0 do

10 Server distributes a mini-batch of unlabeled data x0 to all participants Ct
11 for each client k ∈ Ct in parallel do
12 Compute local predictions ykt on x0 via Eq. (9)
13 Upload local predictions ykt to the server
14 end
15 Server aggregates local predictions to create the ensemble predictions yt via Eq. (10)
16 Server updates the central model parameters θt via Eq. (11)
17 Server samples a mini-batch of labeled data (xval,yval) ∼ Dval
18 Server computes the validation loss LCE(yval, f(xval; θt)) via Eq. (12)
19 Server broadcasts the validation loss LCE(yval, f(xval; θt)) and ensemble predictions yt

to all participants Ct
20 for each client k ∈ Ct in parallel do
21 Update the local model parameters θkt via Eq. (15)
22 end
23 end
24 end
25 return θT

4.2 Client Interactive Distillation
For each participating client k ∈ Ct, the gradients
on the ensemble predictions yt are computed to
learn knowledge from other clients for alleviating
data heterogeneity,

gkdistill = ∇θkt LCE(yt, f
k(x0; θkt )). (13)

Also, the feedback gradients from the server to the
client are computed from the validation loss,

gkfeedback = ∇θkt LCE(y
val, f(xval; θt)), (14)

and are added to further rectify its local model,

θkt ← θkt − ηk(gkdistill + gkfeedback). (15)

In this way, FedID establishes interactive dis-
tillation between the server and clients, where
the client-to-server interaction aims to transfer the

knowledge learned by local models during local
training on their respective private data to the cen-
tral model, while the server-to-client interaction
attempts to rectify confirmation bias by allowing
the local models to learn from the central model’s
feedback. The detailed procedures are summarized
in Algorithms 1.

5 Experiments

5.1 Datasets

Considering that simulating data distributions with
varying heterogeneity requires sampling by labels,
we exclude the regression task STS-B (Cer et al.,
2017) from the GLUE benchmark (Wang et al.,
2019) because it lacks available labels for sam-
pling, and take the remaining eight classification
tasks for evaluation, including WNLI (Levesque
et al., 2012), RTE (Dagan et al., 2005; Bar-Haim
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Method
WNLI
(0.6k)
Acc

RTE
(2.5k)
Acc

MRPC
(3.7k)

F1/Acc

CoLA
(8.6k)
Mcc

SST-2
(67k)
Acc

QNLI
(105k)

Acc

QQP
(364k)
F1/Acc

MNLI
(393k)

Acc m/mm

Centralized 56.3 61.4 85.9/79.2 52.4 92.4 90.2 86.3/89.7 82.8/83.5

α=100

FedAvg 49.6 56.7 84.5/78.0 51.0 91.8 89.8 85.5/88.2 82.0/82.7
FedDF 50.2 56.9 84.6/77.8 51.4 92.0 89.6 85.7/88.5 82.2/83.0
FedED 47.9 55.4 82.2/75.3 50.5 91.1 88.9 84.8/87.9 81.4/81.9
FedKD 45.4 53.6 80.3/74.0 48.3 89.2 86.1 82.6/86.0 79.8/80.1
DS-FL 50.6 56.4 84.0/78.4 51.7 90.7 89.1 84.9/88.2 82.6/83.4
MHAT 50.0 56.5 84.2/78.6 51.7 91.0 89.3 84.3/88.1 82.0/83.0
FedID 51.1 57.0 84.9/79.0 52.0 91.6 89.9 85.6/88.5 82.3/83.2

α=1

FedAvg 48.3 55.1 82.9/77.2 48.9 91.0 88.7 84.2/87.6 81.4/81.8
FedDF 50.2 56.4 83.2/77.3 49.8 91.2 89.0 84.5/88.0 81.8/82.1
FedED 46.8 55.0 82.0/76.4 47.8 90.7 88.1 83.1/87.5 80.8/81.3
FedKD 44.4 52.6 80.4/74.8 46.4 88.9 86.5 82.4/86.6 78.8/79.4
DS-FL 50.1 56.7 82.8/76.7 49.4 90.6 88.5 83.8/87.8 81.2/81.8
MHAT 50.2 56.7 82.6/76.8 49.2 90.7 88.8 84.1/87.4 81.6/82.0
FedID 50.9 56.7 83.2/77.3 49.6 90.9 88.8 84.7/88.1 81.9/82.3

Table 1: Experiment results of the homogeneous setting on the GLUE dev sets.

et al., 2006; Giampiccolo et al., 2007; Bentivogli
et al., 2009), MRPC (Dolan and Brockett, 2005),
CoLA (Warstadt et al., 2019), SST-2 (Socher et al.,
2013), QNLI (Rajpurkar et al., 2016), QQP1, and
MNLI (Williams et al., 2018). See Appendix A for
more details about GLUE.

For each task, the original development set is
employed to evaluate the performance of the cen-
tral and local models, while the original training
set is divided into private and public datasets at a
ratio of 1:1, which are used for client training and
knowledge transfer between the server and clients,
respectively. Particularly, for the resulting public
dataset, we further sample 10% of it as the labeled
dataset reserved for the server, and the rest as the
unlabeled public dataset after rounding off labels.

Furthermore, to create disjoint client training
data from the private dataset, the training instances
of each client are drawn independently with class
labels following a categorical distribution over
N classes parameterized by a vector q (qi ≥ 0,
i ∈ [1, N ], and ‖q‖1 = 1). Meanwhile, to simu-
late varying data distributions for clients, we fur-
ther draw q ∼ Dir(αp) from a Dirichlet distribu-

1https://quoradata.quora.com

tion (Hsu et al., 2019), where p is a prior class dis-
tribution over N classes, and α is a concentration
parameter that controls the degree of data hetero-
geneity among clients. Typically, when α → ∞,
clients tend to be assigned to the identical data dis-
tribution, and conversely, when α→ 0, clients are
more likely to hold examples from only one ran-
dom class. In our experiments, we set α to 100 and
1 to generate IID and non-IID data, respectively.2

5.2 Settings

Homogeneous setting For a homogeneous fed-
erated scenario, the model architectures of clients
are limited to be the same as that of the server. To
be compatible with FL methods for comparison,
we adopt BERT-base (Devlin et al., 2019) as the
central model since FL cannot usually be applied
to larger PLMs due to communication bottlenecks.

Heterogeneous setting For a heterogeneous
federated scenario, the central model is initialized
with BERT-base, while each local model is selected
from BERT-base, BERT-large, RoBERTa-base (Liu
et al., 2019), or RoBERTa-large3.

2If not specified, α = 1 is used by default.
3If not specified, heterogeneous setting is used by default.

8571

https://quoradata.quora.com


Method
WNLI
(0.6k)
Acc

RTE
(2.5k)
Acc

MRPC
(3.7k)

F1/Acc

CoLA
(8.6k)
Mcc

SST-2
(67k)
Acc

QNLI
(105k)

Acc

QQP
(364k)
F1/Acc

MNLI
(393k)

Acc m/mm

α=100

FedKD 54.1 60.5 85.2/80.5 53.6 90.8 87.7 84.2/87.2 81.9/82.3
DS-FL 56.8 63.4 87.7/82.4 55.4 92.1 89.9 86.5/89.4 83.6/84.0
MHAT 56.9 63.2 87.7/82.5 55.7 92.0 90.6 87.0/89.5 84.0/84.2
FedID 58.2 64.6 88.5/83.6 56.5 92.7 91.4 88.1/91.2 84.6/84.6

α=1

FedKD 52.7 58.4 84.3/80.0 50.0 88.9 87.1 84.2/87.5 81.2/81.6
DS-FL 55.6 60.3 86.6/81.6 53.9 90.9 89.8 86.4/89.1 83.0/83.5
MHAT 55.9 60.8 86.6/81.5 53.8 91.2 90.3 86.6/89.3 83.4/83.7
FedID 57.0 61.5 87.7/82.2 54.9 91.8 91.0 87.6/90.5 84.2/84.2

Table 2: Experiment results of the heterogeneous setting on the GLUE dev sets.

5.3 Implementation Details

We adopt the AdamW optimizer (Loshchilov and
Hutter, 2019) with an initial learning rate of 2e-5 to
update the model parameters. For single-sentence
or sentence-pair input to the model, the maximum
sequence length is set to 128, and the batch size is
set to 32. For hyperparameters in federated train-
ing, the number of epochs for local training, local
distillation, and server distillation is set to 3, 3, and
3, respectively, the number of clients K is set to 10,
the fraction of client sampling ε is set to 1, and the
number of communication rounds T is set to 10.

5.4 Baselines

We compare FedID with FL algorithms including
FedAvg (Mcmahan et al., 2017), FedDF (Lin et al.),
and FedED (Sui et al., 2020), as well as FD al-
gorithms including FedKD (Gong et al., 2022),
MAHT (Hu et al., 2021), and DS-FL (Itahara et al.,
2021). We also provide the models with centralized
training (denoted as Centralized) that have access
to all private data held by the clients as an upper
bound on model performance.4

5.5 Results

Homogeneous setting Table 1 shows the per-
formances across models in homogeneous setting.
Without considering data privacy, centralized mod-
els always exhibit the best performance, while
decentralized models sacrifice performance in ex-

4FedED and MHAT require a labeled public dataset in
the original paper. For a fair comparison, a version using the
unlabeled public dataset is provided in our implementation.

change for better privacy protection. However, this
performance gap is gradually alleviated as the train-
ing data increases. In addition, the performances
of FL and FD models are significantly degener-
ated when encountering non-IID data. Also, when
sufficient public data is made available, the perfor-
mance of FD models can be comparable to that of
FL models, accompanied by lower communication
costs.

Heterogeneous setting Table 2 shows the per-
formances across models in heterogeneous setting.
The proposed FedID outperforms other baselines,
demonstrating the superiority of tackling the con-
firmation bias. In particular, FedID exhibits strong
robustness when only a small amount of training
data is available, as there is not enough private data
to adequately train the local models and thus the
confirmation bias becomes more pronounced.

Cross-domain setting We also use the origi-
nal training sets of IMDB (Maas et al., 2011) and
PAWS (Zhang et al., 2019) as unlabeled public data
for SST-2 and QQP, respectively, to construct cross-
domain knowledge transfer environments, where
the confirmation bias is more likely to occur. The
experimental results on the dev sets of SST-2 and
QQP are shown in Table 3, where the greater per-
formance gap between FedID and other baselines
further confirms our claim.

5.6 Ablation Study

We remove the feedback gradient and the knowl-
edge transfer gradient from Eq. (15), respectively,
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Method SST-2→ IMDB
Acc

QQP→ PAWS
F1/Acc

FedKD 81.9 80.0/83.5
DS-FL 83.3 82.3/85.4
MHAT 83.9 82.8/85.6
FedID 86.4 84.1/87.1

Table 3: Results of models in the cross-domain setting.

Method RTE
Acc

SST-2
Acc

QQP
F1/Acc

FedID 61.5 91.8 87.6/90.5
w/o gkfeedback 60.1 90.7 86.5/89.4

w/o gkdistill 60.6 91.1 86.9/89.8

Table 4: Results of model ablations on RTE, SST-2, and
QQP.

to conduct ablation experiments on the small
dataset RTE, the medium dataset SST-2, and the
large dataset QQP. As shown in Table 4, without
the feedback gradient or the knowledge transfer
gradient, the performances of models get worse,
where the feedback gradient contributes more.

5.7 Communication Cost

Communication costs between the server and client
models across baselines are presented in Table 5.
The communication costs of FedAvg, FedDF, and
FedED are much higher than those of FedKD,
DS-FL, MHAT, and FedID as they entail exten-
sive communication to share the model parameters.
FedKD exhibits the lowest communication costs
as the clients’ predictions are aggregated without
the need to send back to the clients and only one
round of communication is executed, while DS-FL
and MHAT need to broadcast the ensemble pre-
dictions from the server back to each client. Simi-
larly, FedID is required to transmit ensemble pre-
dictions and the validation loss in batches to clients
as feedback, but the communication costs for the
validation loss are negligible compared to that of
ensemble predictions. As a result, the communica-
tion costs of FedID remain in line with DS-FL and
MHAT, but the communication between the server
and clients is more frequent.

5.8 Effect of Unlabeled Public Dataset Size

In our experimental setup, we partition the orig-
inal training dataset into a private dataset and a

Method Formulation

FedAvg (|θ| × (K + 1))× T
FedDF (|θ| × (K + 1) + |D0| ×K)× T
FedED (|θ| × 1 + |D0| ×K)× T
FedKD (|D0| ×K)× 1
DS-FL (|D0| × (K + 1))× T
MHAT (|D0| × (K + 1))× T
FedID (|D0| × (K + 1))× T

Table 5: Formulations of communication costs.

public dataset. To further investigate the effect of
different proportions of the public dataset on per-
formance, we keep the size of the private dataset
constant while conducting experiments using 10%,
20%, 40%, 80%, and 100% of the public dataset,
respectively. The results in Figure 2 show that the
performance of the central model improves to some
extent as the size of the public dataset increases,
where FedID still exhibits superior performance
and robustness.

5.9 Effect of Labeled Dataset Size
To investigate the effect of the size of the labeled
dataset retained by the server on performance, we
experiment with 10%, 20%, 40%, 80%, and 100%
of the labeled dataset, respectively. For FedID, the
labeled data is used to rectify the confirmation bias
in the client models’ predictions, while for other
FD methods, the labeled data is added to the train-
ing of the central model. The results in Figure 3
show that FedID is least sensitive to the size of
the labeled dataset since this data is not used to
directly participate in the training of the central
model. Moreover, although other FD methods use
the labeled data directly for additional training of
the central model, there is still no significant per-
formance improvement observed because the pro-
portion of the labeled data is far lower than that of
the unlabeled data, and thus its supervision on the
central model is limited. Our solution makes better
use of the small amount of labeled data by leverag-
ing it to rectify confirmation bias in the predictions
from unlabeled data.

5.10 Effect of Number of Clients
The number of clients usually imposes a signifi-
cant impact on performance, as the entire training
dataset is partitioned and distributed to multiple
clients. To investigate this, we increase the num-
ber of clients from 5 to 10 and 20 while keeping
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Figure 2: Performance of the central model on SST-2
with different sizes of public dataset.

20 40 60 80 100
Ratio of Private Dataset (%)

87

88

89

90

91

Pe
rfo

rm
an

ce
 (%

)

FedKD
DS-FL
MHAT
FedID

Figure 3: Performance of the central model on SST-2
with different sizes of labeled dataset.

the total amount of private data for all clients con-
stant, which results in a corresponding change in
the quantity of local private data that can be allo-
cated to each client. The results depicted in Fig-
ure 4 show a decrease in the performance of the
central model as the number of clients increases,
which can be attributed to the fact that the reduc-
tion in local private data makes it challenging to
achieve adequate local training. However, FedID
shows better robustness in response to this change
due to the mitigation of confirmation bias.

6 Conclusions

This study explores the application of FD to de-
centralized training of large-scale PLMs in homo-
geneous and heterogeneous settings, and further
presents an interactive FD scheme to mitigate the
confirmation bias caused by transferring knowl-
edge on an unlabeled public dataset. Moreover,
a benchmarking framework across multiple tasks
with diverse data distributions is developed to con-
tribute to the research of FD in NLP community.
Future work will be executed to aggregate differ-
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Figure 4: Performance of the central model on SST-2
with different numbers of clients.

entially private local predictions for a stronger pri-
vacy guarantee, enhancing the resilience of FedID
against malicious server or clients.

Limitations

There are two main limitations to our work com-
pared to previous efforts: 1) We assume that a small
amount of labeled data is retained in the server.
However, this situation may be common in real life.
For instance, an institution possesses only a small
amount of training data, which is not enough to
train a well-performing model, thus it may want
to resort to collaborative training with other insti-
tutions with the help of FD on a large amount of
unlabeled public data. However, directly transfer-
ring knowledge on the unlabeled data may not yield
a satisfactory performance, while the small amount
of training data retained by the institution can be
used as labeled data by the proposed FedID to max-
imize the performance. In addition, our approach
is more suitable for the case where one client in
the federation acts as the server; 2) Compared with
other FD approaches, our solution slices the unla-
beled public dataset into multiple smaller batches
for training, thus entailing more frequent commu-
nication between the server and clients. However,
the increase in communication frequency may be
tolerable considering the similar communication
costs and the fact that transmitting smaller pack-
ets avoids potential network congestion when the
public dataset is too large.

Ethics Statement

This study aims to explore an alternative decentral-
ized training paradigm for large-scale PLMs, and
the proposed method does pose ethical issues or po-
tential biases. All models, baselines, and datasets
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A Details of GLUE Benchmark

GLUE (Wang et al., 2019) is a benchmarking
framework designed to assess the performance and
generalization capability of NLP models especially
large-scale PLMs across nine NLP tasks. The de-
scriptions of each task are presented as follows:

• WNLI The Winograd Natural Language In-
ference (Levesque et al., 2012) is a sentence-
pair binary classification task that requires the
model to determine whether two sentences in
a given sentence-pair are entailment relations,
with the evaluation metric of accuracy.

• RTE The Recognizing Textual Entail-
ment (Dagan et al., 2005; Bar-Haim et al.,
2006; Giampiccolo et al., 2007; Bentivogli
et al., 2009) is a sentence-pair binary clas-
sification task, which requires the model to
determine whether two sentences in a given
sentence pair are entailment relations, with
the evaluation metric of accuracy.

• MRPC The Microsoft Research Paraphrase
Corpus (Dolan and Brockett, 2005) is a
sentence-pair binary classification task that
requires the model to determine whether two
sentences in a given sentence pair are seman-
tically equivalent, with evaluation metrics of
accuracy and F1-score.

• STS-B The Semantic Textual Similarity
Benchmark (Cer et al., 2017) is a sentence-
pair regression task that requires the model
to evaluate how similar two sentences in a
given sentence-pair are by a floating score
range from 0 to 5, with evaluation metrics of
Pearson and Spearman correlations.

• CoLA The Corpus of Linguistic Acceptabil-
ity (Warstadt et al., 2019) is a single-sentence
binary classification task that requires the

Dataset #Train #Dev #Test

WNLI 635 71 146
RTE 2490 277 3000

MRPC 3668 408 1725
STS-B 5749 1500 1379
CoLA 8551 1043 1063
SST-2 67349 872 1821
QNLI 104743 5463 5463
QQP 363846 40430 390965

MNLI-m
392702

9815 9796
MNLI-mm 9832 9847

Table 6: Statistics of the GLUE benchmark.

model to determine whether a given English
sentence is grammatically correct, with the
evaluation metric of the Matthews correlation.

• SST-2 The Stanford Sentiment Tree-
bank (Socher et al., 2013) is a single-sentence
binary classification task that requires the
model to determine whether a given movie
review is positive or negative in sentiment,
with the evaluation metric of accuracy.

• QNLI The Question Natural Language Infer-
ence (Rajpurkar et al., 2016) is a sentence-pair
binary classification task. Given a question
and a context, the model is required to deter-
mine whether the context contains the answer
to the question, with the evaluation metric of
accuracy.

• QQP The Quora Question Pairs is a sentence-
pair binary classification task. Given a pair of
questions, the model is required to determine
whether the two sentences are semantically
equivalent, with evaluation metrics of accu-
racy and F1-score.

• MNLI The Multi-genre Natural Language
Inference (Williams et al., 2018) is a sentence-
pair three-way classification task. Given a
premise and a hypothesis, the model is re-
quired to determine whether the hypothesis is
an entailment, contradiction, or neutral with
respect to the premise. The task is divided
into matched and mismatched versions, with
evaluation metrics of matched accuracy and
mismatched accuracy, respectively.

The statistics of these tasks are presented in Ta-
ble 6.
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