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Abstract

We tackle the problem of zero-shot cross-
lingual transfer in NLP tasks via the use of
language adapters (LAs). Most of the earlier
works have explored training with adapter of a
single source (often English), and testing either
using the target LA or LA of another related
language. Training target LA requires unla-
beled data, which may not be readily available
for low resource unseen languages: those that
are neither seen by the underlying multilingual
language model (e.g., mBERT), nor do we have
any (labeled or unlabeled) data for them.

We posit that for more effective cross-lingual
transfer, instead of just one source LA, we need
to leverage LAs of multiple (linguistically or
geographically related) source languages, both
at train and test-time – which we investigate
via our novel neural architecture, ZGUL. Ex-
tensive experimentation across four language
groups, covering 15 unseen target languages,
demonstrates improvements of up to 3.2 av-
erage F1 points over standard fine-tuning and
other strong baselines on POS tagging and NER
tasks. We also extend ZGUL to settings where
either (1) some unlabeled data or (2) few-shot
training examples are available for the target
language. We find that ZGUL continues to out-
perform baselines in these settings too.

1 Introduction

Massive multilingual pretrained language models
(PLMs) such as mBERT (Devlin et al., 2019) and
XLM-R (Conneau et al., 2020) support 100+ lan-
guages. We are motivated by the vision of extend-
ing NLP to the thousands (Muller et al., 2021) of
unseen languages, i.e., those not present in PLMs,
and for which unlabeled corpus is also not readily
available. A natural approach is zero-shot cross-
lingual transfer – train the model on one or more
source languages and test on the target language,
zero-shot. Two common approaches are (1) Stan-
dard Fine Tuning (SFT) - fine-tune all parameters

of a PLM on task-specific training data in source
language(s), and (2) Language Adapters (LAs) –
small trainable modules inserted within a PLM
transformer, and trained on target language’s un-
labeled data using Masked Language Modeling
(MLM). At test time, in SFT the fine-tuned PLM is
applied directly to target language inputs, whereas
for the latter, the LA of source language is replaced
with that of target language for better zero-shot
performance. Unfortunately, while in the former
case, one would expect presence of unlabeled data
for a target language to pre-train the PLM for good
performance, the latter also requires the same unla-
beled data for training a target adapter.

For the large number of low resource languages,
curating a decent-sized unlabeled corpus is a chal-
lenge. For instance, there are only 291 languages
that have Wikipedias with over 1,000 articles. Con-
sequently, existing works use English data for train-
ing on the task and use the English LA (Pfeiffer
et al., 2020b; He et al., 2021) or an ensemble of re-
lated language LAs (Wang et al., 2021) at inference
time. We posit that this is sub-optimal; for better
performance, we should leverage multiple source
languages (ideally, related to target language) and
their LAs, both at train and test-time.

To this end, we propose ZGUL, Zero-shot
Generalization to Unseen Languages, which ex-
plores this hypothesis.1 It has three main compo-
nents. First, it fuses LAs from source languages
at train time by leveraging AdapterFusion (Pfeif-
fer et al., 2021a), which was originally developed
for fusing multiple task adapters. This allows
ZGUL to locally decide the relevance of each
LA for each token in each layer. Second, ZGUL
leverages the typological properties of languages
(encoded in existing language vectors) as addi-

1Following previous work (Wang et al., 2021), we assume
the target language has the same script as one or more lan-
guages in the PLM, so that the model does not have to deal
with a sequence of [UNK] tokens at test time. We present the
script statistics for our target languages in App. Table 14.

6969



tional information for computing global LA atten-
tion scores. Finally, ZGUL also implements the
Entropy-Minimization (EM)-based test-time tun-
ing of LA attention weights (Wang et al., 2021).

We denote a language group as a set of phylo-
genetically or demographically close languages,
similar to Wang et al. (2021). We experiment on
15 unseen languages from four language groups:
Slavic, Germanic, African and Indo-Aryan, on
POS tagging and NER tasks. In each group, we
train on multiple (3 to 4) source languages (includ-
ing English), for which task-specific training data
and LAs are available. ZGUL obtains substantial
improvements on unseen languages compared to
strong baselines like SFT and CPG (Conditional Pa-
rameter Generation (Üstün et al., 2020)), in a purely
zero-shot setting. Detailed ablations show the im-
portance of each component in ZGUL. We perform
attention analysis to assess if learned weights to
source languages’ LAs are consistent with their
relatedness to the target language.

Further, we study two additional scenarios,
where (1) some unlabeled data, and (2) some task-
specific training data are available for the target
language. We extend ZGUL in these settings and
find that our extensions continue to outperform
our competitive baselines, including ones that use
unlabeled data for a target language to either (1)
pre-train mBERT or (2) train target’s LA.

Our contributions can be summarized as: (1) We
propose a strong method (ZGUL) to combine the
pretrained language adapters during training itself.
To the best of our knowledge, we are the first to sys-
tematically attempt this in context of LAs. ZGUL
further incorporates test-time tuning of LA weights
using Entropy Minimization (EM). (2) ZGUL out-
performs the competitive multi-source baselines for
zero-shot transfer on languages unseen in mBERT.
(3) ZGUL exhibits a strong correlation between
learned attention scores to adapters and the linguis-
tic relatedness between source and target languages.
(4) ZGUL achieves competitive results in a few-
shot setting, where a limited amount of labeled
(target language) training data is available. (5)
When target language unlabeled data is available, a
modification of ZGUL outperforms baselines for
nine out of twelve languages. To encourage repro-
ducibility, we publicly release our code and trained
models.2

2https://github.com/dair-iitd/ZGUL

2 Related Work

Single-source Adapter Tuning: We build on
MAD-X (Pfeiffer et al., 2020b), which introduces
two phases of adapter training. 1. Pretraining Lan-
guage adapter (LA) for each language Li: inserting
an LA in each layer of transformer model M (de-
noted by Li◦M) and training on unlabeled data for
language Li using the MLM objective. 2. Training
TA for a task Tj : stacking LA for source language
Lsrc with TA for task Tj (denoted by Tj◦Lsrc◦M),
in which Tj and the task-specific prediction head
are the only trainable parameters. During inference,
Lsrc is replaced with Ltgt, i.e. Tj ◦ Ltgt ◦ M is
used. The MAD-X paradigm uses only one LA for
a given input sentence. Also, it assumes the avail-
ability of Ltgt. If not available, English adapter
(He et al., 2021; Pfeiffer et al., 2020b) or a related
language’s adapter (Wang et al., 2021) is used at
test-time.

Adapter Combination: Pfeiffer et al. (2021a) in-
troduce AdapterFusion, a technique that combines
multiple pretrained TAs T1, ...Tn to solve a new
target task Tn+1. It learns the attention weights
of T1, ...Tn while being fine-tuned on the data for
Tn+1. Vu et al. (2022) adapt this technique for
fusing domains and testing on out-of-domain data.
This technique has not been applied in the context
of LAs so far. The recent release of 50 LAs on
AdapterHub3 enables studying this for LAs.

Recently, Wang et al. (2021) propose EMEA
(Entropy Minimized Ensembling of Adapters) for
efficiently combining multiple LAs at inference
time. EMEA calculates the entropy of the predic-
tion during test time and adjusts the LA attention
scores (initialized uniformly) using Gradient De-
scent, aiming to give higher importance to the LA
that increases the confidence score of the predic-
tion. However, the training is still conducted using
English as a single source.

Generation of LA using Shared Parameters:
Üstün et al. (2020) employ the Conditional Pa-
rameter Generation (CPG) technique (Platanios
et al., 2018) for training on multiple source lan-
guages. They utilize a CPG module, referred to as
CPGAdapter, which takes a typological language
vector as input and generates a Language Adapter
(LA). The CPGAdapter is shared across all source
languages and trained from scratch for a specific
task. Since an LA is determined by the input lan-

3https://adapterhub.ml/explore/text_lang/
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guage’s vector, this approach can directly gener-
alize to unseen languages. However, it is worth
noting that CPG is data-intensive as it learns the
parameters of the CPGAdapter from scratch.

We note that CPG comes under a broader cate-
gory of hypernetworks that generate weights for a
larger main network (Ha et al., 2016), which have
been recently explored successfully for task mixing
(Karimi Mahabadi et al., 2021). In our experiments,
we include a comparison with the CPG method.

3 Model for Ensembling of Adapters

Our goal is to combine a set of source LAs for op-
timal zero-shot cross-lingual transfer to unseen lan-
guages, which are neither in mBERT, nor have read-
ily available labeled or unlabeled data. Similar to
previous works (Pfeiffer et al., 2020b; Wang et al.,
2021), we focus on languages whose scripts are
seen in mBERT. Handling unseen languages with
unseen scripts is a more challenging task, which
we leave for future research.

Our approach can be described using two high-
level components: (1) train-time ensembling and
(2) test-time ensembling, explained below for every
layer l (for notational simplicity, we skip using l in
notations but clarify wherever required).

3.1 Train-time Ensembling

During training, we make use of an attention mech-
anism inspired by the combination of task adapters
explored in Pfeiffer et al. (2021a). While they fo-
cus on creating an ensemble of task adapters, our
focus is on combining language adapters. Addi-
tionally, we identify valuable information available
in typological language vectors (Littell et al., 2017),
that we can leverage. To achieve this, we design
two sub-components in our architecture, which we
later combine for each layer (refer to Figure 1).
Token-based Attention (FUSION): This sub-
network computes the local attention weights over
source LAs for each token using the output of the
feed forward layer as its query, and the individual
language adapters’ outputs as both the key and the
value. Mathematically, for tth token, the embed-
ding obtained after passing through feed forward
layer becomes the query vector q(t). The individual
LAs’ outputs following this become key (and value)
matrices K(t) (and V (t)). The attention weights
of source LAs for tth token are computed using
the dot-product attention between projected query
Wqq

(t) and projected key matrix WkK
(t):

α
(t)
F = Softmax((Wqq

(t))T (WkK
(t))

The FUSION output for tth token is given by:
o
(t)
F = α

(t)
F ⊙ (WvV

(t))
Here, Wq,Wk,Wv are projection matrices which
are different for every layer l.
Language-vector-based Attention (LANG2VEC):
This sub-network computes the global attention
weights for source LAs using the input language
vector (of the token) as the query, the language vec-
tors of the source languages as the keys, and the
outputs through individual LAs as the values. Math-
ematically, the attention weights over the LAs are
obtained through a projected dot-product attention
between the input language vector linp as query
vector and the source language vectors stacked as
a key matrix Lsrc.

Here the language vectors are derived by pass-
ing the language features lf4 (each feature being
binary) through a single-layer trainable MLP:
linp = MLP(lfinp)
The LANG2VEC attention scores for tth token are
given by:
α
(t)
L = Softmax((llang[t])

TWL(Lsrc))
Here WL is a projection matrix associated differ-
ently with each layer l. lang[t] denotes language
vector of tth token in the input
The output of tth token is given by:
o
(t)
L = α

(t)
L ⊙ (WvV

(t))
Since, lang[t] is same across all tokens in an exam-
ple and also across all examples in a language, we
refer LANG2VEC attention as global. On the other
hand, FUSION computes local attention scores that
depend purely on the token-level outputs of the feed
forward layer and hence are local to each token in
any given input sentence.

Combining the two ensembling modules: We
pass the input sentence through both networks, and
for tth token receive the outputs o(t)F and o

(t)
L , corre-

sponding to the FUSION and LANG2VEC networks,
respectively. These two vectors are concatenated
and passed through a fully connected layer. The
output of this linear layer, denoted as o(t)LA, serves
as input to the task adapter (TA) to obtain the final
output o(t)final.

o
(t)
LA = LinearLayer(o

(t)
F ⊕ o

(t)
L )

o
(t)
final = TA(o

(t)
LA)

The above process is repeated for each layer l in

4Following the implementation of Üstün et al. (2020),
we use 103-dimensional ‘syntax’-based features available at
https://github.com/antonisa/lang2vec.
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Figure 1: FUSION Network (left) and LANG2VEC Net-
work (right) outputs are concatenated and sent to a Lin-
ear layer followed by a TA in every transformer layer l

the transformer architecture. We note that the LAs
are kept frozen throughout the training process,
while only the TA and other parameters described
in FUSION and LANG2VEC modules being train-
able. The training objective is word-level cross-
entropy loss for all models. For model selection,
we evaluate ZGUL and other baseline models on
the combined dev set of source languages’ data.
We do not use any dev set of target languages, as
doing so would violate the zero-shot assumption
on target language data.

3.2 Test-time Ensembling
Wang et al. (2021) introduced EMEA, an inference-
time Entropy Minimization (EM)-based algorithm
to adjust the LA attention scores, initializing them
from uniform (as mentioned in sec. 2). In our
case, since we learn the attention scores during
training itself, we seek to further leverage the EM
algorithm by initializing them with our learnt net-
works’ weights. First, we compute the entropy of
ZGUL’s predicted labels, averaged over all words
in the input sentence, using an initial forward pass
of our trained model. Since ZGUL has two dif-
ferent attention-based networks – FUSION and
LANG2VEC, it’s trainable parameters are the at-
tention weights for both these networks. We back-
propagate the computed entropy and update both
these attention weights using SGD optimization. In
the next iteration, entropy is computed again using

a forward pass with the modified attention weights.
This process is repeated for T iterations, where T
and learning rate lr are the hyperparameters, which
are tuned on dev set of linguistically most related
(based on distributed similarity, shown in figure
3) source language for each target (grid search de-
tails in Appendix A). Detailed EMEA algorithm is
presented in Algo. 1 (Appendix).

4 Experiments

We aim to address the following questions. (1)
How does ZGUL perform in a zero-shot setting
compared to the other baselines on unseen lan-
guages? What is the incremental contribution of
ZGUL’s components to the performance on LRLs?
(2) Are LA attention weights learnt by ZGUL in-
terpretable, i.e., whether genetically/syntactically
more similar source languages get higher atten-
tion scores? (3) How does ZGUL’s performance
change after incorporating unlabelled target lan-
guage data? (4) How does ZGUL’s performance
vary in a few-shot setting, where a few training ex-
amples of the target language are provided to the
model for fine-tuning?

4.1 Datasets, Tasks and Baselines
Datasets and Tasks: We experiment with 4 di-
verse language groups: Germanic, Slavic, African
and Indo-Aryan. Following previous works (Wang
et al., 2021; Pfeiffer et al., 2020b), we choose
named entity recognition (NER) and part-of-speech
(POS) tagging tasks. We select target languages
which are unseen in mBERT subject to their avail-
ability of test sets for each task. This leads us to
a total of 15 target languages spanning Germanic
and Slavic for POS, and African and Indo-Aryan
for NER. For African and Indo-Aryan NER exper-
iments, we use the MasakhaNER (Adelani et al.,
2021) and WikiAnn (Pan et al., 2017) datasets re-
spectively. For POS experiments, we use Universal
Treebank 2.5 (Nivre et al., 2020). We pick training
languages from each group that have pre-trained
adapters available. The details of training and test
languages, as well as corresponding task for each
group are presented in Table 1. For detailed statis-
tics, please refer to tables 13, 14, 16.
Baselines: We experiment with two sets of base-
lines. In the first set, the baselines use only English
as single source language during training:

• SFT-En: Standard mBERT fine-tuning on En-
glish
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Language Group Train set∗ Test set Task
Germanic German(De), Islandic(Is) Faroese(Fo), Gothic(Got), Swiss German(Gsw) POS
Slavic Russian(Ru), Czech(Cs) Pomak(Qpm), Upper Sorbian(Hsb) POS

Old East Slavic(Orv), Old Church Slavonic(Cu)
African Amharic(Amh) Hausa(Hau), Igbo(Ibo), Kinyarwanda(Kin) NER

Swahili(Swa), Wolof(Wol) Luganda(Lug), Luo(Luo), Nigerian Pidgin(Pcm)
Indo-Aryan Hindi(Hi), Bengali(Bn), Urdu(Ur) Assamese(As), Bhojpuri(Bh) NER

Table 1: Language groups or sets of related source and target languages, along with tasks. *English (En) is added to
train set in each case.

• MADX-{S}: Training with En LA (with train-
able TA stacked on top) and using strategy
S during inference, where S can be one of:
(1) En: En LA at inference, (2) Rel: Using
linguistically most related (based on similar-
ity in Table 3) LA from source languages and
(3) EMEA5: Ensembling all source LAs and
perform EM (initialized with uniform)

In the second set, we compare against models
trained upon multiple source languages (belong-
ing to a group), in addition to English:

• SFT-M: Standard fine-tuning on data from all
source languages.

• CPG: Conditional Parameter Generation
(Üstün et al., 2020), see Section 2.

• MADXmulti-{S}: We naturally extend
MADX-En to the multi-source scenario by
dynamically switching on the LA correspond-
ing to the input sentence’s language during
training. S refers to inference strategy that
can be one of the following (as described in
English baselines above): En, Rel, Uniform
Ensembling or EMEA ensembling.

It is important to note that the EM algorithm is
not applicable to SFT and CPG baselines because
SFT does not use an adapter, while CPG has only
a single (shared) adapter. Consequently, there are
no ensemble weights that can be tuned during in-
ference for these methods. The EM algorithm is a
distinctive feature of the ensemble-based methods
like ZGUL, which allows for further optimization
and performance improvement.
Evaluation Metric: We report micro-F1 evaluated
on each token using seqeval toolkit (Nakayama,
2018). For all experiments, we report the average
F1 from three training runs of the models with three
different random seeds. The standard deviation is
reported in Appendix G.

4.2 Results: Zero-Shot Transfer

Tables 2 and 3 present experimental findings for
Germanic and Slavic POS, as well as African and
Indo-Aryan NER, respectively. ZGUL outper-
forms other baselines for 10 out of 15 unseen test
languages. In terms of POS, ZGUL achieves a
respectable gain of 1.8 average F1 points for Ger-
manic and a marginal improvement of 0.4 points
for Slavic compared to its closest baseline CPG –
the gains being particularly impressive for Gothic,
Swiss German and Pomak languages. For NER,
ZGUL achieves decent gains of 3.2 points and 0.9
points for the Indo-Aryan and the African groups
respectively over the closest baseline i.e. SFT-M –
the gains being upto 4 F1 points for Luo. Moreover,
baselines trained on a single En source perform sig-
nificantly worse (upto 24 points gap in Indo-Aryan),
highlighting the importance of multi-source train-
ing for effective cross-lingual transfer. We note that
CPG outperfoms SFT-M for POS tagging, but or-
der switches for NER. This is to be expected due to
huge number of parameters in CPG (details in Sec.
A) and the smaller sizes of NER datasets compared
to POS (details in App. 13).

We also observe a substantial performance gap
between MADXmulti-Rel and ZGUL – the former
performing upto 7.5 points average F1 worse than
ZGUL for the Indo-Aryan group. This demon-
strates that relying solely on the most related LA
is sub-optimal compared to ZGUL, which lever-
ages aggregated information from multiple LAs.
Additionally, MADXmulti-Uniform, which does
a naive averaging of LAs, performs even worse
overall. Though MADXmulti-EMEA shows some
improvement over it, yet remains below ZGUL’s
performance by an average of about 4 points over
all languages. This finding highlights the effective-
ness of ZGUL-style training, as the EM algorithm
benefits from an informed initialization of weights,
rather than a naive uniform initialization strategy.

5We do same grid search for EMEA as ZGUL. Ref. to A
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Germanic Slavic

Fo Got Gsw Avg Qpm Hsb Orv Cu Avg

SFT-En 72.4 13.2 55.1 46.9 40 64.8 56.5 28 47.3
MADX-En 71.6 15.6 57.1 48.1 41.8 63.2 54.3 29.5 47.2
MADX-Rel 72.8 15.2 57 48.3 39.3 60.2 57 32.2 47.2
MADX-EMEA 74 14.8 55.3 48 42.1 63.1 56.4 32 48.4
MADXmulti-Rel 75.8 14.7 60.4 50.3 47.2 74.8 62.9 35.8 55.2
MADXmulti-Uniform 75.6 8.3 56.4 46.8 46.4 74.6 62.1 34.3 54.4
MADXmulti-EMEA 76.2 12.5 62.1 50.3 48 75 63.2 34.7 55.2
SFT-M 77.3 16.8 61.8 52.0 47.6 75.4 63.7 34.7 55.4
CPG 77 16 63.6 52.2 46.9 76.7 64.1 35.6 55.8
ZGUL 76.9 20.2 64.8 54∗ 50.7 76.8 63 34.4 56.2
ZGUL w/o EM 76.8 14.9 63 51.6 49.7 76 62.6 33.7 55.5
ZGUL w/o L 76.9 17.8 61.3 52 49.8 76 62.8 33.3 55.5
ZGUL w/o F 76.9 18.7 62.4 52.7 49.8 76.5 63 33.7 55.8

Table 2: F1 of POS Tagging Results for Germanic and Slavic language groups, ∗ denotes p-value < 0.005 for
McNemar’s test on aggregated results over all test languages in a group

African Indo-Aryan

Hau Ibo Kin Lug Luo Pcm Avg As Bh Avg

SFT-En 43.2 47.1 49.1 47.5 29 64.4 46.7 32.1 35.7 33.9
MADX-En 41.3 51.2 46 49.8 29.2 64.5 47 33 44.8 38.9
MADX-Rel 39.1 49.1 46.3 48.7 29.7 65.1 46.3 42.4 46.9 44.7
MADX-EMEA 42 52.9 50.2 50.6 30.7 65.5 48.7 41.6 47.6 44.6
MADXmulti-Rel 47.8 49.6 49.6 46.8 31.8 62.4 48 61.7 61.9 61.8
MADXmulti-Uniform 47 51.1 50.8 49.9 31.7 62.7 48.7 60 59 59.5
MADXmulti-EMEA 47.4 54.4 55 51.1 32.8 63.9 50.8 62.4 59.7 61.1
SFT-M 51.3 55.7 57.9 56.0 36.0 65.0 53.7 70.8 61.4 66.1
CPG 49 51.1 55.1 54 34.2 65.7 51.5 62 63.3 62.7
ZGUL 53.6 56.8 56.2 54.2 40.2 66.5 54.6∗ 74.4 64.1 69.3∗

ZGUL w/o EM 52.4 55.6 57.3 55.1 38.6 65.5 54.1 71.1 58 64.6
ZGUL w/o L 49 54.7 57.3 53.5 35.5 65.5 52.6 61.5 64.2 62.9
ZGUL w/o F 53.1 54.1 57.7 55.7 36.6 65.6 53.8 67.2 61.7 64.5

Table 3: F1 of NER Results for African and Indo-Aryan language groups, ∗ denotes p-value < 0.005 for McNemar’s
test on aggregated results over all test languages in a group

More analysis on this follows in Sec. 4.3.
Ablation results in last three rows in Tables 2, 3

examine the impact of each of the 3 components,
FUSION, LANG2VEC and Entropy Minimization
(EM), on ZGUL’s performance. We observe a posi-
tive impact of each component for each language
group, in terms of average F1 scores. For indi-
vidual languages as well, we see an improvement
in F1 due to each component, exceptions being
Kinyarwanda and Luganda, where EM marginally
hurts the performance. This could occur when
wrong predictions are confident ones, and further
performing EM over those predictions might hurt
the overall performance.

4.3 Interpretability w.r.t. Attention Scores

We wanted to examine if the attention weights com-
puted by ZGUL are interpretable. In order to do

this, we computed the correlation6 between the
(final) attention scores computed by ZGUL at in-
ference time, and the language relatedness with
the source, for each of the test languages. Since
ZGUL has two different networks for computing
the attention scores, i.e., the Fusion network and
LANG2VEC, we correspondingly compute the cor-
relation with respect to the average attention scores
in both these networks. For both networks, we
compute the average of scores across all tokens,
layers as well as examples in a target language. To
compute the language relatedness, we use the dis-
tributed similarity metric obtained as the average
of the syntactic and genetic similarities (we refer
to Appendix C for details). Table 4 presents
the results. Clearly, we observe a high correlation
between the attention scores computed by ZGUL

6Pearson Product-Moment Correlation
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Group LANG2VEC FUSION Mm-EM
Germanic 0.57 0.45 0.23
Slavic 0.93 0.85 0.14
African 0.61 0.2 0.18
Indo-Aryan 0.81 0.67 -0.01

Table 4: Correlation between ZGUL’s attention scores
and syntactic-genetic (averaged) similarity of source-
target pairs for both LANG2VEC and FUSION networks
and for the EMEA (multi-source) baseline

and language relatedness, especially for Slavic and
Indo-Aryan groups, for both the attention networks.
This means that the model is assigning higher atten-
tion score to languages which are more related in a
linguistic sense, or in other words, language relat-
edness can be thought of as a reasonable proxy, for
deciding how much (relative) importance to give
to LA from each of the source languages for build-
ing an efficient predictive model (for our tasks).
Further, we note that among the two networks,
the scores are particularly higher for LANG2VEC,
which we attribute to the fact that the network ex-
plicitly uses language features as its input, and
therefore is in a better position to directly capture
language relatedness, compared to the Fusion net-
work, which has to rely on this information implic-
itly through the tokens in each language.

For the sake of comparison, we also include
the correlations for MADXmulti-EMEA model (re-
ferred to as Mm-EM for brevity), which does LA
ensembling purely at inference time, to contrast the
impact of learning ensemble weights via training
in ZGUL on correlation with language relatedness.
Clearly, the scores are significantly lower in this
case, pointing to the fact that EMEA alone is not
able to capture a good notion of language related-
ness, which possibly explains its weaker perfor-
mance as well (as observed in Tables 2 & 3).

For completeness, Figures 2 & 3 present the at-
tention scores for the LANG2VEC network, and
also the language relatedness to the source lan-
guages, for each test language, grouped by corre-
sponding language group. The similarity in the
two heat maps (depicted via color coding) again
corroborates the high correlation between the at-
tention scores computed by ZGUL with language
relatedness.

4.4 Leveraging Unlabeled Target Data

Is ZGUL useful in case some amount of unlabeled
data is available for the target language? To an-

Figure 2: LANG2VEC attention scores for each of the
test languages (clustered group-wise).

Figure 3: Language relatedness between target and
source languages in each group, computed as average
of syntactic and genetic similarity metrics.

swer this, we use Wikipedia dumps, which are
available for 12 out of our 15 target languages.
For each language Ltgt, (1) we train its Language
Adapter LAtgt, and (2) pre-train mBERT model
using MLM, denoted as mBERT tgt. We also ex-
tend ZGUL to ZGUL++ as follows: we initialize
ZGUL’s encoder weights with mBERT tgt and
fine-tune it with the additional adapter LAtgt, in-
serted along with other source LAs. This is trained
only on source languages’ task-specific data (as tar-
get language training is not available). We compare
ZGUL++ with (1) MADXmulti-Tgt, which trains
MADX in multi-source fashion and at inference,
use the LAtgt, and (2) SFT++, which initializes
SFT’s encoder weights with mBERT tgt and fine-
tunes on the source languages’ data.

Table 5 shows ZGUL++’s average gains of 2
F1 points over our competitive baseline SFT++.
ZGUL++ achieves SOTA performance for 9 of

6975



Fo Got Gsw Hsb Cu Hau Ibo Kin Lug Pcm As Bh Avg

MADXmulti-Tgt 81.8 15.5 76.1 87.6 32.8 69.7 64 53.1 54.8 61.8 57.7 64.4 59.9
SFT++ 81.9 16.5 76.1 91.5 34.6 75.8 71.8 68 64 66.9 68.1 65.9 65.1
ZGUL++ 82.3 17.9 82.7 91.5 35.4 77.7 71.4 69.2 64.4 67.6 73.5 70.5 67
Z.++ w/o Tgt. LA 82.1 17.8 79.7 90.5 35.1 77.1 71.7 69.7 63.7 67.2 74.1 67.9 66.4
Z.++ w/o mBERTtgt 78.5 15.8 69.5 87.1 34.2 64.1 60.4 60.5 56.2 65.8 64.6 66.7 60.3
Unlabeled datasize 160k 2k 100k 150k 8k 350k 230k 30k 35k 8k 250k 45k

Table 5: F1 scores after incorporating target unlabeled data in various models. Unlabeled datasize is in # sentences.

12 languages while it’s ablated variant (not using
LAtgt) does so for two more languages. The gains
for Swiss German (6.6 F1 points) are particularly
impressive. Ablations for ZGUL++ show that
though incorporating the LAtgt is beneficial with
average gain of about 0.6 F1 point over all lan-
guages, the crucial component is initializing with
mBERT tgt, which leads to around 7 avg. F1 point
gains. Hence, the additional target pre-training step
is crucial, in conjunction with utilizing the target
LA, for effectively exploiting the unlabeled data.
We investigate how the performance scales for each
model from zero-shot setting (no unlabeled data)
to utilizing 100% of the Wikipedia target data. We
sample 2 bins, containing 25% and 50% of the full
target data. We then plot the average F1 scores over
all 12 languages for each bin in fig. 4.

Figure 4: Average F1 scores over target languages w.r.t.
percentage of Wikipedia data used. 0 denotes zero-shot.

We observe ZGUL++ is effective across the
regime. Compared to SFT++, the gains are higher
on the 100% regime, while compared to MADX-
Tgt baseline, a steep gain is observed upon just
using 25% data.

4.5 Few-Shot Performance
In this experiment, we take the trained ZGUL and
other multi-source models, i.e., CPG, SFT-M, and
fine-tune them further for a few labeled examples
from the train set of each target language. We do
this for those test languages, whose training set is

available (12 out of 15). We sample training bins
of sizes 10, 30, 70 and 100 samples. We observe

Figure 5: Few-shot F1 averaged over languages in a
group for various few-shot bins. Top row: Germanic,
Slavic. Bottom row: African, Indo-Aryan.

in Fig. 5 that ZGUL scales smoothly for all lan-
guage groups, maintaining its dominance over the
baselines in each case, except for Slavic, where
its performance is similar to CPG baseline. The
relative ordering of baselines, i.e. CPG outperform-
ing SFT-M for Slavic and Germanic (POS), and
SFT-M outperforming CPG for African and Indo-
Aryan (NER), is also maintained across the regime
of few-shot samples, similar to zero-shot setting.
The learning plateau is not reached in the curves for
either of the language groups, showing that adding
more target examples would likely result in further
improvement of all the models, albeit at a smaller
pace. We present the detailed language-wise few-
shot curves in Appendix H.

4.6 EM tuning using Target Dev set
In the purely zero-shot setting, we tuned EM
parameters for ensemble-based methods, i.e.
MADXmulti-EMEA and ZGUL, on the closest
source language’s dev set. However, if we assume
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Germanic Slavic

Fo Got Gsw Avg Qpm Hsb Orv Cu Avg

Closest baseline (CPG) 77 16 63.6 52.2 46.9 76.7 64.1 35.6 55.8
MADXmulti-EMEA 77.1 14 62.4 51.2 49.7 75.4 63.4 35.7 56.1
ZGUL 77.1 22.6 65.1 54.9 51.3 77.4 63.2 34.7 56.7

Table 6: POS Tagging Results for Germanic and Slavic groups when utilizing target dev set for EM tuning

African Indo-Aryan

Hau Ibo Kin Lug Luo Pcm Avg As Bh Avg

Closest baseline (SFT-M) 51.3 55.7 57.9 56.0 36.0 65.0 53.7 70.8 61.4 66.1
MADXmulti-EMEA 49.3 55.2 55 52.4 34.2 66.3 52.1 63.6 62.8 63.2
ZGUL 54.3 57.5 56.9 54.8 40.9 66.5 55.2 76.9 64.5 70.7

Table 7: NER Results for African and Indo-Aryan groups when utilizing target dev set for EM tuning

the target dev set availability, which indeed holds
for our target languages, one can leverage it for EM
hyperparameter tuning. We present the results for
the same in tables 6 and 7. The gains of ZGUL
become more pronounced, obtaining up to 1.4 avg.
F1 points in the Indo-Aryan group.

5 Conclusion and Future Work

We present ZGUL7, a novel neural model for en-
sembling the pre-trained language adapters (LAs)
for multi-source training. This is performed by fus-
ing the LAs at train-time to compute local token-
level attention scores, along with typological lan-
guage vectors to compute a second global attention
score, which are combined for effective training.
Entropy Minimization (EM) is carried out at test-
time to further refine those attention scores. Our
model obtains strong performance for languages
unseen by mBERT but with the seen scripts. We
present various analyses including that the learnt
attention weights have significant correlation with
linguistic similarity between source and target, and
demonstrating scalability of our model in the un-
labeled data and few-shot labeled data settings as
well.

In the future, our approach, being task-agnostic,
can be applied to more non-trivial tasks, such as
generation (Kolluru et al., 2022, 2021), semantic
parsing (Awasthi et al., 2023), relation extraction
(Rathore et al., 2022; Bhartiya et al., 2022), and
knowledge graph completion (Chakrabarti et al.,
2022; Mittal et al., 2023). Our technique may com-
plement other approaches for morphologically rich
languages (Nzeyimana and Rubungo, 2022) and for

7https://github.com/dair-iitd/ZGUL

those with scripts unseen in mBERT (Pfeiffer et al.,
2021b). Extending our approach to code-switched
data, in which each input token can potentially be-
long to a different language, is another interesting
future direction.
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Limitations

Our method incurs high inference-time overhead
for each forward pass owing to Adapters being
inserted in each layer. Further, the entropy mini-
mization typically needs 5 or 10 forward passes for
effective performance, which leads to further mul-
tiplying factor with each forward pass time. These
trade-offs between performance and cost are in-
herited from (Wang et al., 2021) itself. Language
Adapters have been trained on the Wikipedia dump
of source/target languages. This might potentially
impose restrictions to extending our technique’s
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efficacy to domain-specific tasks not having suffi-
cient publicly available data in that language and
domain as to train a strong Adapter (E.g. Medical
domain for African languages). Presently, our tech-
nique cannot be tested directly on unseen scripts
because our tokenization/embedding layer is same
as that of mBERT and may become a bottleneck for
Adapters to directly perform well. Our approach
is not currently tested on deep semantic tasks and
generation-based tasks owing to the lack of suitable
large-scale datasets for evaluation.
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Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Se-
bastian Ruder. 2020b. MAD-X: An Adapter-Based
Framework for Multi-Task Cross-Lingual Transfer.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7654–7673, Online. Association for Computa-
tional Linguistics.
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A Hyperparameter and Implementation Details

We use a Tesla V100 GPU (32 GB) for training all models. We use AdapterHub 8 (Pfeiffer et al., 2020a)
for all our experiments and analysis. We mention the hyperparameter grid for SFT and all adapter-based
models (including ZGUL) in table 8. For all experiments, we report the average of 3 training runs of the
models (with 3 different random seeds). We tune the Adapter Reduction Factor (RF) in the range of {3,4}
but generally find 3 to be the best for all adapter-based methods on all datasets. The EM algorithm used in
both ZGUL and EMEA uses grid search in the range {1, 5, 10} for iterations T and {0.05, 0.1, 0.5, 1.0}
for learning rate lr.

Hyperparameter SFT Adapter Based
Learning Rate {2e-5, 3e-5, 5e-5} {5e-5, 1e-4}
Max. epochs 10 for NER, 5 for POS 10 for NER, 5 for POS
Reduction Factor NIL {3, 4}
Batch Size {16, 32} {16, 32}
EM Steps NIL {1, 5, 10}
EM LR NIL {0.05, 0.1, 0.5, 1.0}
Few-shot LR {1e-5, 5e-5, 1e-4} {1e-5, 5e-5, 1e-4}
Few-shot epochs {1, 5, 10} {1, 5, 10}
Few-shot Batch Size {1, 4, 8} {1, 4, 8}

Table 8: Hyperparameter grids for ours models

A.1 Trainable Parameters & Training time

Per-Epoch Training time (in mins)

Model Params Indo-Aryan African Germanic Slavic Avg

SFT-M 177M 9 3 36 30 19.5
CPG 253M 37 13 141 115 76.5
ZGUL 41M 14 5 36 29 21

Table 9: Trainable Parameters & per-epoch training time of all models

A.2 Detailed EM Algorithm used in ZGUL

Algorithm 1 EM algorithm during Inference
Input: Our model’s scores α0= (α0

F ,α0
L), test data x, learning rate lr, update steps T

Output: Prediction ŷ
1: function EMEA++()
2: for t← 0 to T − 1 do
3: βt ←− Softmax(αt) ▷ Normalize the LA scores
4: H(x, α)←− Entropy(TA ◦ Lwavg(h, β

t) ◦M) ▷ Compute Entropy
5: gtF = ▽αH(x, αt

F ) ▷ Compute Token Attention gradient
6: αt+1

F ←− Update(αt
F , g

t
F ) ▷ Update Token Attention weights

7: gtL = ▽αH(x, αt
L) ▷ Compute LangVec Attention gradient

8: αt+1
L ←− Update(αt

L, g
t
L) ▷ Update LangVec Attention weights

9: αt+1 = (αt+1
F , αt+1

L )
10: end for
11: αT ←− Softmax(αT ) ▷ Final Normalize
12: ŷ ←− Predict(TA ◦ Lwavg(h, α

T ) ◦M)) ▷ Compute Prediction
13: end function

We note that we made the following amendments to the originaly proposed EMEA (Wang et al., 2021)
for our setting - (1) we made each token-level attention weights in each layer trainable, while the original
EMEA had tied it layer-wise. This gives the EM method more degree of freedom in our framework
compared to EMEA. (2) we have 2 attention networks, each initialized with its respective trained attention

8https://github.com/adapter-hub
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Hau Ibo Kin Lug Luo Pcm As Bh Fo Got Gsw Qpm Hsb Orv Cu Avg.

Layer-wise Tied
(original EMEA) 53.2 56.9 55.2 54.1 39.8 65.8 74.1 64.1 76.4 18.6 61.9 49.5 76.7 62.3 33.4 56.1
ZGUL 53.6 56.8 56.2 54.2 40.2 66.5 74.4 64.1 76.9 20.2 64.8 50.1 77.2 63 34.1 56.8

Table 10: Ablation showing why keeping token-wise trainable weights in EMEA is marginally better than tying it
layer-wise

scores, while the original technique had only a single network, initialized naively with uniform weights.
We found amendment (1) to be marginally better than the one when we tie the token-level weights
layer-wise (as in EMEA), as shown in table 10. Also, amendment (2) naturally follows from the fact that
our architecture has 2 components for LA ensembling.

B Robustness with XLM-Roberta

We wanted to examine whether our findings related to ZGUL’s superior performance over the existing
baselines carry over to other language models. Specifically, we trained ZGUL and other multi-source
baselines on XLM-R Base model available on Adapterhub (Pfeiffer et al., 2020a) for Germanic and
Indo-Aryan language groups. We had all the adapters for languages in these two groups, except for
Bengali (Indo-Aryan) which we eliminated during training. Table 11 presents our findings. ZGUL beats
both the baselines on both the language groups, with a gain of 1.6 pts on the Indo-Aryan group, and a
gain of 0.9 pts on the Germanic group, compared to its closest competitor. Ablation analysis conforms to
the trend observed with mBERT with EM being the most important component followed by LANG2VEC

and FUSION being the least important. This clearly confirms the finding that ZGUL’s gains are not
particularly restricted to a specific choice of PLM.

Indo-Aryan Germanic

Model As Bh Avg Fo Got Gsw Avg

SFT-M 60.4 60.5 60.5 78 15.4 54.9 49.4
CPG 55.7 60.3 58 78.1 18.3 57.6 51.3
ZGUL 59.3 64.9 62.1 77.8 21.7 57.1 52.2
ZG−EM 58.1 61.5 59.8 77.6 15.3 54.9 49.3
ZG−F 60.3 62.1 61.2 77.6 21 54.7 51.1
ZG−L 59.7 58.7 59.2 77.8 21.1 54.2 51

Table 11: F1 of NER Results for Indo-Aryan (trained on En,Hi,Ur) and POS for Germanic models (trained on En,
Is, De) with XLM-R-Base Adapters. − means without

C Quantifying similarity between source and target languages

We use the phlogenetic and syntactic distances between source and target languages for reference.9

C.1 Target language assignment
We justify assigning the unseen target language to a group using nearest neighbour based on phylogenetic
similarity (shown in fig. 6). E.g. Hausa is genetically most similar to Amharic, so it’s been assigned to the
African group. On the other hand, Luo has equal genetic similarity with all source languages, so we refer
to the syntactic similarity (fig. 7), for tie-break, in which it’s most similar to Wolof (also English, in this
case, which is common in every group), and hence it’s been assigned to the African group.

C.2 Consistency with the learnt attention scores

We also make use of these similarity metrics to validate the attention scores being learnt in the Lang2Vec
modules (explained in detail in section 4.3). E.g. for Bhojpuri, highest attention score goes to Hindi

9https://github.com/antonisa/lang2vec
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Figure 6: Heatmap - Genetic similarity

Figure 7: Heatmap - Syntactic similarity

Figure 8: Various similarity metrics between source and target languages (higher the more similar). This is used to
validate the assignment of the target languages to corresponding groups as well as for depicting correlation with the
LA attention scores learnt by LANG2VEC component.
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LA while for Assamese, it does for Bengali. Indeed, we observe that Bhojpuri is closest to Hindi while
Assamese being closest to Bengali, based upon the average of both genetic and syntactic similarities (fig.
3). Detailed correlation between the attention scores and similarity have been discussed in section 4.3

D Datasets’ details & Stats

Code Language
Amh Amharic
Ar Arabic
As Assamese
Be Belorussian
Bg Bulgarian
Bh Bhojpuri
Bn Bengali
Cs Czech
Cu Old Church Slavonic
Da Danish
De German
En English
Fo Faroese
Got Gothic
Gsw Swiss German
Hau Hausa
Hi Hindi

Code Language
Hsb Upper Sorbian
Ibo Igbo
Is Icelandic
Kin Kinyarwanda
Lug Ganda
Luo Luo
Mr Marathi
No Norwegian
Orv Old East Slavik
Qpm Pomak
Ru Russian
Swa Swahili
Ta Tamil
Uk Ukrainian
Ur Urdu
Wol Wolof

Table 12: Languages and their codes

Group Task Train set Train set size (combined) Dev set size
Indo-Aryan NER {En,Hi,Bn,Ur} 55026 13003
Germanic POS {En,Is,De} 222792 28394
Slavic POS {En,Ru,Cs} 179043 23479
African NER {En,Amh,Swa,Wol} 19788 4073

Table 13: Training & Dev size (# Sentences)

Group Task Train set LA set Test set
Indo-Aryan NER En,Hi,Bn,Ur {En,Hi,Bn,Ur} {As,Bh}
Germanic POS {En,Is,De} {En,Is,De} {Fo,Got,Gsw}
Slavic POS {En,Ru,Cs} {En,Ru,Cs} Qpm,Hsb,Orv,Cu
African NER {En,Amh,Swa,Wol} {En,Amh,Swa,Wol} {Hau,Ibo,Kin,Lug,Luo,Pcm}

Table 15: Language groups and their corresponding train, LA and test sets
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Test Language Script Size Overlap(%)
Fo Latin 1208 61.7
Got Latin 1031 21.6
Gsw Latin 100 54.3
Qpm Cyrillic 635 42.9
Hsb Latin 626 43.1
Orv Cyrilic 4204 45
Cu Cyrillic 1141 19.2
As Bengali 100 44.1
Bh Devanagri 102 64
Hau Latin 570 37.1
Ibo Latin 642 32
Kin Latin 611 32.6
Lug Latin 419 28.3
Luo Latin 189 35.8
Pcm Latin 600 82.3

Table 14: Test languages with their scripts, size (# Sentences) and token-level overlap (in % IOU) with source
training data

Group Task Tag Set Test Lang Set
Indo-Aryan NER {PER,LOC,ORG} {As,Bh}
Germanic POS TagPOS {Fo,Got,Gsw}
Slavic POS TagPOS {Qpm,Hsb,Orv,Cu}
African NER {PER,LOC,ORG,DATE} {Hau,Ibo,Kin,Lug,Luo,Pcm}

Table 16: Language groups and their corresponding tag sets. TagPOS =
{PART,CONJ,ADJ,ADP,ADV,VERB,DET,INTJ, NOUN, PRON, PROPN, NUM, PUNCT, AUX, SYM,
X}

E Qualitative Analysis

We also did some qualitative analysis to understand from where does the actual gain of ZGUL come from.
To do this, for both POS and NER tasks, we examined label-wise performance of our model, vis-a-vis the
baselines. For POS, we see that ZUGL does quite well on ’NOUN’ which has a huge support, resulting in
overall better performance for ZUGL. ZUGL does somewhat worse on labels such as ’CONJ’. Similarly,
for NER, ZUGL is able to do well on labels such as ‘LOC’ and ‘PER’, resulting in overall improved
performance over its competitors. We refer to the Appendix E.1 for further details. Carefully examining
the reasons behind improved performance on certain labels (while worse performance on others) is a
direction for future work.

E.1 Examples

Model Labels
Sentence Daas Buech laufft besser als jede vo sine Krimi .

Gold Labels DET NOUN VERB ADV CONJ PRON ADP DET NOUN PUNCT
ZGUL DET NOUN VERB ADV CONJ PRON ADP DET NOUN PUNCT
CPG DET PROPN VERB ADV ADP DET ADP DET NOUN PUNCT

Table 17: Example from the gsw language
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Figure 9: Orv language

Model Labels
Sentence Jami’an tsaron Lebanon . . . Jakadancin Amurka da ke birnin Beirut

Gold Lables O O LOC . . . O LOC O O O LOC
ZGUL O O LOC . . . O LOC O O O LOC
SFT-M O O LOC . . . PER PER O O O LOC

Table 18: Example from the hau langauge

Model Labels
Sentence Doho . . . pachoka David Maraga chiwo . . . jii 11 matiyo . . .

Gold Labels O . . . O PER PER O . . . O O O . . .
ZGUL O . . . O PER PER O . . . O DATE DATE . . .
SFT-M O . . . O PER PER O . . . O O O . . .

Table 19: Example from the luo language

F Class-wise F1 scores

Table 20 and Table 21 show the classwise F1 scores for each of the tasks. The scores are averaged over all
languages in each task.

We have used the seqeval10 framework for evaluating all the models, which is consistent with the
previous works and used by XTREME11. Seqeval removes the ‘B’ and ‘I’ prefixes of the labels, hence the
Table 21 has only 4 classes (E.g. ’B-PER’ and ’I-PER’ are mapped to same label ’PER’)

10https://github.com/chakki-works/seqeval
11https://github.com/google-research/xtreme
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Class ZGUL CPG SFT-M Support
PART 29.2 26.3 25.7 831
CONJ 63.8 64.6 64.1 9000
ADJ 44.3 44.1 43.6 8768
ADP 78.8 77.2 75.1 9960
ADV 27.7 27.6 27.8 5830

VERB 51.2 51.1 50.4 14385
DET 40.4 40.8 37.2 3027
INTJ 10.4 3.3 13.8 211

NOUN 58.9 57.3 58 18957
PRON 41.2 41 40.4 7068

PROPN 54.8 52.8 53.2 4506
NUM 58.4 57.2 57.3 1508

PUNCT 62.3 61 62.1 7670
AUX 42 41.2 40.3 2800
SYM 11.8 13.3 12.2 33

X 3.8 3.8 2.4 228
Micro-F1 55.9 54.4 54.1 94782

Table 20: Classwise F1-scores for POS task. Averaged over all languages

Class ZGUL SFT-M CPG Support
DATE 21.2 22.1 21.9 623
LOC 55.2 53.4 50.3 1643
ORG 53 53 48.4 1034
PER 66.7 64.2 64.1 1483

Micro-F1 57.1 55.6 53.4 4783

Table 21: Classwise F1-scores for NER task. Averaged over all languages

G Standard Deviation Details

Germanic Slavic

Fo Got Gsw Avg Qpm Hsb Orv Cu Avg

MADXmulti-EMEA 0.5 0.8 0.4 0.5 0.3 0.2 0.2 0.7 0.4
SFT-M 0.3 1.2 0.6 0.7 0.4 0.3 0.2 0.4 0.1
CPG 0.1 0.5 0.2 0.3 0.3 0.2 0.0 0.2 0.0
ZGUL 0.0 0.5 0.4 0.1 0.5 0.5 0.1 0.3 0.1

Table 22: F1 Std. Dev. (rounded to 1 decimal) of POS Tagging for Germanic and Slavic language groups. Note:-
Avg column denotes std. dev. of average F1 and not the average of std dev.
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African Indo-Aryan

Hau Ibo Kin Lug Luo Pcm Avg As Bh Avg

MADXmulti-EMEA 1.4 1.2 0.9 0.4 0.5 1.4 1.1 1.2 1.3 0.5
SFT-M 1.3 0.8 0.7 0.7 0.6 0.5 0.7 1.4 1 0.9
CPG 1.3 0.9 1.4 0.9 0.9 0.8 1 1.1 1.5 0.8
ZGUL 1.1 0.9 0.7 0.4 0.5 0.3 0.4 0.7 1.1 0.5

Table 23: F1 Std. Dev. (rounded to 1 decimal) of NER for African and Indo-Aryan language groups. Note:- Avg
column denotes std. dev. of average F1 and not the average of std dev.

H Language-wise Few Shot Performance

Figure 10: Language-wise few-shot performance results
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