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Abstract

While extreme-scale language models have
demonstrated exceptional performance on a
variety of language tasks, the degree of con-
trol over these language models through pure
prompting can often be limited. Directly fine-
tuning such language models can be effective
for tailoring them, but it can be either extremely
costly (e.g., GPT-3) or not even feasible for the
broader community (e.g., GPT-4).

We propose Inference-time Policy Adapters
(IPA), which efficiently tailors a language
model such as GPT-3 without fine-tuning it.
IPA guides a large base model during decod-
ing time through a lightweight policy adapter
trained to optimize an arbitrary user objective
with reinforcement learning.

On five challenging text generation tasks, such
as toxicity reduction and lexically constrained
generation, IPA consistently brings significant
improvements over off-the-shelf language mod-
els. It outperforms competitive baseline meth-
ods, sometimes even including expensive fine-
tuning. In particular, tailoring GPT-2 with IPA
can outperform GPT-3, while tailoring GPT-
3 with IPA brings a major performance boost
over GPT-3 (and sometimes even over GPT-4).
Our promising results highlight the potential
of IPA as a lightweight alternative to tailoring
extreme-scale language models.1

1 Introduction

Large language models (LLMs) have recently
shown remarkable progress in various text gener-
ation tasks by adapting to instructions or exam-
ples (Ouyang et al., 2022; Brown et al., 2020).
However, the degree of control (e.g., the inclu-
sion of keywords, avoiding harmful language) of-
fered by these extreme-scale models through pure
prompting is still limited (Lou et al., 2023; Webson
and Pavlick, 2021). Moreover, prompting can be

1Our code is publicly available at: https://github.com/
GXimingLu/IPA
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Figure 1: Inference-time Policy Adapters (IPA) effi-
ciently steer a large-scale language model (such as GPT-
3) during decoding-time through a lightweight policy
adapter trained to optimize any arbitrary user objective
with reinforcement learning.

a brittle process due to LLMs being overly sensi-
tive to the surface-form of the instructions (Perez
et al., 2021; Lu et al., 2022c). Furthermore, even
with a carefully written prompt, LLMs may still
struggle to fulfill certain task requirements due to
their inherent limitations (Liu et al., 2022a; Zong
and Krishnamachari, 2022).

Resource-intensive fine-tuning, through super-
vised learning, and more recently reinforcement
learning (RL) (Lu et al., 2022a) have shown
promise in tailoring language models to arbitrary
user-given objectives. RL, in particular, known
for its generalizability and flexibility, allows mod-
els to learn from desired rewards. However, these
methods require accessing and updating models
parameters, which can be extremely large or inac-
cessible in state-of-the-art models like GPT-4 (Ope-
nAI, 2023b). This limitation makes fine-tuning
unfeasible for the broader community.
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Alternatively, inference-time algorithms can tai-
lor a language model without accessing its pa-
rameters. These algorithms align language mod-
els’ outputs with desired task/user-specific prop-
erties by adjusting the model’s output distribution
based on certain task-specific heuristics, while leav-
ing the underlying model untouched. Despite the
progress, these approaches are either restricted
to specific tasks (Lu et al., 2021, 2020), require
domain-specific knowledge (Liu et al., 2021a; Yang
and Klein, 2021), suffer from expensive run-time
at inference (Qin et al., 2022, 2021; Dathathri et al.,
2020a), or have shown to be less effective com-
pared to direct RL optimization (Lu et al., 2022a).

Drawing inspiration from RL and inference-
time techniques, we propose Inference-time Pol-
icy Adapters ( IPA), an efficient and general-
izable algorithm, which tailors a large language
model at decoding-time toward desired objectives
without fine-tuning it. To do so, IPA combines a
large base LM’s output distribution with that of a
smaller-sized model (a lightweight adapter pol-
icy), and optimizes the combined distribution to-
wards a given objective with RL (Figure 1). IPA
uses two key ideas to make learning efficient. First,
IPA only updates the adapter’s parameters, avoid-
ing the need to update the large base LM. Second,
IPA replaces the large base model with an approx-
imate policy–a smaller model that approximates
the base model’s distribution. The approximate
policy is either a smaller model from the same lan-
guage model family or a distilled version of the
base model. At inference time, we decode with the
combined distribution of the base model and the
trained policy adapter.

Experiments across five challenging text gen-
eration tasks show that IPA brings consistent im-
provements over off-the-shelf language models,
outperforming competitive baselines — sometimes
even including expensive fine-tuning. In particu-
lar, tailoring GPT-2 with IPA can outperform GPT-
3, while tailoring GPT-3 with IPA brings a ma-
jor performance boost over GPT-3 (and sometimes
even over GPT-4). Our compelling highlight the
promise of IPA as a lightweight alternative for tai-
loring large language models to a wide range of
objectives. IPA opens new ways to augment or cus-
tomize extreme-scale language models using only
academic-level resources.

2 Background

In this section, we introduce our text generation set-
ting (§2.1) and a brief background on tailoring lan-
guage models with reinforcement learning (§2.2).
We then introduce our IPA algorithm for tailoring
large language models without fine-tuning (§3).

2.1 Problem Setting
Text generation is the task of generating an out-
put sequence y given an input sequence x. We
consider standard autoregressive language mod-
els, which decompose a sequence’s probability as
pθ(y|x) =

∏|y|
t=1 pθ(yt|y<t, x), where pθ is a neu-

ral network with parameters θ. Intuitively, our goal
is to ‘tailor’ a pretrained model pθ towards a user-
specified objective (e.g., safety). Concretely, we
assume that the objective is quantified by a reward
function R(y) ∈ R. We then aim to adjust pθ so
that its generated sequences have high reward and
reasonable language quality (e.g., fluency).

2.2 Preliminary: Tailoring LMs with RL
Online policy-based reinforcement learning has
emerged as an effective way to adjust a language
model towards a reward function. Formally, these
algorithms (e.g., PPO (Stiennon et al., 2022), Quark
(Lu et al., 2022b), or NLPO (Ramamurthy* et al.,
2023)) optimize a language model pθ towards gen-
erating outputs y that maximize a given reward R:

θ⋆ = argmaxEy∼pθ(·|x)R(y),

often along with regularization to maintain lan-
guage quality. At a high-level, these algorithms use
a policy pθ to collect input-output examples, score
the outputs with a reward function R, and update
parameter θ to maximize the expected reward. Al-
though the exact optimization may differ, we can
view any online policy-based RL algorithms as a
functions fRL that take a policy pθ and a reward
function R as the inputs and outputs an optimized
policy pθ⋆ with respect to R. Formally,

fRL : (pθ,R; θ′) → θ⋆. (1)

Here θ′ ⊆ θ denotes the subset of pθ’s parameters
that are updated by the algorithm. The key idea
behind IPA is to use a full model pθ to collect
examples, but update a small set of parameters θ′.

3 Inference-time Policy Adapters (IPA)

We introduce Inference-time Policy Adapters (IPA),
a lightweight approach to tailor language models
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towards a user-specified objective. IPA trains a
small adapter policy that adjusts the outputs of a
(larger) base model at inference-time in order to
maximize a reward. In doing so, IPA avoids the
cost of updating the large base model, without the
need to hand-design inference-time heuristics.

3.1 Policy Adaptation
We introduce the notion of ‘tailoring’ used by IPA,
which mainly involves three policies. First, IPA
starts with a base policy pθ, which is the language
model to tailor. Second, IPA introduces an adapter
policy pϕ, which is a language model with the same
output space as the base policy (i.e., vocabulary),
but different parameters ϕ. Finally, IPA combines
the base and adapter policies into a tailored policy:

Definition 1 (Tailored policy). The tailored policy
pθ←ϕ combines the distributions of the base policy
pθ and the adapter policy pϕ,

pθ←ϕ(yt|y<t) =
1

Z
pθ(yt|y<t)pϕ(yt|y<t),

where Z is a normalization factor.

The tailored policy is a product-of-experts (Hin-
ton, 2002), which amounts to multiplying the next-
token probabilities from the base and adapter poli-
cies, then normalizing the result. IPA’s tailored
policy has two key properties. First, it allows for
adjusting the base policy’s output without direct ac-
cess to the base policy’s parameters. This is critical
for tailoring modern LLMs that provide access to
the model’s output distribution but not the model’s
parameters. Second, the policy adapter can use a
much smaller model (i.e., ϕ ≪ θ). This provides
an efficient way to tailor a large base model.

3.2 Adapter Training with RL
Our goal is to adjust the tailored policy towards a
user-specified objective. The key idea in IPA is to
train the tailored policy to optimize a given reward
with reinforcement learning, while only updating
the parameters of the adapter policy.

Concretely, we use a reinforcement learning al-
gorithm fRL (Eqn. 1) to optimize the tailored policy
pθ←ϕ with a reward function R. Notably, we keep
the base policy’s parameters (θ) frozen, and only
update the adapter policy’s parameters (ϕ). That is,

ϕ⋆ = fRL (pθ←ϕ,R;ϕ).

Intuitively, the adapter policy pϕ learns to rescale
the frozen base policy pθ, yielding a tailored pol-
icy that is ‘tailored to’ the reward. Notice that our

framework does not depend on a specific RL al-
gorithm, but rather treats RL as a flexible plug-in
optimization tool. As we will demonstrate later,
IPA proves to be effective when paired with three
different RL algorithms (Lu et al., 2022b; Schul-
man et al., 2017; Ramamurthy et al., 2023), and in
principle, it can easily integrate with others.

Approximate Policy. When the base model is
extremely large (e.g., GPT-3), its forward pass is
too costly to be used in the RL training loop. To
overcome this, we propose using an approximate
policy in IPA.

Definition 2 (Approximate policy). The approx-
imate policy is defined as a smaller-sized neural
model parameterized by θ̂ that approximates the
distribution of the base policy and is used to replace
the base policy in the RL-based adapter training:

ϕ⋆ = fRL (pθ̂←ϕ,R;ϕ).

In practice, we can obtain an approximate pol-
icy in two different ways. First, we can use a
smaller pre-trained language model from the same
model family. We do this if the smaller model
has similar conditional generation behavior as the
base policy. For instance, we use an off-the-shelf
GPT2-XL as the approximate policy to tailor GPT-
3 in an open-ended generation. Alternatively, we
can use a distilled base policy as the approxi-
mate policy. A distilled base policy is a language
model trained on generations from the base pol-
icy, θ̂ = argmaxEy∼pθ(·|x)

[
logPθ̂(y)

]
, known as

sequence-level knowledge distillation (Kim and
Rush, 2016; West et al., 2022). For example, to tai-
lor GPT-3 for lexically constrained generation, we
tune GPT2-XL on prompt-generation pairs from
GPT-3 to get a distilled base policy.

IPA at Inference Time. At inference time,
IPA uses the tailored policy pθ←ϕ for decoding.
Namely, at each time-step we obtain the next-token
distribution from the tailored policy pθ←ϕ(yt|y<t),
which can then be used with a standard decoding
algorithm (e.g. nucleus sampling).

4 Experiments

We evaluate IPA on a diverse range of tasks:
toxicity reduction (§4.1), lexically constrained
generation (§4.2), open-ended generation (§4.3),
dialogue safety control (§4.4), and knowledge-
grounded dialogue (§4.5). In all benchmarks, IPA
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consistently improve upon LLMs such as GPT-
3 (text-davinci-003), surpassing competitive
baselines and sometimes even outperforming ex-
pensive fine-tuned GPT-3 at a fraction of the cost.

4.1 Toxicity Reduction

LMs are susceptible to generating toxic comple-
tions, even when prompted with seemingly innocu-
ous text (Gehman et al., 2020). Here, we assess
IPA’s efficacy in reducing toxicity from LMs.

Datasets and Metrics. The task is to generate a
fluent continuation y while avoiding offensive con-
tent for a given prompt x. We evaluate this on RE-
ALTOXICITYPROMPTS benchmark (Gehman et al.,
2020), which contains 100k prompts designed to
elicit toxic generations. Following the experimen-
tal setup of Liu et al. (2021b), we use Perspective
API to determine the average maximum toxicity
across 25 sampled generations and the (empirical)
toxicity probability of at least one toxic generation.
In addition, we report fluency as the perplexity of
generated output based on an off-the-shelf GPT2-
XL model, and diversity as the count of unique
n-grams normalized by the length of text. We also
perform human evaluations; see Appendix A.1 for
more details.

Setup and Baselines We apply IPA to tailor off-
the-shelf GPT-2 and GPT-32. To tailor GPT-2, we
directly apply the base policy in the adapter train-
ing, denoted as IPA(GPT-2). For tailoring GPT-3,
we use an off-the-shelf GPT-2 and a distilled GPT-3
3 as the approximate policy for the adapter training,
labeled as IPA-(GPT-3) and IPA*(GPT-3) respec-
tively. Notice that IPA-(GPT-3) is equivalent to
directly applying the policy adapter trained to tai-
lor GPT-2 on top of GPT-3. We initialize all the
policy adapters with a pre-trained GPT2-L model.

We use QUARK as the RL algorithm in adapter
optimization, and provide additional ablation stud-
ies to assess the effects of different RL algorithms.
We use the Perspective API as the reward func-
tion, which provides a score ranging from 0 to 1 to
indicate the degree of toxicity.

For tailoring GPT-2, we compare IPA with
previously reported baselines from Lu et al.
(2022a), including decoding-based methods:
PPLM (Dathathri et al., 2020a), GeDi (Krause et al.,

2We refer text-davinci-003 as GPT-3 in this paper
3We finetune a GPT2-XL with prompt-output pairs from

GPT-3 on REALTOXICITYPROMPTS as the distilled GPT-3.

Models Toxicity Fluency Diversity

Avg Max. Prob. Pl. Dist-2. Dist-3.
base policy: GPT2-L
GPT-2 0.527 0.520 11.31 0.85 0.85
PPLM 0.520 0.518 32.58 0.86 0.86
GeDi 0.363 0.217 60.03 0.84 0.83
DEXPERTS 0.314 0.128 32.41 0.84 0.84
DAPT 0.428 0.360 31.21 0.84 0.84

PPO 0.218 0.044 14.27 0.80 0.84
QUARK 0.196 0.035 12.47 0.80 0.84

IPA (GPT-2) 0.138 0.031 11.94 0.80 0.84
base policy: GPT-3
GPT-3 0.275 0.197 10.65 0.78 0.81
DEXPERTS 0.223 0.112 23.41 0.79 0.82
DAPT 0.254 0.176 20.19 0.80 0.83

IPA- (GPT-3) 0.150 0.056 10.34 0.79 0.81
IPA* (GPT-3) 0.101 0.028 12.68 0.79 0.83

Table 1: Automatic evaluation for Toxicity Reduction
with off-the-shelf GPT2-large (top) and GPT-3 (bottom)
as the base policy to tailor.

RL Algo. Toxicity Fluency Diversity

Avg Max. Prob. Pl. Dist-2. Dist-3.

Quark 0.138 0.031 11.94 0.80 0.84
PPO 0.125 0.029 12.47 0.80 0.84
NLPO 0.136 0.032 12.13 0.80 0.85

Table 2: Comparison of using different RL algorithm for
training IPA for Toxicity Reduction with off-the-shelf
GPT2-large as the base policy to tailor.

2021), DExpert (Liu et al., 2021a), and learning-
based methods: DAPT (Gururangan et al., 2020),
PPO (Schulman et al., 2017), and QUARK (Lu et al.,
2022a). For tailoring GPT-3, we compare IPA to
the baselines described above that are compatible
with GPT-3’s limited accessibility: DExpert (Liu
et al., 2021a) and DAPT (Gururangan et al., 2020).
We also provide runtime analysis in Appendix B.

Results As shown in Table 1, IPA outperforms all
learning-based and decoding-based methods in tai-
loring GPT-2 and GPT-3, significantly reduces the
toxicity while maintaining language quality. Inter-
estingly, we found that applying the policy adapter
optimized for GPT-2 directly on top of GPT-3 (i.e.,
IPA-) is highly effective, showcasing the adaptabil-
ity and reusability of IPA. Notably, when tailoring
GPT-3, IPA outperforms the costly domain adap-
tive training (DAPT), which exhaustively fine-tune
GPT-3 on a non-toxic corpus. This further em-
phasizes the promise of the IPA as a cost-efficient
approach to align LLMs. Our findings are further
confirmed by human evaluation (Appendix A.1).

Finally, we conduct ablations on the effect of
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Figure 2: Performance of IPA- (blue line) with respect
to the size of the adapter model (distill-GPT2, GPT2-
small, GPT2-medium, GPT2-large, GPT2-XL) on top
of a off-the-shelf GPT-3 as the base policy. The grey
line denotes the performance of the off-the-shelf GPT-3.

Models Automatic Human

Cov. Fl. Qu. Pl. Overall

GPT-3 37.01 94.89 2.84 2.81 2.60
GPT-3.5 65.17 95.89 2.93 2.88 2.90
GPT-4 84.81 95.49 2.95 2.97 2.96

GPT-3sft 72.89 73.96 2.56 2.60 2.50

IPA∗ (GPT-3) 88.54 92.58 2.90 2.87 2.88

Table 3: Automatic and human evaluation results for
Lexically Constrained Generation. Human evaluation
scores are on a 3-point Likert Scale.4

RL algorithms. As shown in Table 2, IPA is ef-
fective with various RL algorithms, all of which
lead to state-of-the-art performance. Additional
ablation in Figure 2 shows that a policy adapter as
small as a distilled GPT-2 can effectively tailor the
×1000 larger GPT-3 model, achieving comparable
performance with our main result.

4.2 Lexically Constrained Generation

Next, we test IPA in lexically constrained gener-
ation. We consider a more challenging setup of
ordered lexical constraints, where the generation
is considered correct if it includes all the keywords
with the correct order specified in the input prompt.

Datasets and Metrics. We use COMMONGEN

(Lin et al., 2020), a dataset for generative com-
monsense reasoning. We deliberately instruct the
models to generate a sentence with the given key-
words while following the order they appear in the
input prompt. For automatic evaluation, we gauge
the constraint satisfaction with coverage, a binary
metric that evaluates a generation to be correct only
when it includes all the keywords and also matches
the specified order. We also measure the fluency
using a critic model fine-tuned on CoLA (Warstadt
et al., 2019). For human evaluation, we assess the
quality and plausibility of model generations for
100 randomly sampled test examples based on a
3-point Likert Scale; see details in Appendix E.

Setup and Baselines. As we will demonstrate
later, zero-shot GPT-3 is surprisingly poor at satis-
fying ordered lexical constraints, even with explicit
instructions. Our goal is to make GPT-3 more re-
liable in constraint satisfaction. We use distilled
GPT3 5 as the approximate policy for adapter train-
ing, since an off-the-shelf GPT-2 cannot perform
constrained generation out of the box. We initial-
ize the policy adapter with a pre-trained GPT2-L
model. We use QUARK as the RL algorithm and
choose our reward to be the product of the coverage
score and the fluency score, as this promotes con-
straint satisfaction and fluency preservation. Please
see Appendix A.4 for more reward analysis.

We compare IPA with its base policy GPT-3, as
well as more advanced LLMs: GPT-3.5 and GPT-4
(OpenAI, 2023a). As a strong supervised baseline,
we also fine-tune GPT-3 on the COMMONGEN train
set, which contains human-written outputs with the
correct lexical order, denoted as GPT-3sft.

Results. As shown in Table 3, powerful LMs
such as GPT-3 often struggle to satisfy ordered lex-
ical constraints even with explicit instructions. IPA
leads to remarkable improvement on top of GPT-
3 and surpasses more advanced models such as
GPT-3.5 and GPT-4 in terms of constraint coverage,
while achieving better or comparable generation
quality. Noticeably, IPA outperforms fine-tuned
GPT-3 in both constraint coverage and generation
quality at a fraction of its cost: while fine-tuning
GPT-3 costs $156.82, training a distilled GPT-3 as
the approximate policy requires only $28.59 for
generating outputs from GPT-3. Our results high-
light the potential of the IPA as a cost-efficient way
to enhance the capabilities of LLMs.

4.3 Open-ended generation

We further evaluate IPA on open-ended genera-
tion, following the experimental setup in (Li et al.,
2022b). The goal is to make machine-generated
content more fluent, coherent, and human-like.

Datasets and Metrics. We experiment on the
news domain using XSum dataset (Narayan et al.,
2018). Following Li et al. (2022b), we use the
first 32 words as our input prompt, and generate
84 tokens as continuations. We evaluate using both

4Human pairwise agreements are 0.97, 0.94, and 0.93 for
quality, plausibility and overall, respectively.

5We finetune a GPT2-XL with prompt-output pairs from
GPT-3 on COMMONGEN train set as the distilled GPT-3
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Decoding Method Diversity Coherence Critic Mauve
base policy: GPT2-XL
greedy 55.05 49.57 7.88 15.32
top-k (k=50) 92.60 48.53 10.72 53.13
top-p (p=0.95) 95.85 47.61 13.24 56.42
typical (τ=0.95) 95.80 46.08 23.49 63.92
SimCTG 95.67 46.12 23.67 62.21
Contrastive 95.99 49.42 36.73 61.95
IPA (GPT2-XL) 96.12 51.81 50.93 84.18
base policy: GPT-3
top-p (p=0.95) 95.63 56.16 18.58 63.73
IPA- (GPT-3) 95.35 57.26 22.62 71.40
IPA* (GPT-3) 96.26 61.94 32.84 73.17

Table 4: Automatic evaluation for open-domain genera-
tions on XSum with off-the-shelf GPT2-XL (top) and
GPT-3 (bottom) as the base policy to tailor. Critic scores
refer to human-likeness according to OpenAI detector.

automatic and pairwise human evaluation. For au-
tomatic evaluation, we use aggregate n-gram di-
versity and coherence scores (Li et al., 2022b) as
well as MAUVE (Pillutla et al., 2021), which mea-
sures the distribution similarity between the set of
human-written and machine-generated texts. To
measure the human-likeness of generated texts, we
employ OpenAI detector6, a classifier for distin-
guishing AI vs. human-written text. We use the
classifier’s probability assigned to ‘human’ text to
serve as an additional metric, denoted as Critic. For
human evaluation, we randomly sample 100 test
examples and perform pairwise comparisons of our
method against baselines on coherence and fluency
using AMT; see details in Appendix E.

Setup and Baselines. We apply IPA to tailor
off-the-shelf GPT2-XL and GPT-3, following the
same setup as toxicity reduction task (section 4.1).
Same as before, the tailor policies are denoted as
IPA(GPT-2), IPA-(GPT-3) and IPA*(GPT-3), re-
spectively. We use QUARK as the RL algorithm
and the product of diversity, coherence, and critic
scores as the reward function. We found it critical
to combine multiple metrics as the reward function
to improve the overall generation quality; see Ap-
pendix A.4 for more analysis on reward functions.
For tailoring GPT-2, we compare decoding with
IPA with six different decoding strategies: greedy,
top-k sampling (k = 50), nucleus sampling (p =
0.95), typical sampling (τ = 0.95) (Meister et al.,
2023), SimCTG (Su et al., 2022), and Contrastive
decoding (Li et al., 2022b). The latter three are

6https://github.com/promptslab/
openai-detector

Figure 3: Pairwise human evaluation in terms of overall
quality for Open-ended Generation on XSum with off-
the-shelf GPT2-XL (top) and GPT-3 (bottom) as the
base policy to tailor.7

Models Automatic Human
Safety Safety Coherence

DialoGPT 0.46 1.34 2.45
Godel 0.49 1.40 2.53
Blenderbot 0.53 1.43 2.60
ChatGPT 0.74 1.60 2.68
IPA- (BlenderBot-3B) 0.78 1.57 2.75

Table 5: Automatic and human evaluation results for
Dialogue Safety Control. Human evaluation scores are
on a 3-point Likert Scale.8

specifically designed to improve the coherence and
naturalness of the generated text. For tailoring GPT-
3, we compare IPA with GPT-3’s default generation
technique: decoding with nucleus sampling (p =
0.95). as other decoding methods are not applicable
to GPT-3 due to its limited API access.

Results. As shown in Table 4, IPA significantly
outperforms all previous baselines in tailoring GPT-
2 and GPT-3 across all automatic metrics. Notably,
it achieves an absolute improvement of 20.26%
over the best-performing baseline in the Mauve
score. Our pairwise human evaluation in Figure
3 also verify the results. IPA generates signifi-
cantly more coherent and fluent texts compared to
other baselines. Overall, on average, human evalu-
ators preferred IPA 1.8× more than other baselines.
Interestingly, we found that directly applying the
policy adapter optimized for GPT-2 on top of GPT-
3 (i.e., IPA-) significantly improves the generation
quality, highlighting the adaptability and reusability
of IPA. We observed further improvement when us-
ing distilled GPT-3 as the approximate policy (i.e.,
IPA*). Our promising results once again showcase
the effectiveness and efficiency of IPA.
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4.4 Dialogue Safety Control

Existing dialogue systems often fail to respond
safely to potentially unsafe user utterances (Kim
et al., 2022), limiting their deployment in real-
world applications. Here, we aim to evaluate IPA
for controlling the safety of a dialogue model.

Datasets and Metrics. We experiment on DI-
ASAFETY (Sun et al., 2022), a challenging dataset
containing 54K context-sensitive unsafe examples.
The task is to generate a coherent response to a po-
tentially unsafe utterance while avoiding offensive,
harmful, toxic or biased language. DIASAFETY

contains human-written safe and unsafe responses
which we use to train a dialogue safety classifier.
We use the classifier score as an automatic mea-
sure of safety. In addition, we conduct a human
evaluation of safety and coherence (3-point Likert
scale) on 200 examples through Amazon Mechani-
cal Turk; see Appendix E Figure 4 for details.

Setup and Baselines. We apply IPA to tailor the
Blenderbot family models (Roller et al., 2021),
which are pretrained dialogue agents. Specifically,
we use Blenderbot-3B-distill as the frozen base pol-
icy, a samller Blenderbot-1B-distill as the approxi-
mate policy and initialize the policy adapter with
a Blenderbot-1B-distill model. We use QUARK as
the RL algorithm for adapter training. To preserve
the dialogue quality while controlling the response
safety, we choose our reward to be the product of
the safety score from our dialogue safety classifier,
as well as coherence and engagingness scores from
UniEval-Dialogue (Zhong et al., 2022).9

We compare IPA with its base policy, i.e.,
Blenderbot-3B-distill, and other off-the-shelf di-
alogue models including DialoGPT (Zhang et al.,
2020), GODEL (Peng et al., 2022) as well as Chat-
GPT (OpenAI, 2022). ChatGPT is known to have
safeguards through content filtering and is consid-
ered a strong baseline.

Results. As shown in Table 5, IPA significantly
improves dialogue safety and coherence compared
to its base policy Blenderbot-3B-distill, surpass-
ing other dialogue models including DialoGPT
and GODEL. In comparison with ChatGPT, IPA
achieves comparable performance on safety based

7Average pairwise agreements are 0.88 and 0.82 with
GPT2-XL and GPT-3, respectively.

8Human pairwise agreements are 0.84 and 0.87 for safety
and coherence.

9https://github.com/maszhongming/UniEval

on both automatic and human evaluation while
showcasing improved coherence. Upon further in-
vestigation, we found that ChatGPT often generates
canned responses like "I’m a language model; I’m
not allowed..." as hard safeguards, which hurts the
coherence and naturalness of the dialogue flow. On
the other hand, Blenderbot tailored by IPA can gen-
erate safe responses that are coherent, natural, and
human-like. Our results demonstrate the potential
of IPA to enhance controllability in various NLP
applications beyond conditional text generation.

4.5 Knowledge-grounded Dialogue
Ideally, knowledge-grounded dialogue systems
should generate responses that are faithful to the
given knowledge. However, models tend to gen-
erate hallucination containing unverifiable infor-
mation (Dziri et al., 2022a; Rashkin et al., 2021a;
Dziri et al., 2022c). To address this undesirable
behavior, we use IPA to tailor dialogue model to-
wards generating more faithful content. Given the
knowledge K and the conversation history H , the
task is to generate a response r that’s faithful to K
and coherent with H .

Dataset and Metrics We evaluate on the Wizard
of Wikipedia (WoW) data. WoW (Dinan et al.)
involves a Wizard and an Apprentice engaging in
a conversation. The Wizard’s role is to provide
information on a specific topic, while the Appren-
tice’s task is to seek further details. WoW has been
shown to suffer from hallucinations (Dziri et al.,
2022b), in more than 60% of the turns, making it a
valuable dataset for studying hallucination issues.
FaithDial (Dziri et al., 2022a) is a hallucination-
free benchmark created by modifying the halluci-
nated responses within the WoW dataset. We use
the FaithDial test data at test time to evaluate the
faithfulness of responses and compare them against
the knowledge snippets and gold responses.

To measure faithfulness, we use the critic model
(Dziri et al., 2022a), which returns the probability
of an given utterance being identified as faithful.
Additionally, we use BERTScore to measure the
semantic similarity between the generated response
r and the knowledge K, and the token-level F1
score to rate the lexical overlap between r and K.
To measure coherence and engagingness, we use
the UniEval model (Zhong et al., 2022).

Setup and Baselines Similar to the dialogue
safety experiment, we use the Blenderbot-{3, 1}B-
distill model (Roller et al., 2021) as our base policy
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Dialogue Model Critic BERTScore F1 Coherence Engaging
supervised baseline
GPT-2 39.9 0.29 47.7 0.77 1.26
DIALOGPT 40.6 0.34 53.5 0.83 1.32
DOHA 46.8 0.32 56.1 0.88 1.33
T5 53.5 0.41 61.7 0.86 1.28
T5-CTRL 54.8 0.45 65.2 0.83 1.21
T5-LT 58.6 0.43 65.0 0.83 1.21
off-the-shelf dialogue model
BlenderBot 10.3 0.12 9.8 0.92 1.21

IPA- (BlenderBot) 76.6 0.68 80.1 0.91 1.34

Table 6: Evaluation results for Knowledge-Grouded
Dialogue generations on Faithdial. We use off-the-shelf
Blenderbot as the base policy to tailor.

and approximate policy respectively, and initial-
ize the policy adapter with a Blenderbot-1B-distill
model. We use QUARK as the RL algorithm. To
preserve coherence and engagingness while ensur-
ing the faithfulness of a dialogue response, we
choose our reward to be the product of the faithful-
ness score from the critic model described above,
as well as coherence and engagingness scores from
UniEval-Dialogue (Zhong et al., 2022).

We compare to previously baselines from Dziri
et al. (2022a), supervised models fine-tuned on
WoW, including GPT2, DialoGPT (Zhang et al.,
2020), DoHA (Prabhumoye et al., 2021) T5 (Raffel
et al., 2020), T5-CTRL (Rashkin et al., 2021b), and
T5-LossTruncation (Kang and Hashimoto, 2020).
We also compare against the base policy, off-the-
shelf BlenderBot model (Roller et al., 2021).

Results As shown in Table 6, supervised mod-
els struggle to generate faithful dialogue response
grounded on the given knowledge. This is mainly
because of the poor data quality of their supervi-
sion dataset: WoW has been shown to suffer from
hallucinations in more than 60% of the turns (Dziri
et al., 2022a). Moreover, pre-trained dialogue
models like Blenderbot demonstrate even worse
performance at generating faithful response, de-
spite being trained on WoW and other knowledge-
grounded dialogue datasets in their pre-training
stage. IPA significantly improves the faithfulness
of the generated dialogue response over its base
policy Blenderbot while preserving the dialogue
quality (i.e., coherence and engagingness), outper-
forming all other baselines. Our results showcases
the potential of IPA to improve reliability and trust-
worthiness in various downstream applications.

5 Related Work

Controlled Decoding Recent studies have ex-
plored controlled generation at inference time by
designing new decoding algorithms (Keskar et al.,
2019; Mireshghallah et al., 2022; Li et al., 2022a;
Chen et al., 2022; Zhang et al., 2022). For example,
Neurologic decoding (Lu et al., 2020), and GBS
(Hokamp and Liu, 2017) generalize beam search
for lexically constrained decoding, by constrain-
ing decoding space with keyword-related penalties.
DExperts (Liu et al., 2021b) modifies output dis-
tribution during decoding with attribute-specific
expert models. Another line of research develops
gradient-based decoding for more general control
(Qin et al., 2020, 2022; Sha, 2020; Dathathri et al.,
2020b; Kumar et al., 2021). For example, COLD
Decoding (Qin et al., 2022) introduces energy-
based modeling to impose arbitrary constraints on
text and samples with Langevin dynamics. Despite
their progress, these approaches either are designed
for particular control types or rely on computation-
ally expensive gradient computations.

Reinforcement Learning for NLG RL has his-
torically been used in multiple NLG tasks such
as machine translation (Wu et al., 2016; Nguyen
et al., 2017), summarization (Paulus et al., 2017),
dialogue (Li et al., 2016; Zhou et al., 2017),
text games (Narasimhan et al., 2015; Hausknecht
et al., 2020), etc to optimize for an arbitrary non-
differentiable reward. This was often done us-
ing online policy gradient methods such as RE-
INFORCE (Sutton and Barto, 2018), leading to
documented issues with reward hacking (Choshen
et al., 2020; Kiegeland and Kreutzer, 2021). Re-
cent advances introduce a KL reward penalty which
significantly increases the naturalness of generated
text (Ouyang et al., 2022; Korbak et al., 2022).
This method has been used extensively to tune
a base LM via online on-policy (Ramamurthy*
et al., 2023), off-policy (Guo et al., 2022; Lu et al.,
2022b), and offline (Snell et al., 2023; Korbak et al.,
2023) RL. Such methods quickly become compu-
tationally infeasible for extreme-scale LMs.

6 Conclusion

we present IPA, a lightweight inference-time policy
adapter that tailor a frozen large language model
towards desirable properties (e.g., safety, coher-
ence) in an efficient, generalizable, and flexible
way. Specifically, IPA combines the generaliz-
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ability of RL with the plug-and-play flexibility of
inference-time techniques, permitting customiza-
tion of large language models without the need for
costly fine-tuning. Extensive experiments across
five challenging text generation tasks show that
IPA brings consistent improvements over LLMs,
outperforming competitive baselines — sometimes
even surpassing expensive fine-tuning. We hope
our work sheds light on creative and efficient algo-
rithmic innovations to complement the pursuit of
model scales with academic-level resources.

7 Limitations and Ethical Consideration

While the versatility of the IPA is a crucial feature
that enables aligning large language models with
arbitrary user-given objectives, it may also pose
potential dual-use concerns, especially when com-
bined with the power of large language models.

First, as with any controllable text generation
technique, IPA could be potentially used for unin-
tended malicious purposes, such as manipulating
models to produce hateful, toxic content or misin-
formation. As malicious users can already exploit
any existing techniques for harmful purposes the-
oretically, we foresee minimal risk introduced by
IPA specifically. Nevertheless, we highly recom-
mend avoiding such negative applications of IPA.

Moreover, similar to any RL-based method that
depends on the reward function for learning sig-
nals, IPA is susceptible to the innate shortcomings
from the reward model. For instance, we use the
Perspective API calls as the reward function for the
toxicity reduction task; any limitations or potential
biases from these public API calls will propagate
into the learning of IPA. Nonetheless, as more ac-
curate, transparent, and inclusive classifiers are de-
veloped, we anticipate that IPA would inherit those
improvements as well.

Beyond these two primary concerns, another in-
herent limitation of IPA is its requirement to access
the output logits of the base LM. This constraint
hinders IPA’s compatibility with certain models,
such as GPT-4, which permit access only to the
output, not the logits. Finally, like general RL
frameworks, IPA relies on the assumption that user
objectives are quantifiable through a reward func-
tion. However, this premise may not always hold,
particularly when user objectives are inherently
challenging to measure, thus limiting IPA’s appli-
cability.
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IPA- vs. GPT3 IPA- vs. DEXPERTS IPA- vs. DAPT

Less Toxic 0.17 0.09 0.15 0.09 0.13 0.12
More Topical 0.20 0.21 0.23 0.14 0.22 0.20
More Fluent 0.27 0.23 0.24 0.16 0.21 0.18

IPA* vs. GPT3 IPA* vs. DEXPERTS IPA* vs. DAPT

Less Toxic 0.18 0.05 0.14 0.06 0.15 0.10
More Topical 0.23 0.23 0.28 0.17 0.18 0.18
More Fluent 0.26 0.21 0.32 0.15 0.23 0.22

Table 7: Human evaluation results of Toxicity Reduction,
comparing the percentage of texts rated as less toxic,
more topical, and more fluent as generated by IPA- and
IPA* versus other baselines.

Models Toxicity Fluency Diversity

Avg Max. Prob. Pl. Dist-2. Dist-3.
GPT-3 (zero-shot) 0.275 0.197 10.65 0.78 0.81
GPT-3 (5-shot) 0.214 0.132 15.96 0.76 0.80
GPT-3 (10-shot) 0.208 0.145 17.83 0.77 0.80

IPA- (GPT3) 0.150 0.056 10.34 0.79 0.81
IPA* (GPT3) 0.101 0.028 12.68 0.79 0.83

Table 8: Automatic evaluation results for Toxicity Re-
duction with off-the-shelf GPT-3.

A Further Experiment

A.1 Human Evaluation for Toxicity

We perform additional pairwise human evaluation
on tailoring GPT-3 to reduce toxicity. We compare
the outputs from IPA* and IPA- to each baseline,
based on the perceived level of toxicity (which
one is less rude or disrespectful), topicality (which
one is more natural, relevant, and logical), and
fluency (which one is more grammatically correct
and coherent), on 100 random prompts from the
test set of REALTOXICITYPROMPTS using.

As shown in Table 7, the human evaluation re-
sults confirms that both IPA- and IPA* effectively
tailor GPT-3 to be less toxic while maintaining the
language quality. This again underscores the poten-
tial of IPA as a cost-effective method for aligning
large language models with user-defined objectives.

A.2 Additional Baseline: Few-shot

In the experimental section, we show that in zero-
shot setting LLMs such as GPT-3 often struggle
to fulfill users’ requests, such as generating safe
content or reliably satisfying lexical constraints.
Here, we conduct additional experiment to access
LM’s performance in few-shot setting on toxicity
reduction and lexically constrained generation.

As illustrated in Table 8 and Table 9, prompting
GPT-3 with additional few-shot examples improves
its performance to some extent, but it still falls short
of consistently fulfill users’ requests. The gain is

Models Coverage Fluency

GPT-3 (zero-shot) 37.01 94.89
GPT-3 (5-shot) 43.85 94.34
GPT-3 (10-shot) 45.70 94.21

IPA∗ (GPT-3) 88.54 92.58

Table 9: Automatic evaluation results for Lexically Con-
strained Generation with off-the-shelf GPT-3.

Models Coverage Fluency

LLaMA 28.73 89.64
IPA- (LLaMA) 81.49 89.71

Table 10: Automatic evaluation results for Lexically
Constrained Generation with off-the-shelf LLaMA-13B
as the base policy to tailor.

particularly limited in lexically constrained gener-
ation, likely due to GPT-3’s inherent limitations
when dealing with hard logical constraints. Impor-
tantly, IPA on top of zero-shot GPT-3 outperforms
all the few-shot baselines by a noticeable margin
across all scenarios. The results further highlight
the importance of our method, which directly op-
timize the base policy to align with user-specified
objectives instead of solely relying on the innate
capabilities of LLMs through prompting.

A.3 Additional Experiments with LLaMA
We conducted additional experiments with LLaMA
models (Touvron et al., 2023) for the constrained
generation task. We apply IPA to tailor an off-the-
shelf LLaMA-13B model and initialize the policy
adapter with a LLaMA-7B model. As shown in
Table 10, IPA leads to remarkable improvement on
top of LLaMA-13B in terms of constraint coverage
while maintaining language quality.

A.4 Reward Analysis
We provide further analysis to justify our selection
of reward functions for each task.

Toxicity Reduction Following previous work Lu
et al. (2022b), we use the Perspective API score as
a reward function, which provides a score between
1 (non-toxic) and 0 (toxic). We observe that IPA
effectively reduce the toxicity while preserving the
language quality in terms of fluency and diversity
in both automatic and human evaluation.

Lexically Constrained Generation Our goal is
to enhance constraint satisfaction. As shown in
Table 11, optimizing for constraint coverage alone
may result in a slight decline in language fluency,
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Reward Coverage Fluency

coverage 90.75 83.91
coverage, fluency 88.54 92.58

Table 11: Automatic evaluation results for Lexically
Constrained Generation with off-the-shelf GPT-3 as the
base policy using different reward functions

Reward Diversity Coherence Critic Mauve
coherence 92.41 64.98 5.41 68.25
coherence, critic 93.73 51.03 52.36 84.32
coherence, critic, diversity 96.12 51.81 50.93 84.18

Table 12: Automatic evaluation for open-domain gen-
erations on XSum with off-the-shelf GPT2-XL as the
base policy using different reward functions.

as measured by COLA. However, by incorporating
fluency as an auxiliary reward, we notice improve-
ments in both dimensions. Human evaluations fur-
ther support our findings.

Open-ended Generation The goal is to make
machine-generated content more fluent, coherent,
and human-like. As shown in Table 12, optimiz-
ing solely for coherence does not yield significant
improvements in the overall generation quality, as
evaluated by MAUVE. Incorporating scores from
the OpenAI detector, a classifier for distinguishing
between AI vs. human-written text, as an additional
reward serves as an essential element in improving
the overall quality and human-likeness of generated
texts. Moreover, we found that integrating diversity
score as another auxiliary reward helps maintain
the diversity of generations while promoting higher
quality output.

Dialogue Safety Control Our aim to improving
the safety of a dialogue model. As shown in Table
13, optimizing for safety score alone may result in
a decrease in the overall quality of the generated
dialogue, measured by coherence, engagingness
and overall score from UniEval-Dialogue (Zhong
et al., 2022). The generated responses tends to be
bland and templated, such as "I don’t know...", "I’m
not sure...". We found that integrating coherence
and engagingness scores as additional reward helps
preserving natural dialogue flow while promoting
safe responses.

Knowledge-grounded Dialogue Our aim to im-
proving the faithfulness of dialogue response with
respect to the given knowledge. As shown in Ta-
ble 14, optimizing for faithfulness score alone may
result in a decrease in the overall quality of the

Reward Safety Coherence Engaging Overall
safety 0.85 0.82 1.32 0.88
safety, coherence, engaging 0.78 0.90 1.91 0.98

Table 13: Evaluation results for Dialogue Safety Control
on DIASAFETY with different reward functions.

Reward Critic Coherence Engaging Overall
critic 85.3 0.84 1.01 0.88
critic, coherence, engaging 76.6 0.91 1.34 0.97

Table 14: Evaluation results for Knowledge-Grouded
Dialogue on Faithdial with different reward functions.

generated dialogue, measured by coherence, engag-
ingness and overall score from UniEval-Dialogue
(Zhong et al., 2022). The generated responses are
often the exact copy of the given knowledge, lack-
ing of abstractiveness. We found that integrating
coherence and engagingness scores as additional
reward helps preserving the naturalness of the gen-
erated responses while enhancing their faithfulness.

B Runtime Analysis

We conduction additional runtime analysis on toxi-
city reduction task, comparing the inference speed
of IPA with other baseline methods. As shown in
Table B, IPA is significantly more efficient than
most of the baseline methods and falls within a
similar range as nucleus sampling.

Method Runtime
Nucleus Sampling 0.03
PPLM (Dathathri et al., 2020a) 23.7
GeDi (Krause et al., 2021) 0.78
Dexperts (Liu et al., 2021a) 0.12
DAPT (Gururangan et al., 2020) 0.03
QUARK (Lu et al., 2022a) 0.03
Inference-time Policy adapter 0.08

Table 15: Inference runtime (seconds per sentence gen-
eration) of IPA versus other baseline methods with
GPT2-L as the base policy on toxicity reduction task.

C Experiment Detail

C.1 Off-the-Shelf Models

We download off-the-shelf models, including pre-
trained GPT-2 and BlenderBot, from HuggingFace
Transformers (Wolf et al., 2020), which are imple-
mented in the PyTorch deep learning framework.
We access GPT-3, GPT-3.5 and GPT-4 models via
API calls through OpenAI platform.

6878



C.2 Model Training Details

All training is performed on 8 NVIDIA Quadro
RTX 8000 GPUs and costs about 3000 GPU hours
in total. Our method is implemented with PyTorch
an the Huggingface Transformers library.

C.2.1 Toxicity Reduction
We initialize the policy adapter with an off-the-
shelf GPT2-L model and use QUARK as the RL al-
gorithm for the adapter training. Hyperparameters
for training are given in Table 16. We performed
a hyperparameter grid search for the number of
training steps over the range [10k, 20k], for the
KL coefficient β over the range [0, 0.3], and for
the frequency of exploration over the range [5, 20].
During inference, we use nucleus sampling with
p = 0.9 and temperature 1.0.

Hyperparameter Assignment
model GPT2-Large
number of parameters 774M
number of steps 18000
batch size 64
learning rate optimizer Adam
Adam epsilon 1e-8
Adam initial learning rate 1e-5
learning rate scheduler linear with warmup
warmup steps 800
KL coefficient β 0.05
frequency of exploration 8

Table 16: Hyperparameters for training policy adapter
to reduce toxicity

C.2.2 Lexically Constrained Generation
We initialize the policy adapter with an off-the-
shelf GPT2-L model and use QUARK as the RL al-
gorithm for the adapter training. Hyperparameters
for training are given in Table 17. We performed
a hyperparameter grid search for the number of
training steps over the range [5k, 20k], for the KL
coefficient β over the range [0, 0.3], and for the
frequency of exploration over the range [10, 30].
During inference, we use nucleus sampling with
p = 0.9 and temperature 1.0.

C.2.3 Open-ended generation
We initialize the policy adapter with an off-the-
shelf GPT2-L model and use QUARK as the RL al-
gorithm for the adapter training. Hyperparameters
for training are given in Table 18. We performed
a hyperparameter grid search for the number of
training steps over the range [30k, 50k], for the KL
coefficient β over the range [0, 0.3], and for the

Hyperparameter Assignment
model GPT2-Large
number of parameters 774M
number of steps 14000
batch size 64
learning rate optimizer Adam
Adam epsilon 1e-8
Adam initial learning rate 1e-5
learning rate scheduler linear with warmup
warmup steps 500
KL coefficient β 0.01
frequency of exploration 15

Table 17: Hyperparameters for training policy adapter
to lexically constrained generation

frequency of exploration over the range [15, 25].
During inference, we use nucleus sampling with
p = 0.9 and temperature 1.0.

Hyperparameter Assignment
model GPT2-Large
number of parameters 774M
number of steps 50000
batch size 64
learning rate optimizer Adam
Adam epsilon 1e-8
Adam initial learning rate 1e-5
learning rate scheduler linear with warmup
warmup steps 1500
KL coefficient β 0.05
frequency of exploration 25

Table 18: Hyperparameters for training policy adapter
to open-ended generation

C.2.4 Dialogue Safety Control
We initialize the policy adapter with an off-the-
shelf blenderbot-1B-distill model and use QUARK

as the RL algorithm for the adapter training. Hy-
perparameters for training are given in Table 19.
We performed a hyperparameter grid search for the
number of training steps over the range [10k, 15k],
for the KL coefficient β over the range [0, 0.3], and
for the frequency of exploration over the range [10,
30]. During inference, we use nucleus sampling
with p = 0.6 and temperature 1.0.

C.2.5 Knowledge-grounded Dialogue
We initialize the policy adapter with an off-the-
shelf blenderbot-1B-distill model and use QUARK

as the RL algorithm for the adapter training. Hy-
perparameters for training are given in Table 20.
We performed a hyperparameter grid search for the
number of training steps over the range [7.5k, 15k],
for the KL coefficient β over the range [0, 0.3], and
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Hyperparameter Assignment
model blenderbot-1B-distill
number of parameters 1B
number of steps 15000
batch size 64
learning rate optimizer Adam
Adam epsilon 1e-8
Adam initial learning rate 1e-5
learning rate scheduler linear with warmup
warmup steps 300
KL coefficient β 0.1
frequency of exploration 15

Table 19: Hyperparameters for training policy adapter
to control dialogue safety

for the frequency of exploration over the range [15,
30]. During inference, we use nucleus sampling
with p = 0.6 and temperature 1.0.

Hyperparameter Assignment
model blenderbot-1B-distill
number of parameters 1B
number of steps 12500
batch size 64
learning rate optimizer Adam
Adam epsilon 1e-8
Adam initial learning rate 1e-5
learning rate scheduler linear with warmup
warmup steps 300
KL coefficient β 0.1
frequency of exploration 25

Table 20: Hyperparameters for training policy adapter
to improve dialogue faithfulness

D Additional Related Works

Parameter-Efficient Fine-Tuning Prompting
and prefix-tuning (Li and Liang, 2021) adapt a very
large model to a specific task. However, they are
affected by sensitivity based on order of words or
examples (Zhao et al., 2021; Webson and Pavlick,
2022), lack associative clarity (Min et al., 2022)
and tuning prompts work for only very large mod-
els (Mahabadi et al., 2021; Liu et al., 2022b). These
methods compose the input to the model. In con-
trast, parameter-efficient finetuning offers a clean
way to compose parameters directly by adding or
updating a smaller subset of model parameters. A
common strategy is to prune the model parameters
and introduce sparsity (Han et al., 2017; Frankle
and Carbin, 2019; Frankle et al., 2020). The ef-
fectiveness of this approach is also substantiated
with the use of RL (Yu et al., 2020). Instead of
pruning individual units, structured-pruning prunes
an entire group, such as attention heads in pre-

trained models (Michel et al., 2019; Voita et al.,
2019). Additionally, (Li et al., 2018) demonstrate
the effectiveness of optimizing a model in a low-
dimensional randomly oriented subspace. Later
studies (Aghajanyan et al., 2021) have also shown
that the intrinsic dimensionality decreases with pre-
training larger models. (Hu et al., 2022) learns a
low-rank factorization via projection matrix and ap-
plies them to the self-attention weights. Recently,
adding a small subset of parameters called adapters
(Rebuffi et al., 2017) and compact adapters (Ma-
habadi et al., 2021) which are model-specific (Stick-
land and Murray, 2019). Pfeiffer et al. (2020) intro-
duced a continuously evolving Adapter-Hub that
stitches different pre-trained adapters for languages
and tasks inspired from routing networks (Rosen-
baum et al., 2019) optimized through reinforcement
learning (Kirsch et al., 2018; Chang et al., 2019).
Though these methods are efficient, they require
access to the internal representation for model and
gradient, which is not feasible for large models like
GPT3 with limited access.

Refinement. Recent work controls (L)LMs by re-
fining a generated sequence into an improved one
with a refinement module (Yasunaga and Liang,
2020; Saunders et al., 2022; Schick et al., 2022;
Yang et al., 2022; Welleck et al., 2023; Madaan
et al., 2023). These methods operate in the se-
quence space, while IPA’s adapter policy makes
fine-grained ‘refinements’ in the simplex (i.e., on
next-token distributions). Typically the refiner
is large (e.g., Saunders et al. (2022); Madaan
et al. (2023)), or depends on specialized train-
ing data (Schick et al., 2022) or learning algo-
rithms (Welleck et al., 2023). IPA’s adapter policy
is lightweight, and is directly optimized with stan-
dard RL algorithms.

E Human Evaluation

We illustrate the human evaluation layouts on Ama-
zon Mechanical Turk for Dialogue Safety Control,
Open-ended Generation, and Lexical Contrained
Generation tasks in Figures 4, 5 and 6. We ensure
the annotators are paid adequately for at least $15
per hour and we inform annotators that their an-
notations are used for model evaluation purpose.
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Figure 4: Human evaluation layout on Amazon Mechanical Turk for Dialogue Sfaety Control
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Figure 5: Human evaluation layout on Amazon Mechanical Turk for open-ended generation
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Figure 6: Human evaluation layout on Amazon Mechanical Turk for lexical constrainted generation
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