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Abstract

Metaphor identification aims at understanding
whether a given expression is used figuratively
in context. However, in this paper we show how
existing metaphor identification datasets can be
gamed by fully ignoring the potential metaphor-
ical expression or the context in which it occurs.
We test this hypothesis in a variety of datasets
and settings, and show that metaphor identifica-
tion systems based on language models without
complete information can be competitive with
those using the full context. This is due to the
construction procedures to build such datasets,
which introduce unwanted biases for positive
and negative classes. Finally, we test the same
hypothesis on datasets that are carefully sam-
pled from natural corpora and where this bias
is not present, making these datasets more chal-
lenging and reliable.

1 Introduction

The automatic identification of metaphors in cor-
pora is an active area of research in NLP (Tsvetkov
et al., 2014; Shutova et al., 2016; Rei et al., 2017;
Wu et al., 2018; Gao et al., 2018; Wang et al., 2023),
and consequently, previous works have proposed
the construction, curation and testing of metaphor
indentification datasets in various forms (Birke and
Sarkar, 2006; Tsvetkov et al., 2014), also stemming
from previous psycholinguistic research (Cardillo
et al., 2017; Jankowiak, 2020). A common feature
of metaphor identification tasks is that they are usu-
ally framed as binary classification, where a poten-
tially metaphorical expression (PME) and a context
are provided as input, and a system has to deter-
mine whether the given PME is used metaphori-
cally or not. For instance, dark is used metaphori-
cally in the sentence ‘The latest developments move
us closer to a dark age’, but not in ‘I like dark col-
ors’. While this setting is attractive for testing
supervised systems, it also simplifies the task, in-
troducing a real risk of not testing metaphoricity,

but instead spurious correlations that might lead to
an artificially correct solutions.

Analyses of this sort have often proven critical
in understanding the relationship between a pro-
posed task and whether performance on associated
datasets can be directly linked to performance on
the task itself. Notable examples include the work
of Levy et al. (2015), who showed that, in the task
of lexical relation modeling, the unreasonably high
performance of supervised systems could be at-
tributed to lexical memorization, that is, the pres-
ence of large number of prototypical cases in the
dataset (e.g. animal for the hypernymy relation)
that made it simple for models to “detect the rela-
tion” without having to consider both words in the
pair. This issue has been identified also in word
analogies (Linzen, 2016; Drozd et al., 2016; Nis-
sim et al., 2020) and, beyond lexical semantics, in
natural language inference (NLI). In NLI, given
a hypothesis and a premise, a system must deter-
mine whether the premise entails, contradicts or
is neutral with respect to the hypothesis. Previous
works have shown that supervised models could
rely on superficial factors, e.g., in the SNLI dataset
(Bowman et al., 2015), hypothesis-only models
are surprisingly competitive (Poliak et al., 2018;
Gururangan et al., 2018), a trend also observed in
medical NLI datasets (Alghanmi et al., 2021).

In this paper, we report experimental results
which suggest that (1) language models can identify
metaphorical expressions with great accuracy with-
out even seeing the given expression; and that (2)
a model only seeing the metaphorical expression
with no context performs very competitively, in
both cases close to the model with complete infor-
mation. A crucial distinction in this phenomenon,
however, is that this is only observed in datasets not
sampled from a natural distribution, and that when-
ever such distribution is preserved, these shortcuts
are not as effective. We thus propose a simple sam-
pling procedure from a naturally-distributed corpus
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that mitigates this issue.

2 Metaphor Identification Datasets

This section presents the list of existing English-
language metaphor identification datasets used in
our experiments. All the datasets are summarized
in Table 1.

2.1 Psycholinguistic datasets

Datasets created for Psycholinguistics and Cogni-
tive Science served experiments on the perception
of metaphors. They are composed of sentences
written or rephrased for the purpose of control-
ling characteristics such as length and word fre-
quency. This line of study for the English language
started with Katz et al. (1988)1, and was pursued
by Cardillo et al. (2010) and Cardillo et al. (2017),
who released a corpus of verbal and nominal PMEs
(CARD_N and CARD_V). Jankowiak (2020) ex-
tended this work for sentences of the form A is-a
B.

2.2 NLP datasets

Sentence context. The TroFi dataset published
by Birke and Sarkar (2006) has often been used
to evaluate metaphor identification NLP systems,
Turney et al. (2011) being a notable example. The
collection started with 50 predefined labeled tar-
get verbs. Then, sentences containing one of those
verbs were extracted from the Wall Street Journal
(WSJ) corpus, and subsequently labeled. Tsvetkov
et al. (2014) used TroFi to train a classifier for
verbal metaphor identification that integrates fea-
tures from WordNet (Fellbaum, 1998). As part of
their research, they released a balanced test set of
222 sentences with verbal PME, and a new corpus
of adjective-noun pairs (TSV_V and TSV_AN).
Only clear examples with strong inter-annotator
agreements were included in the test set. Moham-
mad et al. (2016) studied the correlation between
metaphors and emotions. This was achieved by
building a new corpus of verbal metaphors from
WordNet glosses of polysemous predicates, en-
riched with synset annotations and emotionality
(MOH). Mohler et al. (2016) released the large
LLC corpus of metaphors covering several part-of-
speech and longer metaphoric expressions, scored
on metaphoricity and emotions scales, and enriched

1This dataset is not included in our experiments because it
only contains metaphoric instances.

Data # total %met. # train # dev # test
NLP
TroFi 3737 57 1772 0 1965
TSV_AN 1963 50 1763 0 200
TSV_V 3959 57 3737 0 222
GUT 8591 54 -
MOH 1632 25 -
LLC 7343 41 -
CHAK 468 67 -
DUNN 60 67 -
NEU 100 56 -
PIE
IDIX 5519 48 -
PVC 1348 65 -
VNC 2568 79 -
SE2013_ALL 1969 60 1111 341 517
SE2013_LEX 2371 51 1421 357 593
MAD 4558 48 3609 466 483
PIE 3025 47 786 1112 1127
MAGPIE_R 48395 75 38715 4840 4840
MAGPIE_L 48395 75 38716 4839 4840
Psycholinguistics
CARD_N 512 50 -
CARD_V 280 50 -
JANK 360 33 -
VUAC
VUAC_DO 14820 51 -
VUAC_ST1 23113 28 17240 0 5873
VUAC_ST2 94807 16 72611 0 22196
VUAC_BO 39223 52 -

Table 1: Statistics of the datasets. The original split
is included in the table when is was provided by the
authors. #total shows the total number of instances, and
%met. indicates the percentage of instances labeled as
metaphors.

with source domain information. The dataset con-
struction relies partly on automatic metaphor ex-
traction tools, with a manual validation of the out-
put, resulting inevitably in a bias of the considered
instances. Dunn (2014) created a small test set
of 60 instances to evaluate a metaphoricity score
model (DUNN), with the same verb appearing with
different levels of metaphoricity in three sentences
sets. Similarly, Chakrabarty et al. (2021) released
a small corpus of verbal PME to evaluate the MER-
MAID model (CHAK).

Adjective-nouns. Assaf et al. (2013) developed
sets of labeled adjective-noun pairs of concrete-
abstract associations (NEU) and Gutiérrez et al.
(2016) released a much larger dataset of frequent
adjective noun pairs for a study on the composi-
tional properties of metaphors (GUT).

2.3 Potential Idiomatic Expressions (PIEs)
Idioms, such as to rock the boat, are multiword
metaphoric expressions that became lexicalized in
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a language. Similarly to the corpus construction
methodology used for TroFi, idiomatic expressions
datasets are usually built from an initial list of PIEs,
which are then used to extract sentences from cor-
pora, mostly from the British National Corpus. Sev-
eral datasets focusing on different types of PIE have
been released: Cook et al. (2008) for verb noun con-
structs (VNC), Sporleder et al. (2010) for various
multiword expressions (IDIX), Tu and Roth (2012)
on prepositional verb constructs (PVC), Korkontze-
los et al. (2013) in two different tracks (SE2013),
and Tayyar Madabushi et al. (2022) for nominal
compounds (MAD). Haagsma et al. (2020) released
the large MAGPIE dataset containing PIEs of vari-
ous syntactic constructs, following an initial release
of a smaller PIE corpus.

2.4 Sampled from annotated corpora: The
case of the Amsterdam corpus

The VU Amsterdam Corpus (Steen, 2010, VUAC),
is a collection of documents from the British Na-
tional Corpus (BNC-baby), labeled following the
metaphor identification MIPVU protocol. Each
word of the documents was considered by the an-
notators and marked when metaphoric. The dataset
covers over 190,000 lexical units. Because very
conventional metaphors were labeled as figurative,
several versions of the corpus have later been re-
leased containing metaphoricity or novelty scores.
Other modifications have been made to frame the
corpus into NLP system inputs for figurative lan-
guage identification. For example, Do Dinh et al.
(2018) enriched the data with novelty scores (DO)
and Leong et al. (2020) released two versions of
VUAC for a shared task of metaphor identification,
with different sets of Part-of-Speech (PoS) tags
considered (ST1 for verbs, ST2 for all PoS tags).
The datasets are designed for classification of sin-
gle tokens in the context of a sentence. Parde and
Nielsen (2018a; 2018b) also worked on metaphor
novelty in VUAC, releasing a version of potential
metaphoric source-target pairs among the syntactic
dependencies of a metaphoric word.

Our sampling method. Framing the VUAC for
binary classification requires to sample literal in-
stances of PME from the corpus. Any token that is
not labeled as metaphoric in the VUAC can be con-
sidered literal. To avoid PME sampling biases, we
sample literal instances from the set of expressions
that also occur as metaphors, whenever possible.
When the same word sequence is not found, we

rely on identical lemma sequences, and finally on
identical PoS sequences (we referred to this VUAC
sampling as VUAC_BO).

3 Evaluation

The evaluation is aimed at understanding to what
extent metaphor identification datasets are affected
by construction or sampling biases.

3.1 Experimental setting
Data. For the initial experiments (Section 3.2),
we rely on the original data splits of existing
metaphor identification datasets (see Table 1).2 In
Section 3.3 we also provide an extended analysis
to assess the impact of baselines in different data
splits with 5-folds cross-validation.

Model and training. As our model for all the
experiments, we rely on BERT-base (Devlin et al.,
2019). Note that the goal of the experiments is
not to provide the best possible model, but rather
to show how a supervised model with incomplete
information can attain a performance similar to the
model with all the information. We use the Hug-
gingFace transformers library and models, adding a
classification layer on top of the pre-trained BERT
model. For hyperparameter optimisation, we rely
on the Bayesian Optimization with Hyperband
(BOHB) algorithm (Falkner et al., 2018) with 50
trials, available in RayTune (Liaw et al., 2018). The
hyperparameters search space is set to a batch size
equal to 4, 8 or 16; the learning rate in a ranging
from 5e-7 to 5e-5; the number of epochs within 1
to 12; and the random seeds taking three possible
values (1, 2 and 3).

Baselines. In order to test our hypothesis, we test
two baselines with incomplete information that ef-
fectively hide the context or the information about
the metaphorical expression being tested. We will
use the following sentence as our running example,
with dark being the PME of the sentence: The lat-
est developments move us closer to a dark age. We
test the following three configurations according to
the input shown to the model:

1. Default: The latest developments move us
closer to a <PME>dark</PME> age.3

2. Baseline 1 – Only PME: dark.
2In Appendix A, we include more details on how individual

datasets were sampled and preprocessed.
3<PME> is a special token to indicate the PME position.
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Def PME Masked

NLP
Trofi 75.78 56.67 (-25.2%) 74.42 (-1.8%)

TSV_AN 87.36 52.49 (-39.9%) 80.88 (-7.4%)

TSV_SVO 92.33 50.27 (-45.5%) 90.98 (-1.5%)

PIE

SE2013_ALL 86.46 49.39 (-42.9%) 74.60 (-13.7%)

SE2013_LEX 92.92 63.46 (-31.7%) 89.21 (-4.0%)

MAD_FEWSHOT 94.72 89.14 (-5.9%) 71.72 (-24.3%)

MAD_ONESHOT 88.21 86.24 (-2.2%) 65.65 (-25.6%)

MAD_ZEROSHOT 81.54 77.56 (-4.9%) 64.44 (-21.0%)

PIE 88.81 91.14 (+2.6%) 81.0 (-8.8%)

MAGPIE_L 94.47 90.87 (-3.8%) 81.25 (-14.0%)

MAGPIE_R 88.99 79.23 (-11.0%) 80.25 (-9.8%)

VUAC
VUAC_ST1 82.52 69.82 (-15.4%) 70.64 (-14.4%)

VUAC_ST2 82.22 73.10 (-11.1%) 66.48 (-19.1%)

Table 2: Macro-F1 scores for the original split of ex-
isting metaphor identification datasets, under three set-
tings: default setting (Def ), only PME (PME), and with
the PME being masked (Masked). Relative performance
difference of the baselines with respect to the default
setting is added in brackets.

3. Baseline 2 – Masked PME: The latest de-
velopments move us closer to a <masked>
age.

Evaluation metrics. Macro-F1 is chosen as our
objective evaluation metric on the validation set
during hyper-parameter optimization and is the
main metric used in our experiment. Our choice
of Macro-F1 was because it gives a synthetic view
of the performances of the models for both classes,
and datasets with very different label distributions.
Accuracy, precision, recall and F1 results for the
metaphor class can be found in Appendix B.

3.2 Results

The main results are displayed in Table 2. In gen-
eral, gaps in performance should only be compared
within datasets, and are not comparable across
datasets because of different sampling techniques.
For instance, the balance between metaphorical
expressions may be vastly different in different
datasets, and the performance gap may also reflect
this.

As can be observed, the results of models with
incomplete information are extremely competitive,
even in the case when only a PME is included.
The results also show how different datasets suffer
from diverse types of bias. For instance, the only
PME baseline appears to be insufficient in NLP
datasets, with the masked baseline being close to
the default setting. In contrast, in datasets such as
MAD, PIE or MAGPIE, the only PME baseline is
more competitive (with relative drops often lower

than 5%), even surpassing the default upperbound
in PIE.

3.3 Analysis: Random and Lexical Splits

Setting. Similarly to Shwartz et al. (2016), in this
experiment we consider datasets with random and
lexical splits. A random split is simply a random
allocation of instances for the training and test sets.
In a lexical split, however, we ensure that a tar-
get word (the PME in our case) in the test set is
not included in the training set. For a better gen-
eralisation, the experiments for this analysis were
repeated on five different splits using 5-fold cross-
validation.4 For each fold, 70% of the instances in
the training set, 10% in the validation set and 20%
in the test set.

Results. Table 3 shows the results for the random
and lexical splits. The trends observed in these
splits are similar to the original splits. This now
includes the datasets coming from the psycholin-
guistic literature, with minimal performance drops
of the baseline masking the PME (lower than 5%
in all cases). When the natural distribution is not
used, the gap between the baselines and the model
seeing all the information is in some cases small,
with the performance of these baselines being non-
trivial. This is not the case in all the datasets, such
as MOH, which differs in its construction method
from most of the other datasets.

Random vs lexical splits. There are cases in
which the random split may mislead the model,
especially when the number of examples is lim-
ited. For example, one dataset may contain only
literal examples in the training set for a PME, and
the model may wrongly conclude that all instances
in the test set of that PME are literal, when this
may not be the case. This would not happen in
the lexical split. For instance, the DUNN dataset
was created with three instances per PME, one lit-
eral and two metaphorical. Similarly, for CARD
there are two instances per PME, one literal and
one metaphorical.

The case of VUAC. VUAC has the particular-
ity of following a natural distribution, and has
been sampled differently by different researchers
to frame it into a binary classification task. De-
spite its simplicity, our VUAC sampling approach

4Given their large size (i.e., more than 10,000 test in-
stances), the MAGPIE and VUAC-derived datasets experi-
ments are done on a single train/valid/test split.
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Random split Lexical split
Dataset Default PME Masked Default PME Masked
CARD_N 87.38 41.21 (-52.8%) 85.81 (-1.8%) 89.64 49.12 (-45.2%) 86.72 (-3.3%)

PyschoLing CARD_V 83.75 41.88 (-50.0%) 82.60 (-1.4%) 86.0 47.10 (-45.2%) 82.07 (-4.6%)

JANK 82.66 38.61 (-53.3%) 81.23 (-1.7%) 82.02 45.17 (-44.9%) 80.67 (-1.6%)

TroFi 88.26 70.23 (-20.4%) 84.33 (-4.5%) 81.24 55.75 (-31.4%) 77.28 (-4.9%)

TSV_AN 89.19 59.02 (-33.8%) 79.03 (-11.4%) 86.92 62.22 (-28.4%) 77.72 (-10.6%)

TSV_AN_L2 89.19 59.02 (-33.8%) 79.03 (-11.4%) 87.53 59.3 (-32.3%) 78.13 (-10.7%)

GUT 98.25 64.98 (-33.9%) 95.33 (-3.0%) 95.01 43.64 (-54.1%) 93.96 (-1.1%)

NLP GUT_L2 98.25 64.98 (-33.9%) 95.33 (-3.0%) 97.54 65.56 (-32.8%) 94.77 (-2.8%)

MOH 63.71 54.31 (-14.8%) 53.97 (-15.3%) 63.86 54.43 (-14.8%) 54.54 (-14.6%)

LLC 86.07 79.80 (-7.3%) 73.21 (-14.9%) 84.49 78.54 (-7.0%) 71.81 (-15.0%)

CHAK 64.53 70.73 (+9.6%) 39.98 (-38.0%) 59.85 70.07 (+17.1%) 38.81 (-35.2%)

NEU 71.42 48.54 (-32.0%) 65.29 (-8.6%) 73.51 32.46 (-55.8%) 74.60 (+1.5%)

DUNN 66.08 38.68 (-41.5%) 61.4 (-7.1%) 54.47 39.81 (-26.9%) 57.40 (+5.4%)

IDIX 93.79 85.24 (-9.1%) 84.52 (-9.9%) 75.29 62.38 (-17.1%) 73.81 (-2.0%)

PVC_V 84.46 73.39 (-13.1%) 78.05 (-7.6%) 63.31 47.56 (-24.9%) 59.3 (-6.3%)

VNC 93.94 89.96 (-4.2%) 79.12 (-15.8%) 76.59 63.27 (-17.4%) 69.09 (-9.8%)

PIE SE2013_ALL 91.17 82.37 (-9.7%) 84.51 (-7.3%) 77.04 46.63 (-39.5%) 76.68 (-0.5%)

SE2013_LEX 92.54 61.16 (-33.9%) 89.29 (-3.5%) 80.39 43.27 (-46.2%) 77.58 (-3.5%)

MAD 94.58 86.99 (-8.0%) 75.89 (-19.8%) 77.38 70.14 (-9.4%) 68.76 (-11.1%)

PIE 94.86 94.34 (-0.5%) 86.20 (-9.1%) 87.1 87.5 (+0.5%) 74.45 (-14.5%)

MAGPIE 94.83 91.07 (-4.0%) 81.17 (-14.4%) 87.66 79.85 (-8.9%) 78.38 (-10.6%)

VUAC_DO 75.46 77.35 (+2.5%) 62.84 (-16.7%) 74.02 74.43 (+0.6%) 58.55 (-20.9%)

VUAC VUAC_ST1 82.81 70.19 (-15.2%) 70.93 (-14.4%) 73.81 62.28 (-15.6%) 67.88 (-8.0%)

VUAC_ST2 85.13 75.27 (-11.6%) 68.22 (-19.9%) 78.53 66.70 (-15.1%) 69.26 (-11.8%)

VUAC_BO 85.42 63.26 (-25.9%) 75.94 (-11.1%) 82.0 64.50 (-21.3%) 72.42 (-11.7%)

Table 3: Macro-F1 results, averaged over 5 cross-validation folds, for the default, only PME (PME), and Masked
settings on the random and lexical splits of metaphor identification datasets. The values in parentheses represent the
relative performance gap compared to the Default configuration.

(i.e., VUAC_BO) appears to be the generally ro-
bust, with over 10 points of difference between
the results of the default configuration and the best
baseline, both for the random and lexical splits.

4 Conclusion

Getting inspiration from previous studies analysing
artifacts and biases from NLP datasets, we delved
into the field of metaphor identification. By propos-
ing baselines with incomplete information that hide
the PME or the context, we show how the perfor-
mance achieved by a supervised model is closed
to the model that uses complete information. This
highlights the type of bias that a model is pick-
ing up at training time, which differ from what
a well-trained model would be expected to learn.
Finally, we show that this problem is generally ob-
served in datasets that are artificially constructed,
as carefully sampling from datasets (VUAC_BO)
stemming from a fully-annotated corpus alleviates
this issue.

Limitations

Since this is a preliminary study on the study of bi-
ases in metaphor identification datasets, this comes
with its own limitations that could be addressed in
future work. For instance, we evaluate the models
in a set of pre-defined splits that may include their
own biases. We attempt at mitigating this by also
including cross-validation settings on lexical and
random splits, but this may not provide the full
picture. For example, we do not study the effect
of context duplication in this work (more details
in the last point of Appendix A). In terms of the
models evaluated, given computational limitations,
we focus on a single language model. Our goal
is not to achieve the best possible results, but it is
likely that some of the conclusions may slightly
differ for different supervised models, including
other language models.

A human evaluation in the three settings would
be interesting to better understand the inherent bi-
ases of the models due to the probability of each
PIE to be used metaphorically or the probability of
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a context to be paired with a metaphor from dataset
artifacts. This could help provide a more complete
picture of the reasons behind our findings.

Ethics statement

Our analysis sheds light on the possible deficien-
cies of supervised settings and the spurious corre-
lations that supervised models can learn from if
the datasets are not carefully designed. As such,
researchers should be careful in the claims we can
make about such models, in particularly in relation
to metaphor identification as we show in this paper.
In fact, that there may be other artifacts and biases
not considered in this paper.
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A Dataset Preprocessing and Sampling

In the following we list a few individual dataset
preprocessing and sampling details not included in
the main paper.

1. A few instances of the TSV test set were found
in the training set, we deduplicate them in the
random and lexical splits of the dataset.

2. The original 200 instances of the TSV_AN
test set are provided within a full sentence con-
text, which we ignore in our experiments be-
cause the training set only contains adjective-
noun pairs and finetuned language models
generally perform better when the test set is
similar to the training set.

3. In the lexical splits columns of Table 3,
TSV_AN and TSV_AN_L2 are two lexical
splits of the TSV_AN instances respectively
on the adjective and the noun. The same read-
ing applies to the GUT dataset. The results
for a single random split are shown duplicated
in the table, for the two rows.

4. Some sentences of the WSJ appear several
times in the TroFi dataset original version,
we also deduplicate them in the random and
lexical spits of the dataset.

5. The MAGPIE has an original lexical and ran-
dom split, for which the results are presented
in Table 1 (MAGPIE_L and MAGPIE_R). Dif-
ferent random and lexical splits appear in Ta-
ble 3.

6. In Table 1, the statistics of the original
MAD_FEWSHOT dataset are shown. Two
other versions with less instances have been
shared in Tayyar Madabushi et al. (2022):
MAD_ONESHOT and MAD_ZEROSHOT
(equivalent to a lexical split). The results for
the three original splits appear in Table 2. Our
lexical and random splits of the MAD dataset
are made from the instances of the few-shot
version, that contains the largest number of
instances among the three.

7. The PVC dataset contains too few distinct
V-PREP instance for a relevant lexical split
based on the two words, the split is made on
the verb for each PME.
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8. A few instances of the IDIX and VNC datasets
contain minimal meaningful contextual infor-
mation in the only-PME setting because they
are multiword expressions of non consecu-
tive words. For example, the idiom to rock
the boat appears in the sentence as rock the
political boat. Informative context inserted
between the terms of a PIE occurs very rarely
in those two datasets. Therefore, while they
could have an effect in the final results, we
decided not to not modify them and simply
extracted or tagged the expressions by select-
ing the string starting and finishing with the
PIE.

9. Context duplication: The CHAK dataset has
the specificity of being made of triples, where
nearly identical sentences appear three times.
The sentences of a triple have the same context
and three different substituted verbal PMEs,
among which exactly one is literal and two
are figurative. The MOH dataset, constructed
from WordNet glosses, also contains several
instances with identical context, and alter-
nated verbal PMEs that are near synonyms
of each other. Finally, multiple instances of
the VUAC datasets may be constructed from
the same sentence during the sampling proce-
dure, because several words of each sentence
may have been labeled as metaphoric during
the original annotation process.

B Additional evaluation metrics

Tables 4 and 5 provide additional metrics for the
random and lexical split analyses, respectively (see
Section 3.3). In particular, the tables include accu-
racy and precision, recall and F1 on the metaphor
class. Moreover, for completeness we have in-
cluded the accuracy results of a naive baseline that
outputs the metaphor for all instances.
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Accuracy Precision Recall F1
Dataset Maj Def PME Mask Def PME Mask Def PME Mask Def PME Mask

Ps
y CARD_N 50.0 87.5 44.5 85.9 90.5 42.8 86.7 83.9 33.9 85.1 87.0 35.4 85.6

CARD_V 50.0 83.9 42.9 82.9 87.2 40.8 83.1 80.8 36.9 83.4 83.3 38.3 83.0
JANK 66.7 85.3 51.1 84.2 81.2 45.1 82.2 75.0 28.4 68.5 76.5 45.1 74.2
TroFi 57.6 88.5 71.3 84.6 91.2 73.7 88.1 88.7 78.2 84.8 89.9 75.8 86.4

TSV_AN 50.3 89.3 59.4 79.2 91.3 62.2 80.2 86.9 52.0 78.0 89.1 55.8 78.9
GUT 53.6 98.3 65.4 95.4 98.9 66.8 96.0 97.9 70.6 95.3 98.4 68.6 95.7

N
L

P MOH 78.8 78.3 73.2 73.8 48.8 32.7 33.2 35.8 22.1 20.0 40.7 45.1 23.9
LLC 58.7 86.5 80.5 74.1 83.1 76.8 69.2 84.5 75.8 68.1 83.8 76.2 68.4

CHAK 66.7 69.7 74.4 66.7 76.0 80.2 66.7 79.8 81.8 100.0 77.8 81.0 80.0
NEU 56.0 76.0 56.0 72.0 81.3 58.8 79.9 79.8 66.0 74.5 77.6 60.4 72.9

DUNN 66.7 71.7 63.3 71.7 78.7 66.3 73.3 77.4 96.4 93.5 76.8 77.4 81.0
IDIX 51.4 93.8 85.3 84.6 93.3 83.1 84.4 93.7 86.8 83.0 93.5 84.9 83.7
PVC 65.1 85.9 76.9 80.8 89.0 79.8 83.2 89.4 86.6 88.6 89.2 82.8 85.7
VNC 78.5 96.0 93.5 87.0 97.1 95.0 89.8 97.9 96.8 94.1 97.5 95.9 91.9

PI
E SE2013_ALL 59.5 91.5 83.2 85.3 93.5 84.5 86.3 92.3 87.9 89.3 92.8 86.2 87.8

SE2013_LEX 50.6 92.6 61.9 89.3 93.4 60.4 89.0 91.9 73.7 90.2 92.6 65.8 89.6
MAD 52.0 94.6 87.0 76.0 93.1 82.2 75.4 95.9 93.1 74.6 94.4 87.3 74.9

PIE 52.6 94.9 94.4 86.2 93.3 92.5 83.1 96.1 95.8 89.1 94.7 94.1 86.0
MAGPIE 74.7 96.1 93.3 86.7 97.4 95.4 88.6 97.3 95.5 94.3 97.4 95.5 91.4

VUAC_DO 50.4 75.5 77.4 63.0 74.1 77.1 62.1 79.1 78.4 68.0 76.5 77.7 64.9

V
U

A
C VUAC_ST1 71.6 86.2 75.8 77.2 77.3 57.5 61.4 73.1 56.9 53.9 75.1 57.2 57.4

VUAC_ST2 84.3 92.3 86.5 84.7 76.7 56.4 51.4 73.0 61.1 39.9 74.8 58.6 45.0
VUAC_BO 50.5 85.4 63.3 76.0 84.6 63.4 75.4 86.9 64.6 77.8 85.8 64.0 76.6

Table 4: Majority class accuracy (Maj) accuracy is shown in the first result column. Accuracy, precision, recall and
F1 results for the metaphor class, averaged over 5 cross-validation folds, for the Default (Def), only PME (PME),
and Masked settings on the random splits of metaphor identification datasets appear in the following columns.

Accuracy Precision Recall F1
Dataset Maj Def PME Mask Def PME Mask Def PME Mask Def PME Mask

CARD_N 50.0 89.7 50.0 86.7 90.1 50.0 88.6 89.5 59.4 84.4 89.7 54.0 86.4

Ps
y CARD_V 50.0 86.1 50.0 82.1 87.6 50.0 85.4 84.3 54.3 77.9 85.6 48.7 81.2

JANK 66.7 84.2 51.4 83.3 78.6 26.7 78.8 74.2 45.8 70.0 75.9 33.3 73.6
TroFi 57.6 82.3 62.9 78.5 85.1 63.4 81.2 85.0 84.1 82.9 84.7 72.2 81.6

TSV_AN 50.3 87.0 63.5 77.8 88.0 64.6 76.9 85.2 59.9 79.2 86.5 61.2 77.9
TSV_AN_L2 50.3 87.6 59.5 78.2 91.7 61.5 79.6 83.0 53.4 77.0 87.1 56.8 78.0

GUT 53.6 95.3 52.1 94.2 96.0 47.6 93.9 94.8 55.0 94.9 95.3 45.6 94.3

N
L

P GUT_L2 53.6 97.6 66.0 94.8 97.8 68.1 95.8 97.7 69.6 94.5 97.7 68.5 95.1
MOH 78.8 79.0 74.4 74.2 56.9 34.9 34.4 34.4 22.2 45.1 40.7 24.5 45.1
LLC 58.7 85.1 79.1 72.8 83.2 73.7 67.5 80.0 76.7 66.0 81.6 75.2 66.7

CHAK 66.7 64.3 73.2 63.7 74.6 81.0 65.6 71.1 77.9 95.3 72.2 79.3 77.6
NEU 56.0 76.0 50.0 77.0 84.4 43.0 82.2 73.6 80.0 81.0 73.8 54.5 79.1

DUNN 66.7 66.7 56.7 70.0 72.7 64.8 74.7 82.5 75.0 87.5 76.2 65.9 79.8
IDIX 51.4 75.5 63.2 74.1 76.5 66.3 74.5 77.4 62.5 74.9 75.1 62.5 73.5

PVC_V 65.1 69.5 59.2 67.3 73.4 66.8 68.9 78.9 76.3 80.0 75.3 67.4 72.8
VNC 78.5 84.3 73.4 81.8 90.4 85.6 86.4 90.5 80.6 91.2 89.5 81.7 88.5

PI
E SE2013_ALL 59.5 79.2 49.2 79.1 81.5 57.8 78.7 82.3 50.6 85.2 79.9 48.7 80.4

SE2013_LEX 50.6 81.3 47.1 78.7 80.2 41.0 79.8 86.0 50.9 78.2 81.8 42.1 78.1
MAD 52.0 78.1 71.1 69.3 78.5 65.9 68.0 75.0 79.8 66.1 76.0 72.0 66.9

PIE 52.6 87.2 87.6 74.7 84.0 82.4 71.4 90.3 94.1 79.1 86.8 87.8 74.9
MAGPIE 73.7 90.2 84.9 83.4 94.4 88.4 88.4 92.2 91.5 89.2 93.3 89.9 88.8

VUAC_DO 57.6 74.5 75.0 59.6 78.5 78.7 64.7 76.7 77.5 65.7 77.6 78.0 65.2

V
U

A
C VUAC_ST1 68.5 77.0 67.0 73.2 62.7 47.8 58.5 66.8 49.9 51.6 64.7 48.8 54.8

VUAC_ST2 82.6 88.3 83.3 84.2 68.8 53.2 56.1 60.0 36.3 41.7 64.1 43.2 47.9
VUAC_BO 53.4 82.2 65.5 73.0 80.7 64.9 71.5 87.7 77.0 82.1 84.1 77.0 76.5

Table 5: Majority class accuracy (Maj) accuracy is shown in the first result column. Accuracy, precision, recall and
F1 results for the metaphor class, averaged over 5 cross-validation folds, for the Default (Def), only PME (PME),
and Masked settings on the lexical splits of metaphor identification datasets appear in the following columns.
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