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Abstract

Despite the impressive performance achieved
by pre-trained language-and-vision models in
downstream tasks, it remains an open question
whether this reflects a proper understanding
of image-text interaction. In this work, we ex-
plore to what extent they handle basic linguistic
constructions—active-passive voice, coordina-
tion, and relative clauses—that even preschool
children can typically master. We present BLA,
a novel, automatically constructed benchmark
to evaluate multimodal models on these Basic
Language Abilities. We show that different
types of Transformer-based systems, such as
CLIP, VILBERT, and BLIP2, generally strug-
gle with BLA in a zero-shot setting, in line
with previous findings. Our experiments, in
particular, show that most of the tested mod-
els only marginally benefit when fine-tuned or
prompted with construction-specific samples.
Yet, the generative BLIP2 shows promising
trends, especially in an in-context learning set-
ting. This opens the door to using BLA not
only as an evaluation benchmark but also to
improve models’ basic language abilities.

1 Introduction

Powered by the Transformer architecture, exten-
sive pre-training, and task-specific fine-tuning, re-
cent language and vision models (Lu et al., 2019;
Tan and Bansal, 2019; Li et al., 2019; Chen et al.,
2020; Li et al., 2020; Su et al., 2019; Radford et al.,
2021) have achieved unprecedented performance
in many downstream multimodal tasks. Despite
the impressive results, it remains an open question
whether, and to what extent, this improvement goes
hand in hand with a genuine understanding of im-
age, text, and their interaction. In particular, the
ability of models to handle linguistic skills that
are essential to understanding an event or situation
has recently been questioned. Hendricks and Ne-
matzadeh (2021), for example, showed that these
models fail in scenarios that require understand-
ing verbs and verb arguments; Parcalabescu et al.
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Active-Passive voice

T: the woman feeds the man.

T: the man is fed by the woman.
F: the man feeds the woman.

F: the woman is fed by the man.

4 Coordination

T: the man wears a wetsuit and car-
ries a surfboard.

T: the woman wears a red bikini and
rides a red bike.

3 F: the man wears a wetsuit and rides
¥ ared bike.

F: the woman carries a surfboard
and wears a red bikini.

Relative Clause

T: the man who wears a gray polo
holds a stuffed bear.

T: the man who wears a striped shirt
holds a cow.

F: the man who wears a gray polo
holds a cow.

F: the man who wears a striped shirt
¢ holds a stuffed bear.

Figure 1: One example for each of the linguistic con-
structions included in the benchmark. Sentences in each
BLA dataset (both True and False ones) share the same
template, with 3 slots being filled by as many arguments
(NPs, predicates, or clauses), that we signal with differ-
ent colors. E.g., in the active-passive construction, the
bits in red and green are the subject and object of the
sentence, respectively, while the blue bit is the predicate.

(2022) revealed a more generalized struggle of
these models with phenomena that require ground-
ing relations between objects; Pezzelle (2023) re-
ported that their ability to ground language into
vision is affected by the presence of semantically
underspecified language, e.g., pronouns or loca-
tives; Thrush et al. (2022) showed that no mod-
els appreciate the (substantial) difference between,
e.g., a lightbulb surrounding some plants and some
plants surrounding a lightbulb, pointing at flaws in
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the way these models handle compositionality.

Arguably, all these previous studies require mod-
els to do more than plain language comprehen-
sion, including mathematical, spatial (Parcalabescu
et al., 2022), pragmatic (Pezzelle, 2023), and com-
positional reasoning abilities (Thrush et al., 2022).
While mastering these abilities is clearly desirable
for any intelligent system, we notice that models
may struggle with them due to their pre-training
data and objectives. Indeed, these models are typi-
cally trained to verify whether a fragment of text is
about the content of an image—via the Image-Text
Matching (ITM) objective—which closely resem-
bles the language comprehension tests adminis-
tered to children to assess their lexical and gram-
matical abilities. To illustrate, in these tests, chil-
dren are presented with a sentence, e.g., The red
monkey is being scratched by the blue monkey, and
asked to either pick the corresponding image from
a set of alternatives (for an overview of this work,
see Schmitt and Miller, 2010) or color the entities
in a drawing accordingly (Pinto and Zuckerman,
2019). Consistent with their goal, these tests are
aimed at excluding, or at least minimizing, the need
for reasoning, which has been shown to be sepa-
rate from language and to recruit different brain
areas (Fedorenko and Varley, 2016).

In this work, we take inspiration from this line
of research and investigate whether, and to what
extent, language-and-vision models deal with lan-
guage comprehension tasks that require virtually
no reasoning abilities. We focus on three basic lan-
guage constructions—active-passive voice, coordi-
nation, and relative clauses—that even preschool
children typically master (Pinto and Zuckerman,
2019; Friedmann and Costa, 2010; Frizelle et al.,
2017). We refer to these constructions as Basic
Language Abilities (BLA) and propose an automat-
ically constructed benchmark (see Figure 1) to as-
sess pre-trained language-and-vision models, either
in a zero-shot or in fine-tuning and in-context learn-
ing scenarios. We test several types of Transformer-
based systems, i.e., CLIP, LXMERT, ViLBERT,
BLIP2 and OpenFlamingo, and show that, while
human (adult) speakers have no trouble at verify-
ing these linguistic constructions, models gener-
ally struggle. Yet, the generative BLIP2 model
shows promising trends, especially in an in-context
learning setting. This reveals that, while BLA is a
challenging benchmark, it can be used not only
as an evaluation tool but also to improve SotA

models’ basic language abilities—which are cur-
rently generally poor. We release the BLA bench-
mark and the code to reproduce our results at:
https://github.com/shin-ee-chen/BLA.

2 Related Work

2.1 Basic Language Comprehension Abilities

Language comprehension abilities—in children,
but also in adults, e.g., L2 learners—are typically
assessed in a multimodal setup: the subject is ad-
ministered a sentence and some visual content and
asked to verify whether the two match. Common
paradigms are the Picture Selection Task (PST;
Gerken and Shady, 1996), where the subject is
given multiple candidate images to choose from,
and the more recent Coloring Book (Pinto and
Zuckerman, 2019), where the subject is presented
with a single black-and-white drawing and asked
to color objects in it according to the content of the
sentence. Without any alternatives to choose from,
in particular, the latter paradigm was introduced to
minimize the recruitment of other executive func-
tions connected to reasoning, such as selective at-
tention and inhibition, that are not relevant to the
assessment of genuine language comprehension.

Using these and similar paradigms, researchers
demonstrated that linguistic constructions such as a
sentence’s active-passive voice, e.g., The red mon-
key scratches/is being scratched by the blue mon-
key (Pinto and Zuckerman, 2019), various types
of coordination, e.g., Grandma smiles and the girl
sang (Friedmann and Costa, 2010), and relative
clauses, e.g., He saw the girl that picked the flow-
ers (Frizelle et al., 2017), are generally mastered
by preschool children across various languages,
although with some differences due to the stim-
uli and, particularly, the experimental paradigm
used. These results confirm that the comprehen-
sion of these linguistic constructions involves some-
what basic language abilities, as also indicated
by previous evidence (Horgan, 1978; Diessel and
Tomasello, 2001; McKee et al., 1998, inter alia).

In this work, we take inspiration from this line
of research and aim at testing models for basic lan-
guage comprehension abilities that require no or
little reasoning skills. Our focused, controlled ap-
proach is novel compared to other work evaluating
language-and-vision models, that we review below.
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2.2 Language Abilities of Pre-Trained
Multimodal Models

Motivated by the impressive performance of pre-
trained multimodal Transformer models, a re-
cent line of research investigated whether, and
to what extent, this corresponds to a genuine un-
derstanding of visually-grounded language. Us-
ing FOIL (Shekhar et al., 2017a), a benchmark
of minimally wrong image descriptions where all
previous-generation models have proven to fail,
some work (Hessel et al., 2021; Parcalabescu et al.,
2022) showed that Transformer-based models can
almost perfectly distinguish between correct and
foil sentences in a zero-shot setting. This indicated
that models are good at grounding nouns in vision,
likely due to their ITM pre-training objective. Con-
sistently, an intrinsic evaluation of the embeddings
learned by these models showed that they are bet-
ter at representing highly concrete—rather than
abstract—words (Pezzelle et al., 2021).

Leveraging a FOIL-like paradigm, subsequent
studies revealed that Transformer-based models
struggle when dealing with verb arguments (SVO-
Probes; Hendricks and Nematzadeh, 2021), nega-
tion (Dobreva and Keller, 2021), numbers, spa-
tial relations (VALSE; Parcalabescu et al., 2022),
and expressions requiring compositional abili-
ties (WinoGround; Thrush et al., 2022; Diwan et al.,
2022) or embedding semantically underspecified
language (Pezzelle, 2023). Crucially, all this pre-
vious work focused on phenomena and tasks that
require more than a basic language understanding
to be properly mastered. As recently pointed out
by Bugliarello et al. (2023), indeed, performing
well on each of these benchmarks requires models
to handle different skills, ranging from mathemat-
ics to pragmatics and reasoning abilities.

Inspired by the work discussed above, we take a
novel perspective and assess language-and-vision
models on their genuine lexical and grammat-
ical competence. We consider three linguistic
constructions—active-passive voice, coordination,
and relative clauses—that have been shown to be
mastered even by preschool children. In this paper,
we refer to them as Basic Language Abilities.

3 The BLA Benchmark

In this section, we describe our Basic Language
Abilities (BLA) benchmark.

3.1 Linguistic Constructions

BLA includes three types of linguistic construc-
tions: active-passive voice, coordination, and rela-
tive clauses, which we briefly describe below.

Active-Passive voice (AP) In active voice sen-
tences, the agent of the action is the subject of the
verb, as in ‘the monkey scratches the mouse’, while
in passive voice sentences the form of the verb in-
dicates that the subject is the receiver of the action;
e.g., ‘the mouse is being scratched by the monkey’.
Understanding the contrast between active and pas-
sive voice implies being able to verify whether two
sentences with different syntactic structure may
have the same meaning.

Coordination (CO) Coordination, and in partic-
ular conjunction, binds together two properties that
must hold. We focus on the coordination of verb
phrases joined together via the conjunction ‘and’,
e.g., ‘the monkey eats an apple and smiles’. Mas-
tering this type of coordination implies being able
to verify whether both predicates (’eats an apple’
and ’smiles’) apply to the subject of the sentence.

Relative Clause (RC) Relative clauses are em-
bedded clauses introduced by a relative pronoun
that qualify an entity previously mentioned in the
sentence. We focus on relative clauses attached to
the subject of the sentence and introduced by the
pronoun ‘who’, e.g., ‘the monkey who scratches
the mouse is tall’. Understanding sentences with
relative clauses implies identifying the entity qual-
ified by the relative clause (e.g., ‘the monkey who
scratches the mouse’) and verifying whether the
predicate in the main clause applies (e.g., ’is tall’).

3.2 Benchmark Format

We construct a dataset of natural images and
template-based sentences for each of the linguistic
constructions: active-passive voice (AP), coordi-
nation (CO), and relative clause (RC). Building
on FOIL (Shekhar et al., 2017b) and FOIL-like
paradigms, each datapoint in our benchmark con-
sists of an image paired with 4 automatically gen-
erated sentences, two correct ones, hence true, and
two incorrect ones, hence false. False sentences are
identical to true ones with respect to their format
and syntactic structure but contain a mistake that
makes them semantically incorrect for the image.
Concretely, in the false AP sentences the agent and
the recipient are reversed; in the false CO sentences
one of the conjuncts does not apply to the subject,
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and in the false RC sentences the predicate of the
main clause does not apply to the subject. Figure 1
shows one datapoint per linguistic construction.

3.3 Dataset Construction

To generate our datapoints, we use Visual
Genome (Krishna et al., 2017), a dataset of nat-
ural images densely annotated with objects (bound-
ing boxes around entities labeled with a WordNet
synset; Miller, 1995), object attributes (such as
color) and relationships between the objects in the
image (predicates with their arguments).' The con-
struction procedure includes the following steps:

L. Selection of entities and predicates Firstly,
we select images in Visual Genome that include
at least two objects that are persons, which we
verify using the WordNet synsets. For AP, we select
images where the two persons are the arguments
of the same transitive verb (one as the agent and
the other one as the recipient).”> We make sure
that they belong to two different types (e.g., man
and woman) or that they at least have two distinct
attributes (e.g., running player and sitting player).
For CO and RC, we select images where the two
persons are the subject arguments of two unique
predicates, i.e., two different predicates per person
that apply only to that person (e.g., ‘wears a wet-
suit’ and ’'carries a surfboard’ for the man in Fig-
ure 1). Due to multiple annotations present in Vi-
sual Genome, checking whether two predicates are
really different is not trivial. For example, a given
person may be annotated as being the subject of
two predicates, 'wears a t-shirt’ and ‘wears a shirt’.
To capture the fact that these refer to the same rela-
tionship and should not be considered as different,
we encode the predicates using Sentence-BERT
(Reimers and Gurevych, 2019) and consider them
independent predicates only if their cosine similar-
ity is lower than 0.8. Moreover, for all datasets,
we filter out the samples that involve reasoning
language by means of handcrafted rules.’

II. Minimum object size Secondly, we filter out
images where the persons identified in the previous
step, or the objects that are in a relationship with
such persons, are too small. We consider them too

"More details on the annotation are in Appendix A.

2We check whether the predicates in the relation-
ships field are part of the following list of transitive
verbs: https://englishvocabs.com/transitive-verbs/
184-transitive-verbs-list-in-english/.

3See Appendix B for details.

datapoints vocab  sent. length GRUEN
AP 613 165 633 +£1.37 0.86 +£0.002
(60 654 827 1046 £1.44 0.84 £0.003
RC 672 807 1046 £1.41 0.85 £0.003

Table 1: Descriptive statistics of the BLA benchmark:
number of datapoints, vocabulary size, average sentence
length (number of tokens), and average GRUEN score.
AP: Active-Passive voice. CO: Coordination. RC: Rel-
ative Clause.

small if their size is below a certain ratio between
the area of their bounding box and that of the entire
image. We use a threshold of 0.1% for persons
and of 0.05% for other objects (such as ‘bikini’ or
‘stuffed bear’ in the examples in Figure 1).

IIL. Sentence construction Thirdly, we construct
true and false sentences using the templates in Ta-
ble 5 and Table 6 in the Appendix by randomly fill-
ing them in with entities and predicates that meet
the constraints above.* Since there may be a multi-
tude of suitable entities and predicates per image,
at this construction stage each image may end up
being paired with more than one set of 4 sentences.

IV. Grammar acceptability Finally, we encode
each sentence with the GRUEN pre-trained lan-
guage model (Zhu and Bhat, 2020) and obtain a
score that, following previous work (Parcalabescu
et al., 2022), we use as a proxy for grammar ac-
ceptability. We discard datapoints where any of the
4 sentences has a GRUEN score equal to or lower
than 0.7. If, after this filter, an image is still paired
with more than one set of 4 sentences, we only keep
the one with the highest average GRUEN score.

3.4 Descriptive Statistics

In Table 1, we report the dataset size (number of
datapoints per linguistic construction), vocabulary
size, average sentence length, and average GRUEN
scores. The AP dataset is the smallest of the three,
the main reason being the limited number of transi-
tive verbs (43) with arguments that meet our con-
struction constraints. The sentences in CO and
RC are constructed from the same set of entities
and predicates. The slightly lower number of dat-
apoints and vocabulary size in RC is due to more
sentences with relative clauses being discarded by
the grammar acceptability filter.

*We turn all verbs into 3rd person singular forms of the
simple present tense using Python’s Pattern library.
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3.5 Human Performance

To assess the quality of our automatically con-
structed BLA benchmark, we run a human eval-
uation on 50 randomly selected datapoints for each
linguistic construction dataset, using the Appen
platform,”> We create 4 HITs per datapoint, each
displaying the image and one of the sentences. This
results in a total of 200 HITs per dataset. The task is
to judge whether the sentence is correct or incorrect
given the image (therefore, random accuracy on
this task is 50%). We ask 3 annotators (co-authors
of the paper) to judge all HITs and compute human
accuracy by considering the majority vote. Since
human accuracy exceeds 85% on all three datasets,
we conclude that, for human speakers, verifying
the sentences included in BLA is a trivial task. In
contrast, we verified that BLA cannot be solved by
(even powerful) text-only language models, which
do not fare better than chance in any of its tasks.’

4 Vision & Language Transformers

We experiment with 5 pre-trained language-and-
vision models: three discriminative models (CLIP,
VIiLBERT, and LXMERT), and two generative
models (BLIP2 and OpenFlamingo).” We briefly
describe the models below.

4.1 Discriminative Models

CLIP CLIP (Radford et al., 2021) has two sepa-
rate Transformer-based encoders, one for language,
and one for vision (here, we use the ViT-B/32 ver-
sion). These encoders are jointly trained on 400M
<image, caption> pairs gathered from the web. It is
trained through contrastive learning for predicting
high similarity scores for paired <image, caption>
and low scores for unpaired samples. We compute
image-text alignment scores between an image and
either its corresponding true or false sentences.

ViLBERT VIiLBERT (Lu et al., 2019) is a dual-
stream Transformer that encodes language and vi-
sual inputs separately before combining them via
co-attention layers. It is pre-trained on the Con-
ceptual Captions (Sharma et al., 2018) dataset with
two learning objectives: multimodal masked learn-
ing (both word and object prediction), as well as

5https ://appen.com/

SFurther details about our experiments with GPT-2 (Rad-
ford et al., 2019) are provided in Appendix H.

"We also experimented with FROMAGe (Koh et al., 2023)
and MAGMA (Eichenberg et al., 2022) but decided not to in-
clude them in our study due to their limited ability to generate
yes/no answers. More details are provided in Appendix F.

image-text matching (ITM). The pre-trained check-
point we use is the one released by the VOLTA
framework (Bugliarello et al., 2021).8 Here, we
use the pre-trained I'TM head to straightly perform
the binary classification (true/false) for each <im-
age, sentence> pair in our benchmark.

LXMERT LXMERT (Tan and Bansal, 2019) is
a dual-stream Transformer model that encodes vi-
sion and language via two separate streams and
combines them via cross-model layers. The model
checkpoint we use is pre-trained on the same ex-
act data and with the same learning objectives as
ViLBERT, again from the VOLTA framework.’
Therefore, the two models are directly comparable.

4.2 Generative Models

BLIP2 BLIP2 (Li et al.,, 2023) is a genera-
tive model that uses a Querying Transformer (Q-
Former) to combine the information from a frozen
large language model (LLM) and a frozen image
encoder. The Q-Former contains two submodules—
one image Transformer and one text Transformer—
that share the same self-attention layers. The Q-
former is trained in two steps: first, it connects the
image Transformer submodule to a frozen image
encoder to learn multimodal representations via
image-text contrastive learning, image-grounded
text generation, and image-text matching. Second,
it performs vision-to-language generation by learn-
ing query embeddings that force the underlying
LLM to generate text based on the visual informa-
tion by the Q-former. We use BLIP2-FlanT5XXL.

OpenFlamingo OpenFlamingo (Awadalla et al.,
2023) is an open-source reproduction of the
Flamingo models (Alayrac et al., 2022). The model
is pre-trained to generate text from a sequence of
text tokens interleaved with images. It contains a
frozen pre-trained CLIP-like image encoder and
a frozen pre-trained large language model. The
two components are connected via cross-attention
layers that allow the language model to attend to
features produced by the vision model. The mod-
els are pre-trained on the LAION-2B (Schuhmann
et al., 2022) and Multimodal C4 (Zhu et al., 2023)
datasets. In our experiments, we use CLIP ViT-
L/14 as the vision encoder and one of the 3B ver-

8 Available at https://sid.erda.dk/share_redirect/
aQCx8cLWK7.

% Available at https://sid.erda.dk/share_redirect/
Dp1g16DIAS.
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sions of the underlying language model. '’

5 Exp 1: Zero-Shot Evaluation

To explore whether, and to what extent, the pre-
trained models described in Section 4 can deal with
linguistic constructions in BLA without any task-
specific fine-tuning, we evaluate them on the three
datasets in a zero-shot setting. For each dataset,
we frame the problem as a binary task: given an
<image, sentence> pair, the models are asked to
evaluate whether the sentence is true or false.

ViLBERT and LXMERT can be straightfor-
wardly evaluated on the binary task thanks to their
pre-trained image-text matching (ITM) classifica-
tion head. For CLIP, we compute similarity scores
between the image and each sentence, and rank the
four <image, sentence> pairs according to them.
We consider the 2 top-ranked sentences as true and
the 2 lower-ranked sentences as false.

We evaluate BLIP2 and OpenFlamingo by
prompting. The prompt template used with
BLIP2 is similar to the one proposed by Li
et al. (2023) for Visual Question Answering:
‘Question: Is the sentence [sentencel]
appropriate for this image? yes or no?
Answer:’. For OpenFlamingo, following Awadalla
et al. (2023), we use the following prompt tem-
plate: ‘<image>Question: Is the sentence
[sentence] appropriate for this image?
yes or no? Short Answer:’. We let the models
generate a response and consider ‘yes’ answers as
true and ‘no’ answers as false.!!

We use three metrics to measure model perfor-
mance: (1) accuracy, measuring how well the mod-
els perform on the binary task, (2) precision_true,
measuring how well models identify the true sen-
tences, and (3) precision_false, measuring how
well the models identify the false sentences.

5.1 Results

All models lag far behind human performance
Results by all models are reported in Table 2. As
can be seen, none of the models performs anywhere
close to human performance on the BLA bench-
mark; indeed, most of them obtain results around
chance level. While BLIP2 achieves a remarkably
higher accuracy on AP (64%) than on the other
two datasets, this result is still very far from 92%,

Concretely, as language model we use the instruction-
finetuned model RedPajama-INCITE-Instruct-3B-v1.
"Both models always generated a ‘yes’/‘no’ answer.

. Model / Task
Metric Humans
AP CO RC
ViLBERT 50.57 49.81 49.96
LXMERT 49.31 49.77 50.00
Acc CLIP 50.08 49.24 49.33
BLIP2 64.15 52.10 52.19
OpenFlamingo 50.73 50.15 49.52
Humans 92.00 90.00 85.00
P, ViLBERT 50.43 49.80 49.97
LXMERT 49.49 49.81 50.00
CLIP 50.16 49.24 49.18
BLIP2 66.73 51.88 52.15
OpenFlamingo 50.40 50.11 49.50
Humans 90.00 79.00 79.00
Py VIiLBERT 50.84 49.82  49.96
LXMERT 4894 4971 50.00
CLIP 50.16 49.24 49.18
BLIP2 62.26 52.38 52.25
OpenFlamingo 54.13 50.26  49.53
Humans 94.00 95.00 95.00
chance 50.00 50.00 50.00

Table 2: Zero-shot model performance and human per-
formance on BLA. Acc: Accuracy. P;: Precision_true.
Py: Precision_false. Scores are reported in percentage.
The highest results for each metric and task are in bold.

i.e., human accuracy on this linguistic construc-
tion. Overall, this pattern of results reveals that,
in a zero-shot setting, models struggle with the
BLA benchmark, in line with previous work inves-
tigating other linguistic and reasoning phenomena
(Thrush et al., 2022; Parcalabescu et al., 2022).

BLIP2 is the best-performing model The
highest-performing model on the BLA benchmark
is the generative model BLIP2. It outperforms
OpenFlamingo and the best discriminative models
with respect to all evaluation metrics (see Table
2). BLIP2 is the only model that consistently sur-
passes chance level on all three tasks—though by a
small margin in both CO and RC—while the other
models perform around or below chance level.

5.2 Discussion

The overall poor performance obtained in the zero-
shot setting indicates that pre-trained multimodal
models struggle with the language comprehension
abilities evaluated by the BLA benchmark. This
could be due to the way in which these models
are typically pre-trained, i.e., maximizing cross-
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modal alignment, which might not be fine-grained
enough to account for the complex dynamics that
intertwine language and vision. Performing well
on BLA, indeed, requires understanding how en-
tities interact with each other, how their attributes
combine, and what attributes refer to which entity.
Neither discriminative nor generative pre-trained
models seem to handle these abilities.

At the same time, we notice that BLIP2 per-
forms better than the other models, particularly on
the active-passive construction. This advantage
could result from the more varied data and pre-
training objectives—image-text matching, image-
text contrastive learning, and image-grounded text
generation—of this model, which would help the
model better understand verbs and verb arguments.

5.3 Error Analysis

We conduct an error analysis focused on the sam-
ples where the models consider all four sentences
as either all true or all false. Considering that, in our
dataset, each image is systematically paired with
two true and two false sentences (see Figure 2),
these cases are interesting since they indicate
that models fail to make consistent predictions—
intuitively, the sentences the man holds the baby
and the baby holds the man cannot be true at the
same time for a given image. This, in turn, would
reveal that the models are unable to correctly iden-
tify the entities mentioned in the sentence.

For each model except CLIP,'? we consider all
the cases where all four sentences are assigned
the same predicted label, either true or false. For
BLIP2, these cases constitute 54.65%, 32.75%,
and 38.55% of the samples in the AP, CO, and
RC constructions, respectively. While these num-
bers may already seem quite high, we find out
they are even higher in other models. For ViL-
BERT, they increase particularly for AP (86.95%),
with CO (49.43%) and RC (54.0%) experiencing a
less dramatic increase. Similar percentages for AP,
and a further increase for the other constructions,
are observed for OpenFlamingo (88.5%, 68.5%,
and 64.5% for AP, CO, and RC, respectively) and
LXMERT (87.77%, 58.4, and 60.02%, resp.).

These patterns reveal that models are very often
inconsistent with their predictions. This suggests
they have a limited ability to identify the relevant
entities, as well as their properties, in the image.

12Recall that, for CLIP, we use a ranking-based approach.

X Active-Passive
WS T: the gentleman kisses the woman.
. T: the woman is kissed by the gen-
| tleman.
W] F: the woman kisses the gentleman.
F: the gentleman is kissed by the
woman.

Coordination

T: the man wears khaki pants and
wears a blue shirt.

T: the woman wears a white shirt
and wears jeans.

F: the man wears khaki pants and
wears a white shirt.

F: the woman wears a blue shirt and
wears jeans.

Figure 2: Two cherry-picked samples where all tested
models predict that the four sentences are either all true
(top) or all false (bottom), revealing an inconsistent
behavior. T and F in the image refer to sentences that
are True or False, respectively, in the BLA benchmark.

6 Exp 2: BLA-Specific Learning

To explore whether the models—which obtain poor
performance in the zero-shot setting—can learn to
deal with the linguistic constructions in BLA via
some degree of task-specific learning, we expose
them to a relatively little amount of data from each
dataset. We use these samples to fine-tune the dis-
criminative models and prompt the generative mod-
els to allow them to perform in-context learning.

In particular, we experiment with two types of
BLA-specific learning, i.e., (1) we train and test a
model with data from the same dataset (SD), and
(2) we train a model with data from one dataset and
test it with data from a different dataset (DD) in
a cross-task setting. With the former, we evaluate
whether the models can learn some key properties
of the linguistic construction at hand by having
exposure to the same phenomenon in other visual
contexts. With the latter, we test whether the mod-
els can develop general language comprehension
abilities that are key to all linguistic constructions.

We downsize each dataset to include 400 sam-
ples. Then, we randomly split it into training
(100 samples), validation (100), and test (200) sets.
While each sample in the validation and test sets
has the standard format—one image and four cor-
responding sentences: two true sentences and two
false ones—in the training set that we use to fine-
tune or prompt our models we only keep two sen-
tences per image. In particular, we randomly sam-
ple one true and one false sentence to keep the
supervision of the models relatively little.
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Figure 3: Comparison between model accuracies in
zero-shot (lighter-color bars) and BLA-specific learning
(darker bars). Results are obtained in the SD setting.

Discriminative Models As CLIP does not have a
classification head, we perform fine-tuning on ViL-
BERT and LXMERT. We use the training samples
to fine-tune their ITM classification head. Further
details are provided in Appendix D. In SD, models
are fine-tuned, selected, and evaluated with data
from the same dataset. In DD, they are evaluated
with data from the test set of a different dataset.

Generative Models We perform in-context learn-
ing with BLIP2 only. For OpenFlamingo, our pre-
liminary investigations revealed that, with our data
and task, using the in-context learning setup pro-
posed in the original model paper led to nonsense
outputs in many cases. The same was observed
when using the same in-context learning setup that
we used for BLIP2, which we describe below.!3

In BLIP2, we perform in-context learning using
samples from the test set of a given dataset. In
SD, for each <sentence, image> pair that we aim
to evaluate, we pick one true and one false sen-
tence belonging to the same datapoint. Compared
to the sentence under evaluation [target], these
sentences have either a different voice (AP) or de-
scribe attributes for a different person (CO and RC).
In BLIP2, we fill these sentences into a template
that we use as a prompt for the model. For ex-
ample: ‘Question: Is the sentence [true]
appropriate for this image? yes or no?
Answer: yes. Question: Is the sentence
[false] appropriate for this image? yes
or no? Answer: no. Question: Is the
sentence [target] appropriate for this

BFurther details about these preliminary experiments and
corresponding prompting setups are reported in Appendix G.

Improvement (A P)

Metric Model AP co RC
ViLBERT 11.00 0.75 1.00

P LXMERT 4.50 1.25 -1.00
BLIP2 -2.05 025 4.09
ViLBERT 11.00 0.75 1.00

Py LXMERT 4.50 -1.69 -0.31
BLIP2 18.74 42.34 46.50

Table 3: Precision improvement after BLA-specific
learning (SD setting) compared to the zero-shot results.
P, is precision_true, Py is precision_false.

image? yes or no? Answer:’.

In DD, the setup is the same as above, except
that the [true] and [false] sentences are from
another BLA dataset (different linguistic construc-
tion), and yet about the same image (same entities
and attributes). While images in CO and RC greatly
overlap, images in AP do not overlap much with
those in the other two datasets. Therefore, we only
experiment with CO and RC in this setting.

6.1 Results

BLA-specific learning generally helps As re-
ported in Figure 3, BLA-specific learning has a
generally positive impact on model performance.
The generative BLIP2 is shown to improve on all
three datasets, which confirms the effectiveness of
the in-learning setup in boosting this model’s com-
prehension abilities. As for discriminative models,
VIiLBERT experiences the greatest accuracy im-
provement compared to the zero-shot setting on
AP, and a smaller (though consistent) improvement
on the other two tasks; LXMERT, in contrast, does
not seem to equally benefit from fine-tuning, except
perhaps for a little boost on the AP construction.

BLIP2 is the best overall model As shown in
Figure 3, BLIP2 is again the overall best model
across the board. Indeed, it outperforms the best
discriminative models by 10.1, 3.2, and 8.6 accu-
racy points on AP, CO, and RC, respectively. More-
over, it is the model achieving the higher relative
improvement in accuracy on all BLA datasets over
the zero-shot setting. It is worth mentioning that,
looking at the relative improvement in precision ob-
tained by various models over the zero-shot setting
(Table 3), BLIP2 exhibits a fairly high improve-
ment on all tasks, particularly CO and RC, with
respect to precision_false. That is, task-specific
learning particularly helps the model to better spot
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Improvement on

Model Task f.or Evaluation Tasks
Learning
AP CcO RC
AP - 224 0.75
VILBERT CO -0.38 - -0.37
RC 0 -0.87 -
AP - -1.38  -0.38
LXMERT CO -0.12 - 0.5
RC -0.24 -0.38 -
CO - - 11.25
BLIP2 RC - 6.94 -

Table 4: Accuracy improvement after BLA-specific
learning (DD setting) compared to the zero-shot results

false sentences, which in turn allows it to achieve
an overall higher performance on the tasks.

Active-passive voice is the most easily learned
Overall, the active-passive voice construction ap-
pears to be the one that models can learn to a
greater extent. While BLIP2 achieves an accuracy
of more than 70%, ViLBERT ranks second with a
respectable 61%, which is an even more notable
result considering the performance around chance
level in the zero-shot setting. LXMERT also out-
performs the results obtained in zero-shot learning,
though by a much smaller margin.

Cross-task learning is only effective for BLIP2
As reported in Table 4, BLIP2 is the only model
across the board that benefits from learning about
a linguistic construction that is not the one under
investigation (our DD setting). As can be seen, the
improvement by BLIP2 on RC after having been
exposed to CO exceeds 11% accuracy compared
to the zero-shot learning, while the improvement
in the other direction (RC to CO) is around 7%.
This is not the case, instead, for the discriminative
models, for which the role played by this setup is
either insignificant or even detrimental.

6.2 Discussion

The results presented above generally show that
BLA-specific learning has an overall positive role
in helping models understand the linguistic con-
structions included in the benchmark. This sug-
gests that having (even limited) experience with
how these linguistic constructions work in visually-
grounded contexts is beneficial for these models,

which are shown to improve their performance
over the zero-shot setting. In particular, BLA-
specific learning helps the generative BLIP2, which
is shown to improve not only in the SD setting but
also in DD, where examples of other linguistic con-
structions are provided. This pattern is encourag-
ing and suggests that understanding these linguistic
constructions may underlie some common basic
language abilities dealing with the semantic proper-
ties of entities, attributes, and predicates, and their
interaction with the image.

Yet, their performance on the benchmark is still
far from human performance, with the best over-
all model (BLIP2) lagging 20 accuracy points be-
hind human accuracy on AP, the highest-scoring
dataset. At the same time, some linguistic con-
structions appear to be more challenging to learn
than others, with coordination experiencing much
lower improvement compared to AP and RC. On
the other hand, AP stands out as the construction
that can be best learned by the models, possibly
due to the fact that it requires models to ground the
entities—but not necessarily their attributes.

7 Conclusions

We introduced a novel benchmark, BLA, aimed at
investigating how well multimodal models under-
stand basic linguistic constructions—active-passive
voice, coordination, and relative clauses. We
showed that the linguistic constructions in BLA are
challenging for current language-and-vision mod-
els, which lag well behind human performance.
Yet, the recent generative model BLIP2 exhibits
a better performance than discriminative models,
both in the zero-shot and task-specific learning set-
ting. We highlight that prompting generative mod-
els with examples embedding both the same or
a different linguistic construction is a promising
method to improve their understanding of specific
linguistic constructions. This opens the door to
using BLA not only to evaluate pre-trained models
but also to improve their basic language abilities.

Limitations

The BLA benchmark currently contains three tasks
while more can be added for a more comprehen-
sive understanding of basic language ability of mul-
timodal models. But our pipeline can be easily
adapted to construct more tasks. In the experiment,
we only investigated a limited number of models,
which include (i) generative models (BLIP2 and

5825



OpenFlamingo), (ii) discriminative models with
an image-text classification head (ViLBERT and
LXMERT) and (iii) discriminative models with
cross-modality similarity scores (CLIP), which
we believe our selections are representative of
current mainstream Vision-and-Language (V&L)
models. Due to the in-context learning constraints
for BLIP2, we only investigate its BLA-specific
cross-task learning setup on Coordination and Rel-
ative Clause tasks. The two tasks are constructed
with the same pipeline and contain similar descrip-
tions of human attributes, so more investigation can
be done to explore whether the model can improve
with learning examples that are more semantically
different.
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A Visual Genome

Visual Genome (VG) is a dataset and a knowl-
edge base that annotates 108K images with each
image having an average of 35 objects, 26 at-
tributes, and 21 pairwise relationships between ob-
jects. It contains seven main components —region
descriptions, objects, attributes, relationships, re-
gion graphs, scene graphs, and question-answer
pairs—together with information for image. We
only used objects, attributes and relationships for
our dataset construction and extracted the image
size information from image. One example of the
VG dataset and its corresponding annotations can
be found in Figure 4.

B Avoiding Reasoning in BLA
Construction

By analyzing the VG annotations that contain at
least two human entities, we found the most com-
mon annotations related to reasoning language is
the positional description (e.g. ‘on the right’, ‘be-
hind’). We came up with a list of commonly-used
positional words like ‘right’, ‘above’ and adjusted
the keyword search rules to better filter reasoning

Voice

TA | Active
TP | Passive
FA | Active
FP | Passive

Template
the subject predicate(active) the object
the object is/are predicate(passive) by the subject
the object predicate(active) the subject

the subject is/are predicate(passive) by the object

Table 5: Template for caption construction in Active-
Passive Voices (AP) dataset. TA. True Active. TP. True
Passive. FA. False Active. FP. False Passive. Examples:
TA: the man holds the woman. TP: the woman is held
by the man. FA: the woman holds the man. FP: the man
is held by the woman.

Person Template
TP, P the p [a1p, and ayy,, ] /[who a1y, azyp, ]
TP, Py the ps a1y, and ay, ] /[who a1y, as),]
FP, Py the P1 [ulpl and a2p, /all)zJ /[ who QA1p, A2py /(l]l,_)J
FPy Py the po [azp, and ayy,/ azy,]/[who agy, ayp,/ asp,]
Table 6: Template for caption construction in

Coordination (CO) dataset. TP;. True Person;. TP5.
True Person,. FP;. False Person;. FP5. False Persons.
a;p;. Attribute; of Person; .Examples: TP;: the man
[wears a white shirt and holds a controller] /[who wears
a white shirt holds a controller]. TPy: the woman [wears
a blue shirt and sits on a sofa] /[who wears a blue shirt
sits on a sofa]. FP;: the man [wears a white shirt and
sits on a sofa] /[ who wears a white shirt sits on a sofa].
FP5:the woman [holds a controller and wears a blue
shirt] /[who holds a controller wears a blue shirt].

language. We also added more phrases and words
to the list by checking the annotations that contain
prepositions. In addition, we try to avoid numer-
ical descriptions in our extracted information by
filtering annotations that contain numbers from one
to ten. This was an effective rule based on our
observation on the VG annotations.

C Sentence Generation Templates

We use sentence construction templates (Table 5
and Table 6) and the extracted information de-
scribed in Section 3 to generate a set of four sen-
tences (two true, two false) for a given image.

D Model Finetuning Details

We fine-tune ViLBERT and LXMERT pretrained
model on their entire model layers with the Image-
Text Matching learning objective only. We mod-
ify the pretraining code from the VOLTA frame-
work (available at https://github.com/e-bug/
volta/blob/main/train_concap.py) and adapt
the hyperparameter settings for finetuning provided
by the code owners. We set the learning rate to le-
5, the training batch size to 16 and the maximum
training epoch to 10 after hyperparameter search-
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Figure 4: One example image from Visual Genome dataset with its region descriptions, QA, objects, attributes, and
relationships canonicalized by Krishna et al. (2017). One example annotations for relationships is <predicate: pulls,
subject: horse, object: carriage, ...>, for attributes is <carriage, green>, for object is <object_id, width: ..., length:

vy Xirs, Vo>

ing. The model checkpoint that achieves the high-
est accuracy performance on the validation set will
be used for evaluation. We also experiment with
only fine-tuning specific layers of the models but
find out that fine-tuning the whole model achieves
the best performance.

E Human Annotation Details

We collect human annotations with Appen’s inter-
nal channel option. The question interface and test
question setups are shown in Figure 5.

The annotations are collected from three co-
authors of this paper, including two linguistic ex-
perts and one dataset constructor. The annotators
are requested to make their judgment only based
on the visual and text information provided in the
questions.

SENTENCE

Is the SENTENCE correct in relation to the IMAGE? (required
O Yes
O No

Figure 5: Example of the Appen question interface. The
golden label of this question is “No".

F MAGMA and FROMAGe

In the zero-shot evaluation for generative mod-
els, we employ prompting to guide the models
to generate constrained outputs, specifically ‘yes’
or ‘no’ responses, to perform the binary classifi-
cation tasks on BLA. We use the BLIP2 prompt
template and apply minor changes to it, e.g., we
replace ‘Question’ with ‘Q’ and ‘Answer’” with ‘A’
following the prompting examples reported in the
papers of the models. Our investigation revealed
that, in over 20% of the cases, MAGMA and FRO-
MAGe fail to generate the desired outputs. In-
deed, many answers instead provided explanations
for why a sentence is correct or incorrect. Since
evaluating their performance would require more
careful (including manual) analysis, in our zero-
shot experiments we focused on BLIP2 and Open-
Flamingo, which exhibited higher ability to adhere
to the task instructions. We share the code used
to preliminary test MAGMA and FROMAGe at
https://github.com/shin-ee-chen/BLA.

G OpenFlamingo In-context Learning

After conducting preliminary in-context learning
experiments, we observed that OpenFlamingo
struggled to generate constrained ‘yes’ or ‘no’
answers. In particular, we experimented with
two templates. The first template, similar to the
BLIP2 prompt template, uses only one image in-
put for both the examples and the question, as fol-
lows: [<image>Question: Is the sentence
[true] appropriate for this image? yes
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or no? Short Answer: yes. Question:
Is the sentence [false] appropriate for
this image? yes or no? Short Answer:
no. Question: Is the sentence [target]
appropriate for this image? yes or no?
Short Answer:]. This prompt template led to
nonsense outputs in most of the cases.

The second template we used closely follows
the one provided in the original model paper
Awadalla et al. (2023), which requires the to-
ken <image> for image input before each ques-
tion, as follows: [<image>Question: Is the
sentence [true] appropriate for this
image? yes or no? Short Answer:
yes.<|endofchunk|><image>Question: Is
the sentence [false] appropriate for
this image? yes or no? Short Answer:
no.<|endofchunk|><image>Question: Is the
sentence [target] appropriate for this
image? yes or no? Short Answer:]. Note
that the three <image> tokens always refer to the
same image. With this template, the model gener-
ated more constrained answers, but only for about
40% of the cases, which is still unsatisfactory. We
hypothesize this could be due, at least in part, to
the properties of our questions, that are longer and
more complex than the examples provided in the
model paper. This could harm OpenFlamingo’s
ability to follow instructions.

H Language-Only Model on BLA Tasks

As a sanity check, we test whether the BLA tasks
can be solved by a powerful text-only model,
namely, GPT2 (Radford et al., 2019). We calcu-
late the perplexity scores for the four sentences in
each datapoint and rank them such that the lower
the perplexity, the higher the ranking. Similarly to
our experiments with CLIP, we consider two top-
ranked sentences as true and the other two as false.
As expected, GPT-2 performs around chance level
in all tasks: 50.08% for Active-Passive, 50.47% for
Coordination, and 49.96% for Relative Clause.
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