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Abstract

Users interact with text, image, code, or other
editors on a daily basis. However, machine
learning models are rarely trained in the set-
tings that reflect the interactivity between users
and their editor. This is understandable as train-
ing AI models with real users is not only slow
and costly, but what these models learn may be
specific to user interface design choices. Un-
fortunately, this means most of the research on
text, code, and image generation has focused
on non-interactive settings, whereby the model
is expected to get everything right without ac-
counting for any input from a user who may be
willing to help. We introduce a new Interactive
Text Generation task that allows training gener-
ation models interactively without the costs of
involving real users, by using user simulators
that provide edits that guide the model towards
a given target text. We train our interactive
models using Imitation Learning, and our ex-
periments against competitive non-interactive
generation models show that models trained in-
teractively are superior to their non-interactive
counterparts, even when all models are given
the same budget of user inputs or edits.

1 Introduction

Advances in generative modeling have made it pos-
sible to automatically generate high-quality texts
(Brown et al., 2020), code (Chen et al., 2021), and
images (Ramesh et al., 2021), but these creations
can be unsatisfactory in many respects. For ex-
ample, they often suffer from content errors—e.g.,
hallucinations (Ji et al., 2022)—that may require
help from the user. Even if the generation is of
good quality, it may not be the kind of text, code,
or image that the user was hoping to obtain. Indeed,
open-ended and complex generation tasks are of-
ten underspecified (e.g., from a simple prompt),
which makes it almost impossible for the model to
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Figure 1: The ITG framework of this paper allows gen-
eration models to be trained and evaluated by directly
interacting with users or user simulators.

satisfy user needs without additional information.
Distinguishing the real user need from the need
as initially presented to the system has been the
focus of decades of research (Taylor, 1968), and
usually requires interacting with users to clarify
their needs (Gao et al., 2022). Unfortunately, much
of the research in generative models have been in
“one-shot” settings, which don’t allow any kind of
iterative refinements to steer the generation towards
what the user really wants.

This paper introduces a new end-to-end genera-
tion task, Interactive Text Generation, that accounts
for interactivity without requiring real users during
training. The framework is illustrated in Figure 1,
where the model and a “user” take turns editing the
text until a given stopping criterion is met. As this
setup would be impractical to train with real users,
we rely on a user simulator that provides a few
high-quality edits that guide the model towards a
given target text. This interspersion of user edits in
the generation process allows text generation mod-
els to more efficiently use inferential capabilities of
large language models (LLM). Contrast interactive
text generation in Figure 1 with conventional text
generation, where both systems are given exactly
three user input words. Interactive text generation
leverages LLM’s capability to infer, e.g., “space-
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craft” from “NASA” and allows it to focus on parts
of the text (e.g., “Monday”) that are more difficult
to predict, and this allows the interactive approach
to generate text that better meets user’s needs.

Our work makes the following contributions:
• We propose a task and framework for interactive

text generation, and release models, a dataset,
and user simulators. Crucially, this task evaluates
generation models with the same budget of user
inputs or edits, to ensure the comparison between
interactive and non-interactive models is fair.

• We present methods to train Transformer-based
(Vaswani et al., 2017) interactive text editing
models using imitation learning, where our mod-
els learn to imitate an expert that dynamically
constructs a trajectory from the current docu-
ment state to the goal state (target document).
Our editing models include both autoregressive
and non-autoregressive versions, with the non-
autoregressive one achieving the best results.

• We show that interactivity indeed does help
thanks to imitation learning when compared to
their non-interactive counterparts, across differ-
ent evaluation metrics, model types, and model
sizes and with the same amount of user inputs.
This finding is consistent with prior work show-
ing that user needs are often best handled interac-
tively (Oddy, 1977; Belkin et al., 1995; Radlin-
ski and Craswell, 2017; Gao et al., 2022), and
confirms that our benchmark helps quantify the
benefit of interactivity in text generation.

• As user simulation is a key component of this
new task, we contribute different user simula-
tors. Our experiments show performance of our
models remains consistent with different user
simulators, which highlights the robustness of
our new benchmark.

Another contribution is that text generation in this
work is not merely aimed at producing well-formed
text, but also at creating text that is tied to user
needs. We release this framework with the hope it
will help researchers in NLP, Imitation Learning,
Reinforcement Learning, and AI in general as it
provides an environment to train AI agents that
directly interact with users and user simulators.1

2 Task: Interactive Text Generation

The task introduced in this paper considers a sim-
ple setting in which the system and user collabo-
ratively write a document. As our goal is to train

1Code and models for this paper will be made public.

generation models that can do most of the heavy
lifting, this task gives a more directional role to
the user, while the bulk of the text is generated by
the system. Therefore, our task is similar to the
instructor-executor frameworks (Hu et al., 2019;
Kiseleva et al., 2022) seen in other tasks. In the
case of text generation, motivational examples of
such instructor-executor interactions include a stu-
dent writing a paper while getting occasional feed-
back from an advisor, or a freelance writer getting
instructions from a client.

Our task models the interaction between a user
and system, where the two parties successively take
turns making changes to a draft document. As this
interaction applies to both training and testing, it
would be unrealistic to assume we have real users
in both cases, and we therefore rely on user simu-
lators. Although building effective user simulators
is notoriously hard in tasks such as dialog (Schatz-
mann et al., 2007; Li et al., 2016; Lin et al., 2022;
Gao et al., 2019), it is less so in our work given
how we frame the interactive generation task: We
assume that there is a goal text which one can think
of as representing the user’s desire or needs. The
system does not know the goal, but the user simu-
lator does. The objective of the agent is to get as
close to the goal text as possible, while minimiz-
ing the number of edits the user simulator needs to
make.

This framing makes it much easier to design ef-
fective user simulators, as a comparison between
the current draft and goal text can help infer useful
text edits. While agents in this setup are given an
advantage by interacting with an oracle that has
knowledge of the goal document, the number of
oracle edits is generally set to be small, and we
ensure comparisons between all models (includ-
ing non-interactive models) are fair by giving each
model the same budget of edits or inputs derived
from the goal document.

2.1 Task Formulation
We can formalize our task by the following proto-
col. There are two players in the game, the agent
and user. Starting from a blank document, the play-
ers take turns producing drafts over H rounds.2

The user has a goal document G, and the objective
of the game is to get as close to the goal as possi-
ble. Closeness is quantified by a scoring function

2Except for index ranges, e.g. t = 1, ..., T , we will use
capital letters to denote random variables, and lower case
letters to denote realizations.
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Figure 2: Model architecture: the current draft repeatedly goes through two phases. First, it is edited with the edit
model (either a non-autoregressive token edit model or a standard seq2seq Transformer), and then it is annotated
with edits coming from the user simulator. While the user simulator has access to the gold document, all our
generation systems (interactive and non-interactive) are evaluated with the same budget of user inputs.

s(·;G), and a tolerance δ > 0. We denote the agent
draft at step h by Ah, and the user draft at step h by
Uh. If we then fix a goal document G, the protocol
is as follows. For h = 1, ...,H:

1. User observes Ah−1. If s(Ah−1;G) > 1− δ,
stop. Otherwise, the user produces Uh accord-
ing to G and Ah−1.

2. Agent observes Uh and produces Ah.

Here A0 is a blank document. The tolerance δ
represents how close the agent needs to get to the
target for the user to be satisfied. Let T ≤ H be the
time at which the interaction stopped. We evaluate
the task by looking at s(AT ;G) and T . The higher
s(AT ;G), the better the produced document, and
the lower T , the more time the user saved.

We assumed here that each instance of the task
is parameterized by a goal document G. However,
one could instead use multiple goal documents,
G1, ..., GM , or even replace s(·;G) with some gen-
eral score function s(·) that is independent of any
goal document, which one could think of as a utility
function for the user.

In this work, we assume that the user behavior
is fixed and we will learn an agent policy.

3 User Simulator

This section describes the user simulator used in
our work. Throughout this section and the next, we
refer the reader to the Appendix for more details.

Where appropriate, we indicate references to the
appendix in parentheses.

3.1 Edits

Both our simulated user described below, and our
model described in Section 4, operate by making
edits to a document. We will consider single-word
edits of three types: inserting a word, deleting a
word, or substituting one word for another. If we
denote an edit by e, and a document by x, then
y = [e](x) will denote the action of e on document
x, producing a new document y. Note that y will
differ from x by a single word. If we have multiple
single-word edits e1, ..., eN , we can apply them
one after another, as in y = [e1...eN ](x).

3.2 Simulated User

Because the user has knowledge of the goal docu-
ment G, we can easily define a sensible user simu-
lator. Given a current draft produced by the agent
Ah, we can compute sequences of edits e1, ..., eN
such that G = [e1...eN ](Ah), as detailed in Sec-
tion 3.3 below. The user will produce a draft
Uh+1 = [e1...en](Ah) only by applying some
small number of these edits n ≤ N , where the edits
are chosen according to a heuristic (App. B). An
example heuristic would be to pick edits e1, ..., en
that insert informative words first. This way, the
user provides information to the agent by produc-
ing a draft Uh+1 that is a few steps closer to G
than Ah. This is like providing a gradient in the
direction of G. Note that while this represents one
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Figure 3: Interactive text generation as imitation learn-
ing: The editing model (agent policy πθ) is trained to
imitate the expert policy πE .

way to build a user simulator, our task formulation
is completely agnostic to the user behavior.

In our experiments we ensure that comparisons
between non-interactive and interactive systems are
fair by fixing the total number of single-word edits
made by the user at N . In the non-interactive case,
all N edits are made at the start. In the interactive
setting, the N edits are spread out over M rounds
of editing, where at each round the user only makes
N/M edits.

3.3 Alignments

For any x, y there may be many sequences
e1, ..., eN such that y = [e1...eN ](x). There is
always such a sequence since we can delete x com-
pletely and generate y. Practically, we can compute
a set of such sequences of edits e1, ..., eN by find-
ing an alignment between x and y, as illustrated in
Figure 2. The alignment defines which words in x
map to words in y, and which words were deleted
or inserted. Words that match to identical words
are conserved, whereas mismatches correspond to
substitutions. From there it is easy to get the edits
e1, ..., eN that transform x into y. We will denote
this set by A(x, y). We use contextual word em-
beddings from BERT to compute these alignments,
so that words in x map to words in y with similar
meaning, as we found that this tends to produce
more natural alignments (App. A.3).

4 Imitation Learning Model

The agent policy πθ will parameterize a distribution
over documents, so that at each step of the interac-
tion we draw Ah ∼ πθ(·|Sh). Here Sh is the his-

tory of drafts (A0, U1), . . . , (Ah−1, Uh) exchanged
so far. This information is necessary for the agent
to make inferences about the goal G. However,
this history can become very long, especially since
each element is an entire document. Therefore, in
practice we only give the policy πθ access to the
last set of drafts, (Ah−1, Uh), which we represent
as a diff (App. B), as illustrated in Figure 2.

4.1 Left to Right Autoregressive Model
The first agent model that we consider is a simple
sequence to sequence (S2S) model that generates
outputs in a left-to-right autoregressive manner,

πθ(Ah = a|Sh) =

H∏

i=1

πθ(ai|a<i, Sh),

where a = (a1, ..., aL) and a<i = (a1, ..., ai−1).
Note that this model autoregressively generates the
new draft from scratch.

4.2 Token Editing Model
While our S2S model forms a reasonable base-
line, we note that it is not particularly adapted for
the task. Instead, we also propose a token editing
model that directly edits the previous draft Uh to
produce its revised draft Ah by making a series of
edits. This way, both the agent and user operate
by making edits. Additionally, we add a stopping
action to allow the model to decide when to stop
editing. Concretely, we parameterize the model as
a distribution over edits (and the stopping action),
πθ(·|[e1...et−1](Uh), Sh). In other words, based
on the previous edits it made, and the current state,
the model decides what edit to make next. The
probability of producing a particular draft a is,

∑

τ

πθ(stop|a, Sh)
M∏

k=1

πθ(ek|[e1...ek−1(Uh), Sh),

where the sum is over all sequences of edits τ =
(e1, ..., eM ) such that [e1...eM ](Uh) = a. See Fig-
ure 2 for an illustration.

4.3 Training
We train our model to copy an expert policy πθ that
would perform well in our task. Because this ex-
pert is only used at training time, it is very simple:
it produces the goal G. See Figure 3 for an illus-
tration. We follow the DAgger (Ross et al., 2011)
algorithm as outlined in Algorithm 1, which tries
to minimize the following objective:

L(θ) = EG∼νESh∼π [− log πθ(G|Sh)] ,
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Algorithm 1: DAgger
Initialize πθ;
Initialize D ← ∅;
β ← 1;
repeat

π ← βπE + (1− β)πθ;
Sample goal documents g1, ..., gC ∼ ν;
Sample trajectories from π with

contexts g1, ..., gC ;
Collect B states from sampled

trajectories into D;
Aggregate D ← D ∪D;
Train policy πθ on D;
β ← λβ;

until convergence;

where π is the roll-in, or sampling policy, ν is a
distribution over goals, and the second expectation
is over histories produced by running our task pro-
tocol with the policy π as the agent (App. A.4).
Setting π to πθ would allow us to train on-policy,
but since πθ will start off as a poor policy that
visits many unnecessary states, DAgger uses a
mixture between the agent and expert policies, so
π = βπ∗+(1−β)πθ, where β ∈ [0, 1] is annealed
to 0 during training.

4.4 Likelihood Estimation

The training objective from Section 4.3 requires
the computation of the negative log-likelihood
− log πθ(G|Sh). For the autoregressive model, this
can be directly computed as a simple product as de-
scribed in Section 4.1. On the other hand, the like-
lihood for the token editing model involves a sum
over sequences of edits which quickly becomes in-
tractable. Instead, we optimize an upper bound on
it. Using the alignments defined previously, we can
specify a set of edit trajectories, denoted A(Uh, G),
that are indexed by permutations σ ∈ SM , where
M is the length of the edit trajectories (App. A.3).
So, an edit trajectory in A(Uh, G) will be written
eσ1 , ..., e

σ
M , and [eσ1 , ..., e

σ
M ](Uh) = G for all σ. We

can then assume that most alternative trajectories3

will have low probability, so we restrict the sum to
all trajectories in A(Uh, G). For convenience, we
will write Xσ

k = [eσ1 , ..., e
σ
k ](Uh). This gives the

3For example the infinite number of trajectories that in-
volve inserting and deleting the same word.

upper bound (App. A.5),

−EkEσ1:k


M + 1

nk

∑

σk+1

log πθ(e
σ
k+1|Xσ

k , Sh)


 ,

where the two expectations are over uniform dis-
tributions, and nk is the number of terms in the
sum. The first expectation ranges over prefixes of
edit sequences eσ1 , ..., e

σ
k for σ ∈ SM , and the sum

ranges of over distinct edits eσk+1. In words, this
objective says that we select a random number k of
edits, in random order σ, that move us toward G,
giving us the intermediate draft Xσ

k . We then try to
predict the next edit that brings us closer to G. We
evaluate this objective stochastically as described
in Algorithm 2 (App. A.5).

4.5 Decoding

When decoding from the autoregressive model, we
use standard algorithms such as beam search. For
the token editing model, we sequentially sample
edits from the model until the model’s probability
of stopping reaches a given threshold or we exceed
a maximum number of decoding steps. If we hit
the timeout, we return the draft that had the high-
est stopping probability according to the model.
This ensures that whatever draft the agent returns
it is highly confident that it is a finished document.
For example, if the model were editing “the man”
into “the man and the dog”, we would not want to
stop and return the draft “the man the dog” where
the model hasn’t yet added the word “and”. Algo-
rithm 4 outlines this procedure (App. A.7).

5 Experiments

Because of the novelty of our task, the main goal of
our experiments is to assess the benefit of interac-
tivity in text generation. We also provide example
interactions between the learned agent and user
simulator. Ablations and additional details on ex-
periment settings are in the appendix.

5.1 Setup

Data We consider single sentences from
CNN/DailyMail article summaries (Nallapati et al.,
2016). While we only consider single sentences
for ease of implementation, we can extend our
models to full documents in a straightforward
way. Using news articles gives complex and
factually grounded sentences, while restricting our
attention to the summaries keeps the sentences
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Figure 4: Results showing the benefit of interactive generation, where #episodes=1 means the entire budget of
6 oracle edits is given to the model all at once (i.e., no interactivity). For #episodes=2, the model receives as input
3 oracle edits per episode (2x3=6). For #episodes=3, the model receives 2 oracle edits per episode (3x2=6).

self-contained. This dataset forms the distribution
over goal documents G.

Model We implement our models using pre-
trained transformer models, with additional MLP
heads to predict the edit actions in the case of the
token editing model.

Metrics We evaluated generation using BLEU

(Papineni et al., 2002), CHRF (Popović, 2015)
BLEURT (Sellam et al., 2020), BARTSCORE

(Yuan et al., 2021), and ROUGE (Lin, 2004). As
BARTSCORE returns a score interpretable as a log-
probability, we report the natural exponent of that
score. In the case of both BLEU and ROUGE, we
evaluate with their unigram versions (BLEU-1 and
ROUGE-1) as they provide interpretability of the
results at the token level.

5.2 Interactivity

To probe whether interactivity helps, we compared
the performance of our model given different levels
of interactivity. Concretely, we take a fixed number
of edits N provided by the user, and compare the
performance of the model when those edits are pro-
vided over a varying number of episodes M . Thus,
for given M , the user and agent interact over M
episodes, with the user making N/M edits at each
episode. Note that the total amount of information
provided by the user in each setting is thus the same.
The only difference is that in interactive settings the
agent is able to make changes in between receiving
edits from the user. While this setup is not able
to probe the advantages that interactivity provides
in terms of human-computer interaction, we still
expect to see better performance in the interactive
case. For example, the model may be able to pre-
empt some of the edits the user makes, allowing
the user to use its budget to make other edits.

6 Results

Automatic evaluation Figure 4 presents our
main results on interactivity. We can see that for our
main model, splitting the same number of user ed-
its over more episodes leads to better scores across
BLEU, BLEURT and BERTSCORE. For example,
comparing the setting where the model receives all
6 user edits at the start in one episode, against the
setting where the edits are given across 3 episodes,
we see improvements of about 7%, 4% and 5%
(absolute % gains) in terms of BLEU, BLEURT,
and BERTSCORE respectively. While these differ-
ences are not large in absolute terms, we emphasize
that this gain comes exclusively from interactiv-
ity. The amount of information given to the model
is the same in both settings. This suggests that,
even in this narrow sense, interactivity helps. Note
that there may also be many more benefits from
a human-computer interaction standpoint that we
cannot quantify here.

We also note that our token editing model (Ed-
itor) outperforms the left-to-right, autoregressive
sequence to sequence (S2S) model4. While the
difference is not staggering, it is notable given the
success of standard S2S models across a variety of
text generation tasks. As motivated in Section 4,
the token editing model is more naturally suited
to the task, and we argue that it constitutes the
starting point for more interesting interactive mod-
els. For example, one could foresee training the
model using reinforcement learning, in which case

4In the case of the S2S model, we added a word reward
feature (He et al., 2016), which is sometimes called “length
penalty”. We tuned this feature on a validation set of 500
instances. We added this feature due to the observation that
S2S outputs in our task are often too short, which has been
noted in other tasks such as machine translation (Murray and
Chiang, 2018). This feature was only necessary with the S2S
model, and resulted in the three models of Figure 4 having
average lengths close to one another (within 6%).
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Non-interactive Interactive
++ + = + ++

Meaning 6.7% 30.2% 9.6% 42.6% 10.9%
Fluency 8.0% 36.0% 15.1% 33.4% 7.5%

Table 1: Human evaluation using Editor Large model,
comparing interactive generation (3 episodes, 2 oracle
edits) vs. non-interactive (1 episode, 6 oracle edits).
Results indicate judges’ preference: ++ (definitely supe-
rior), + (somewhat superior), = (equal quality).

the structure of the editing model based on editing
actions is better suited than a S2S model.

Human evaluation We conducted a human eval-
uation (Table 1) to compare interactive and non-
interactive generation, similar to the automatic eval-
uation in Figure 4. We selected the best-performing
model (BART Large) and compared 3-episode gen-
eration against 1 episode on 1k test instances. Each
instance was evaluated by 5 mechanical turkers.
The judges were asked to compare each pair of gen-
erations based on semantic similarity to the gold
text (“meaning”) and linguistic quality ("fluency")
using a 5-point Likert scale. Table 1 shows that
interactivity improves performance, as the interac-
tive system is generally semantically closer to the
target (significance at p < 1e− 7). The interactive
system exhibits slightly lower fluency on average,
although the level of significance is weaker here
(p = .037). We hypothesize this slight decrease in
fluency is due to multiple rounds of generation.

Ablations We provide extensive ablations of
model variants. As a benchmark for comparison,
we look at the quality of the text produced by our
models after interacting with the user over several
episodes. For better comparisons we use a fixed
number of episodes and a fixed number of user
edits per episode. We use 3 edits and 4 episodes.
Tables 2 and 3 present our ablations. Note that
these results use 4 episodes, with 3 user hints per
episode (a total of 12 user hints) compared to the
6 total user hints in Figure 4, so the overall results
are higher.

The baseline model is trained with a noise level
of σ = 0.3, an unrestricted user and a sampling
annealing rate of 0.9. All models in Table 2 were
evaluated with the adjacent and contiguous user
heuristics. Table 2 presents variations on train-
ing parameters. The noise level is the amount of
noise injected during training, the user is the (sole)
heuristic used for the user during training, and the

Model BLEU BLEURT BART

Bart Editor (baseline) 0.76 0.70 0.14

noise level
0.0 0.74 0.69 0.14
0.1 0.78 0.73 0.16
0.2 0.73 0.67 0.12

oracle
contiguous 0.71 0.66 0.12
adjacent 0.60 0.61 0.09
adj+config 0.66 0.64 0.11

Sampling annealing rate
0.85 0.76 0.70 0.14
0.80 0.71 0.67 0.12

Table 2: Ablation results with different training hy-
perparameters. All ablations results are relative to the
baseline. BART stands for BARTSCORE.

Model BLEU BLEURT BART

adj+config (baseline) 0.76 0.70 0.14
contiguous 0.76 0.69 0.14
adjacent 0.78 0.75 0.19
unrestricted 0.78 0.75 0.18

Table 3: Ablation results with different oracles changed
at test time.

sampling annealing rate indicates how quickly we
anneal from the expert to the trained model while
sampling (lower is faster). Table 3 compares differ-
ent user heuristics at test time.

We note that adding noise during training im-
proves results (e.g. noise level 0.1 vs. 0.0), while
annealing too fast can hurt performance (annealing
rate 0.8 vs. baseline). Interestingly, training with
a user that better matches the inference-time user
leads to worse performance (e.g. adj+contig vs.
baseline). It seems that using the most informative
user (which simply returns the most informative
edits, without restriction) leads to the best model
(baseline). Comparing different user simulators
at inference time, we see that adding restrictions
to the user leads to decreased scores, as expected.
Interestingly, we see that the most impactful re-
striction seems to be enforcing contiguous edits.
We suspect that this is because contiguous edits
are highly predictable. For example, predicting
“Obama” after “Barack” is fairly obvious. Thus, if
the user didn’t provide contiguous edits, and only
inserted the word “Barack”, the model could score
an easy win by predicting “Obama”.
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Examples Table 4 provides two examples of in-
teractions between the agent and user. We empha-
size that these examples were not cherrypicked.
Note how the agent is able to revise its previous
version of the text based on the new information
provided by the user at each step. Qualitatively,
these interactions could be much more natural for
a user than the one shot setting that is prevalent
in the literature. However, a systematic evaluation
of this claim requires a more comprehensive user
study that lies out of the scope of this work.

7 Related Work

Text Generation Prior work on natural language
generation (NLG) has largely focused on non-
interactive settings that have become increasingly
more challenging and open-ended, e.g., with gen-
eration from prompts (Fan et al., 2019), out-
lines (Rashkin et al., 2020), topics or keywords
(Ghazvininejad et al., 2016; Yan, 2016), plots
(Riedl and Young, 2010), descriptions (Jain et al.,
2017), events (Martin et al., 2017). This increase
of difficulty can make NLG more prone to content
quality issues, such as hallucinations (Wiseman
et al., 2017; Filippova, 2020; Çelikyilmaz et al.,
2020; Ji et al., 2022), that can require post-editing
from the user. Several works explored ways for
LLMs to improve their outputs by iteration and
self-critiquing (Huang et al., 2022; Gou et al., 2023;
Welleck et al., 2022). In particular, Welleck et al.
(2022) presented models for text generation and
self-correction that also incorporated external feed-
back. However, in their case the feedback is used
at training time to learn a corrector. In our task,
the user feedback comes at inference time and the
agent must use that feedback to guess what the user
would like to generate.

Non Autoregressive Generation Several works
considered non-autoregressive text generation (Gu
et al., 2019; Shen et al., 2020; Xu and Carpuat,
2021; Stern et al., 2019; Zhang et al., 2020; Welleck
et al., 2019), but these models all focus on one-shot
text generation. While some models are able to
edit text (Gu et al., 2019; Xu and Carpuat, 2021), it
is primarily used as a means to refine the model’s
generations. On the other hand, we consider editing
text into a completely different version conditioned
on a given set of user-provided edits.

Text Editing Text editing has previously been
considered from two different angles. On the one

hand, various works (Zhang et al., 2019; Du et al.,
2022b) have studied the types of revisions made by
humans. On the other hand, works have focused
on modeling text edits (Guu et al., 2018; Yin et al.,
2018; Faltings et al., 2021; Akoury et al., 2020),
but they have generally been restricted to model-
ing a single episode of user edits at a time. In our
framework, model edits and user edits are inter-
leaved. We note that (Du et al., 2022a) presented
an interactive revision system, but their model was
nevertheless trained on a corpus of edits, rather
than in an interactive environment as in our case.
The recent versions of GPT-3 (Brown et al., 2020;
Ouyang et al., 2022) and ChatGPT5 also offer text
editing capabilities. For example, ChatGPT can
handle a prompt containing a piece of text and in-
struction to improve the text, and ChatGPT’s ability
to execute that command is often quite impressive.
The ability of ChatGPT to interact with users was
somewhat explored in (Bang et al., 2023), although
not in the context of text editing. We think our
work is complementary to GPT-3 and ChatGPT,
as we provide a framework for both modeling and
evaluating edit models in a more end-to-end setting.
Our model of interaction between user and system,
where the user and system are both editing the text,
may also be more natural than dialogue. Ultimately,
we think it will be beneficial to fine-tune very large
language models such as GPT-3 in an environment
that exposes them to interaction with a user or a
user simulator (i.e., akin to user-in-the-loop train-
ing). This benefit is currently somewhat captured
using reinforcement learning (RL) to tune large
language models from human feedback (Ouyang
et al., 2022), except that our approach features an
actual environment representative of the end-user
experience while Ouyang et al. (2022) is more akin
to offline RL.

Interactivity Several works have explored inter-
activity between humans and models to complete
tasks collaboratively. Lee et al. (2022) presented
a dataset to reveal large language models’ capa-
bilities in assisting creative writing. Zhang et al.
(2022); Li et al. (2022) explored pre-trained lan-
guage models for code editing based on human-
written comments. Closer to our work, Lahiri et al.
(2022) created an interactive framework to refine
user intents through test case generations and user
feedback, and Kiseleva et al. (2022) studied an
interactive agent that can interact with humans

5https://chat.openai.com/chat
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Example 1 Example 2

target: Progress 59 spacecraft will re-enter Earth’s
atmosphere in a week, Russia space
agency says .

target: The Large Hadron Collider (LHC) begins
again after a two-year shutdown .

oracle: Progress 59 re-enter oracle: (LHC)
agent: Progress in Europe means he has a 59 per

cent chance to re-enter the EU .
agent: Curators at the Mars Space Telescope

(LHC) will launch in space the next
month .

oracle: Progress in Europe means he has a 59 per
cent spacecraft will re-enter the EU .

oracle: The Large at the Mars Space Telescope
(LHC) will launch in space the next
month .

agent: Progress in will help the Europe means
he has a 59 million per cent spacecraft
will re-enter the Earth EU .

agent: The Large X-ray Telescope at the Mars
Space Telescope (LHC) is located will
launch in space the Atlantic . next
month .

oracle: Progress will help the 59 million space-
craft will re-enter Earth’s says .

oracle: The Large X-ray Telescope (LHC) is lo-
cated in two-year shutdown .

agent: Progress comes after Boeing will help
the 59 spacecraft will re-enter NASA
Earth’s spacecraft, it says .

agent: The Large Mars Telescope-ray Telescope
(LHC) will end a two-year shutdown .

oracle: Progress comes after Boeing 59 spacecraft
will re-enter NASA’s spacecraft, Russia
space agency says .

oracle: The Large Hadron Collider (LHC) will
end a two-year shutdown .

agent: Progress comes as Boeing’s after Boeing
59 spacecraft will re-enter Earth NASA
spacecraft, Russia’s space agency says .

agent: The Large Hadron Collider (LHC) will
end a end a two-year shutdown .

Table 4: Example interactions between the oracle and agent. The oracle changes are shown red. Deleted words are
crossed out. Note that these are randomly selected examples (i.e., without cherrypicking), with the only curation
being the rejection of potentially offensive examples.

and follow natural language instructions to achieve
goals in Minecraft. Finally, interactivity has also
been studied from a Human-Computer Interaction
viewpoint (Clark et al., 2018; Shen and Wu, 2023).

8 Conclusions

We presented a new task and benchmark for text
generation that operationalizes interactivity be-
tween an agent and a user, without the need to
involve real users during training. Our framework
compares interactive and non-interactive systems
that are given the same amount of user inputs, and
shows that interactive text generation leads to text
of higher quality according to multiple automated
evaluation metrics and human evaluations. We also
present a non-autoregressive editing model that out-
performs a standard sequence-to-sequence Trans-
former in various settings. All baseline, data, and
models of this paper will be made public.

Limitations

A long-term goal of this research is to enable in-
teractive editing of full documents. For practical
reasons and to facilitate adoption, we limited text
length to 64 tokens, but we plan to extend our
benchmark and released datasets to also include
paragraph-level and multi-paragraph texts. Another
limitation of our work is that training is done with
simulated instead of real users, as training with
users in the loop can be extremely slow and costly.
To make our approximation of user behavior realis-
tic, our work relies on user inputs that real-world
users perform routinely (i.e., word insertion, dele-
tions, and substitutions) even settings that are not
assisted with AI. However, we recognize that the
behavior of real users in a AI-user collaborative
setting may differ from that of our user simulators,
and leave the study of such behavior for future
work. Finally, while the need for interactivity ap-
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plies to any kind of AI creation (e.g., also code
and images), we leave the application to other gen-
eration tasks for future work. We note, however,
that this paper treats text as simple sequences of
symbols, and our work could readily be applied to
other symbolic creations (e.g., code generation).

Ethics Statement

Text generation systems, including those relying
on large language models, run the risk of generat-
ing text that is unsafe (Bender et al., 2021; Bom-
masani et al., 2021; Weidinger et al., 2021), and
this also applies to generation models developed
in this work. While we have not observed genera-
tions that are overtly toxic or hateful, our models
can generate texts that are biased and offensive to
some readers. As our work focuses on generation
of non-fictional texts (in contrast to prior work on
story generation), our models also run the risk of
generating text that is factually incorrect. However,
the focus of our research is to provide interactive
capabilities to generation systems, and to make
them more in control of the user. As illustrated
in Figure 1, a back-and-forth between system and
user can make the generated text more factual, and
the same kind of interaction can also help increase
its safety. Such sanitization of generated texts in
our framework may still expose users with unsafe
content, so it is still recommended to use current
safeguards against hallucinations (Ji et al., 2022),
biases (Dhamala et al., 2021; Weinberg, 2022), and
other offensive content (Gehman et al., 2020; Welbl
et al., 2021; Kiritchenko et al., 2021; Jones et al.,
2022; Xu et al., 2022) before displaying text to real
users. In that sense, we think our work is comple-
mentary to current NLG research on hallucination
and safety.
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A Methods Details

This section gives more formal and precise defini-
tions of the notions of document, edits and align-
ments introduced in the main text. We follow
by a more detailed description of the token edit-
ing model and the derivation of the log-likelihood
lower bound.

A.1 Documents

We consider documents to be elements of V L, the
space of strings of length L formed by words in
vocabulary V . We assume V contains a blank to-
ken _, so that V L corresponds to all documents of
length up to L.

A.2 Edits

In this work we consider three types of single-word
edits: insertions, deletions, and substitutions. In
particular, we do not consider word movements,
i.e. changing the position of a word in a docu-
ment. This will simplify the alignments we use
to define the user simulator behavior. We for-
mally define an edit as a 3-tuple specifying: a
location l ∈ [L] = 1, ..., L, an operation o ∈
{ins, del, sub}, and a word w ∈ V . An edit
e = (l, o, w) ∈ [L]× {ins, del, sub} × V can then
be applied to a document x ∈ V L, which we de-
note by [e](x), as defined by the following rules:

1. If o = ins: [e](x) = x1...xl−1wxl...xL−1

2. If o = del: [e](x) = x1...xl−1xl+1...xL_

3. If o = sub: [e](x) = x1...xl−1wxl+1...xL

When performing multiple edits e1, ..., eN in
sequence, we will write6 [e1...eN ](x) =
[eN ](...[e1](x)) as a shorthand. Note that the edits
are not permutation invariant because of the loca-
tion parameter l. For example, if x is a blank docu-
ment, and e1 and e2 each correspond to inserting
“the” and “dog” respectively at the start of the docu-
ment, i.e. e1 = (1, ins, the) and e2 = (1, ins, dog),
then [e2e1](x) = “the dog” whereas [e1e2](x) =
“dog the”.

6A more operator-like way to write this would have been
[eN ...e1], but we opt for the other order, where the interpreta-
tion is that the brackets [] map the sequence of edits e1, ..., eN
to an operator [e1...eN ] which is equivalent to performing the
edits in sequence.
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A.3 Alignments
Given two documents x, y, an alignment will give
us a convenient way to find a sequence of edits
e1, ..., eN such that [e1...eN ](x) = y. We use this
to define the user simulator behavior, as well as for
training our token edit model. Loosely speaking,
an alignment between x and y is a partial mapping
between words in x and words in y. More for-
mally, it is an undirected bipartite graph with ver-
tex sets Vx = {x1, ..., xL} and Vy = {y1, ..., yL},
and edges E. The edges then match words in x to
words in y, where some words in x or y may not
be matched. A monotonic alignment is one where
the edges in the graph do not cross.

For our purposes it will be convenient to repre-
sent alignments in a particular way. Rather than a
graph, an alignment between x and y will be a pair
x̄, ȳ ∈ V 2L, where x, resp. y, is a subsequence of
x̄, resp ȳ. Moreover, x̄ and ȳ only contain blank to-
kens otherwise. See Figure 2 for an example. Then
each pair (x̄i, ȳi), i = 1, ..., 2L is interpreted as an
operation:

1. insertion if x̄i = _ and ȳi ̸= _

2. deletion if ȳi = _ and x̄i ̸= _

3. substitution if _ ̸= ȳi ̸= x̄i ̸= _

Pairs of blanks (_, _) are ignored. Note that the
the positions where neither x̄i or ȳi are blank give
a monotonic alignment. The converse is not true
because we could construct many pairs (x̄, ȳ) that
correspond to the same alignment. This is because
we can rearrange the order of the positions cor-
responding to insertions and deletions since this
won’t affect the alignment. We therefore require all
insertions to come before deletions so that mono-
tonic alignments between x and y correspond one-
to-one to pairs (x̄, ȳ).

Given x and y, there may be many possible align-
ments. We therefore define a score on alignments
and choose an alignment that maximizes the score.
Given alignment (x̄, ȳ), the score is

S(x̄, ȳ) =
2L∑

i=1

s(x̄i, ȳi|x, y),

where s(x̄i, ȳi|x, y) scores the pair (x̄i, ȳi) given
the contexts x and y. If both x̄i and ȳi are blank, the
score is 0. If only one is blank, we assign a baseline
score b. If neither is blank, then x̄i will correspond
to some xk in x. Similarly ȳi corresponds to yl in y.

We use the cosine similarity between the BERT em-
beddings of xk and yl as their score. We found that
using BERT embeddings gave more natural align-
ments where words of similar meaning or function
are matched together. For example, consider two
single word documents “red” and “blue”. Then
it makes more sense to consider the change from
“red” to “blue” a substitution rather than a dele-
tion followed by an insertion. On the other hand,
“red” to “car” makes less sense as a substitution.
This score can be easily optimized using dynamic
programming (see for example Gale et al. (1994);
Smith et al. (1981); Needleman and Wunsch (1970)
for more details).

Given an alignment x̄ and ȳ, the set of indices
A = {i : x̄i ̸= ȳi} naturally give a set of edits. We
can split A = I ∪D ∪ S into the union of indices
corresponding respectively to insertions, deletions,
and substitutions. These edits can be performed in
any order, so the alignment gives a whole set of edit
sequences, one for each permutation of A. For any
σ ∈ SM a permutation of A, where M = |A| is
the size of A, there is a sequence of corresponding
edits eσ1 , ..., e

σ
M . The delicate part about getting

these edits is determining their location parameters
since these will depend on the order σ. We will
need the following two quantities:

1. Iσi = |{j < i : Aσ(j) < Aσ(i), Aσ(j) ∈ I}|

2. Dσ
i = |{j < i : Aσ(j) < Aσ(i), Aσ(j) ∈ D}|

These correspond to the number of insertions and
deletions that come before edit eσi and which will
affect its location parameter. Let Bσ

i = |{j <
Aσ(i) : x̄j = _}| be the number of blanks before
position Aσ(i) in x̄. Then, for i = 1, ...,M , the
location parameter will be lσi = Aσ(i) − Bσ

i −
Dσ

i + Iσi . Note that this is just keeping track of
where the edit needs to be made in the document
[eσ1 , ..., e

σ
i−1](x) after applying the first i− 1 edits.

We then treat the three operations separately:

1. Aσ(i) ∈ I: eσi = (li, ins, ȳAσ(i)
)

2. Aσ(i) ∈ D: eσi = (li, del, _)

3. Aσ(i) ∈ S: eσi = (li, sub, ȳAσ(i)
)

In summary, for documents x, y we can compute
a unique alignment (x̄, ȳ). We then denote the set
of edit sequences {eσ1 , ..., eσM , σ ∈ SM} as defined
above by A(x, y).
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Algorithm 2: Token Edit Model Objective
Data: a, sh
Compute edits A(uh, a,);
Uniformly sample permutation σ ∈ SM ;
Uniformly sample k ∈ {1, 2, ...,M + 1};
Compute xσk−1 = [eσ1 , ..., e

σ
k−1](uh);

return M+1
nk

∑
σk

log πθ(e
σ
k |xσk−1, sh);

A.4 Markov Decision Process

As stated in Section 2, we fix the user behavior and
learn a policy for the agent. To do so, we model our
task as a finite-horizon Contextual Markov Deci-
sion Process (Sutton and Barto, 1998; Hallak et al.,
2015) (S,A, C, P,R,H, ρ, ν) where S is the state
space, A is the action space, C is the context space,
P : S × A × C 7→ ∆(S) is the transition func-
tion, R : S × A × C 7→ [0,∞) is a state-action-
context dependent reward function that models the
user’s utility, H is the horizon, and ρ ∈ ∆(S)
and ν ∈ ∆(C) are the initial distribution over the
state space and a distribution over contexts. The
action and context spaces correspond to V L, the
sequences of length L over vocabulary V , where
the context is the goal document G. The state space
is a history of drafts produced so far. Because the
agent is ignorant of G, having access to the his-
tory of drafts allows the agent to make inferences
about the goal G. The reward models a tradeoff
between minimizing T , the time it takes to get to
a satisfactory document, and s(AT ;G), the quality
of the produced document. The user is modeled by
the transition function P . Given previous state (i.e.
history of drafts) Sh−1, the agent’s draft Ah−1, and
the target G, the environment transitions to state
[Sh−1|(Ah−1, Uh)], where | denotes concatenation,
and Uh is the user’s draft produced according to
Ah−1 and G. This framework allows us to use tools
like imitation learning to train a policy πθ for this
MDP, as done in Section 4.3.

A.5 Token Edit Model Likelihood Lower
Bound

Recall that at step h, the likelihood under the token
editing model model of a document a, given the
current history Sh, and latest draft Uh will be,

πθ(Ah = a|Sh) =

∑

τ

πθ(stop|a, Sh)

M∏

k=1

πθ(ek|[e1...ek−1(Uh), Sh),

where the sum is over all sequences of edits
e1, ..., eM such that [e1...eM ](Uh) = a. We first
lower bound the likelihood by discarding sequences
outside of the set A(Uh, a), so

πθ(a|Sh) ≥
∑

σ∈SM

πθ(stop|a, Sh)
M∏

k=1

πθ(e
σ
k |Xσ

k−1, Sh),

where Xσ
k−1 = [eσ1 ...e

σ
k−1](Uh). This is the same

type of sum as in (Shen et al., 2020). Following
their derivation,

log πθ(a|Sh) ≥

log
∑

σ∈SM

πθ(stop|a, Sh)
M∏

k=1

πθ(e
σ
k |Xσ

k−1, Sh) ≥

C +
1

M !

∑

σ∈SM

M∑

k=1

log πθ(e
σ
k |Xσ

k−1, Sh),

where C = log(M !)+log πθ(stop|a, Sh). The last
line comes from Jensen’s inequality, where the sum
over permutations became an expectation. Using
the same trick of rearranging the sum over time
steps and orderings as in Shen et al. (2020), we can
rewrite the second term as,

1

M !

∑

σ∈SM

M∑

k=1

log πθ(e
σ
k |Xσ

k−1, Sh) =

EkEσ0:k−1


 M

M − k + 1

∑

eσk

log πθ(e
σ
k |Xσ

k−1, Sh)




where the sum is over the set {e : eσk =
e, some σ ∈ SM}. We then fold the
log πθ(stop|a, Sh) term into the expectation over k.
This gives the objective,

EkEσ0:k−1

[
M + 1

nk

∑

σk

log πθ(e
σ
k |Xσ

k−1, Sh)

]
,

where the expectation is now over k = 1, ...,M+1,
eσM+1 = stop for all σ ∈ SM , and

nk =

{
M − k + 1, if k ≤M

1, if k = M + 1
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Algorithm 3: Noisy Edit Trajectory Sam-
pling
Data: a, uh, σ
Result: Edits e1, ..., eM
x← uh;
k ← 1;
repeat

Compute A(x, a);
Sample e from A(x, a)1;
p← Bernoulli(σ);
if p = 1 then

ek ← random edit;
else

ek ← e;
end
x← [ek](x);
k ← k + 1;

until x = a;
return e1, ..., ek

A.6 Denoising

In practice, the lower bound derived above may be
very loose because we are only considering edits
in A(Uh, a,). In other words, the learned policy
πθ will inevitably find itself out of distribution at
inference time by making mistakes.

In order to make the model robust, we leverage
denoising training (Lee et al., 2018). To do so,
we notice that in Algorithm 2 we are essentially
sampling a trajectory of edits e1, ...eM such that
[e1...eM ](Uh) = a, and then randomly sampling
a point along this trajectory. Instead, we sample
noisy trajectories of edits, where we intersperse
random edits, as in Algorithm 3. This simulates
mistakes that the trained policy might make at in-
ference time. Given this random prefix of edits
e1, ..., ek−1, we get a noised, intermediate docu-
ment, x̃k−1. We compute the same loss as before
over the set of edits {e : τ1 = e, τ ∈ A(x̃k−1, a)}.
This is the set of first elements of edit trajectories
from x̃k−1 to a, and we’ll denote it by A(x̃k−1, a)1.
The objective becomes,

M + 1

nk

∑

e∈A(x̃k−1,a)1

log πθ(e|x̃k−1, Sh),

where now nk = |A(x̃k−1, a)1|. Intuitively, this is
like using a noisy roll-in policy to get to x̃k−1, and
then matching an expert policy that can produce a.

Algorithm 4: Token Edit Model Sampling
Data: s, u, α,N
Result: Generation fro πθ(·|s)
x0 ← u;
s0 ← 0;
i← 0;
repeat

si ← πθ(stop|xi, s);
Sample non-stopping edit ei

from π̃θ(·|xi, s);
xi+1 ← [ei](xi);
i← i+ 1;

until si > α or i > N ;
j ← argmax{si};
return xj

A.7 Decoding
To decode from the token editing model we use
ancestral sampling with a few modifications. First,
when sampling an edit (or stopping action) from
πθ, we only sample from the top k edits. Just as for
autoregressive models, we found that this improves
generation quality, since the low-probability edits
are usually of poor quality and will figuratively
speaking throw a wrench in the decoding process.
For long sequences of edits, the probability of sam-
pling a bad edit also becomes non-negligible.

The model also has a tendency to stop early.
Again, this is because the probability of stopping
erroneously increases as we sample more and more
edits. In contrast to other types of mistakes, stop-
ping early is especially bad because there is no
way to recover, as opposed to other mistakes that
can be fixed with another edit later on. Therefore,
we explicitly avoid sampling the stopping action,
and instead decode edits until either the model’s
stopping probability exceeds a threshold, or we
reach a maximum number of edits. We then return
the document that had the highest stopping proba-
bility. The whole decoding procedure is given in
Algorithm 4.

B Experiment Details

B.1 Data
We use version 3.0.0 of the CNN/DailyMail dataset
from the HuggingFace dataset hub (Lhoest et al.,
2021). We take the article summaries, which we
split into sentences and then filter to sentences with
less than 64 tokens, where the tokens are deter-
mined by the BART tokenizer from HuggingFace
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(Wolf et al., 2020). We then split the data into train,
test, and validation splits, with (approximately) 1M,
55K, and 45K instances respectively.

B.2 User Simulator Heuristics

The environment of our contextual MDP is deter-
mined by the behavior of the user simulator. We
consider the following methods for generating user
edits:

Ranking Given a set of edits, we rank them based
on their informativeness. As a measure of informa-
tiveness, we use IDF scores.

Adjacent Edits If the user simulator simply re-
turns the most informative edits, it will have a ten-
dency to make edits in disparate parts of the text.
For example, it might return keywords from the
end of the document, when the current draft only
covers the start. In a realistic setting, users make
edits related to the current draft, they do not pre-
empt the end of the document. Thus, we limit the
user simulator to producing adjacent edits, where
an edit is adjacent if it is adjacent to a match in the
alignment to the target.

Contiguous Edits While adjacency will keep the
user simulator edits relevant to the current draft, it
may still have a tendency to produce a disconnected
set of edits. Instead, we limit it to only produce
contiguous edits.

Complete Words Finally, since the user simu-
lator operates on tokenized text, and the tokens
may break up words, we also constrain its edits to
complete words.

B.3 Models and Training

Implementation Models were implemented with
Transformer architectures with additional MLP
layers on top. Specifically, we used the BART
base and BART large checkpoints made avail-
able through the HuggingFace transformers library
(Wolf et al., 2020). The models have (approxi-
mately) 140M and 400M parameters respectively.

For fixed document x and state s, the token edit-
ing model parametrizes a distribution over edits
along with a stopping action. We refer to the union
as edit actions, which are four tuples (s, l, o, w),
where s ∈ {0, 1} indicates the stopping action, and
l, o, w, are as defined for edits. The probability of
an edit action e = (s, l, o, w) is parameterized as a
product of four probabilities, depending on three

cases. If s = 1, then

πθ(e|x, s) = πs
θ(1|x, s).

If s = 0, o = del, then

πθ(e|x, s) = πs
θ(0|x, s)πl

θ(l|x, s)πo
θ(o|l, x, s).

Otherwise,

πθ(e|x, s) =
πs
θ(0|x, s)πl

θ(l|x, s)πo
θ(o|l, x, s)πw

θ (w|o, l, x, s).

Each of πs
θ, π

l
θ, π

o
θ , π

w
θ is implemented as a separate

MLP head.

Model Inputs The history of drafts Sh could be-
come prohibitively large, so we keep track of only
the last three drafts, denoted by Uh−1, Ah−1 and
Uh. This allows the agent to reason about the edits
it made at the last step and how the user responded.
Additionally, we track all words inserted by the
user along the entire history. This is easy to do by
marking the relevant words, and allows the agent to
know which words in the current draft came from
the user. In practice, all these features are repre-
sented as a diff. See Figure 2 for an illustration,
where the different coloring and markings repre-
sent which words were inserted or deleted by the
agent or user. Practically, we implement this by
adding labels to the tokens in the draft Uh. We can
easily track these labels for the user and token edit
models because they operate by making edits. So if
the model or user deletes a word, we can mark it as
deleted. For the Seq2Seq model this isn’t possible
because it returns an entire new draft. For example,
we couldn’t tell if a word was deleted or substituted
for another. Instead, we compute the alignment be-
tween Uh−1 and Ah−1, from which we can read off
which tokens were inserted, deleted or substituted.
Because words inserted by the user should likely
never be deleted by the agent, we keep the labels
on all words inserted by the user so that they persist
throughout the entire interaction.

Training Models were trained on a single 16GB
V100 GPU for 600 iterations with a sampling batch
size of B = 104 and a sampling annealing rate of
λ = 0.9. We also used 300 warmup iterations
(where λ was not annealed). For the token editing
model we used a noise level of σ = 0.3.
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Decoding We decode from the S2S autoregres-
sive model using beam search with a beam size of
10. For the token editing model we used top 10
sampling of actions, a stopping probability thresh-
old of α = 0.95 and a maximum number of edits
of N = 64.

B.4 Metrics
We evaluated generation using BLEU (Papineni
et al., 2002) and CHRF (Popović, 2015) with the
SacreBLEU implementation (Post, 2018). We also
evaluate using BLEURT (Sellam et al., 2020) and
BARTSCORE (Yuan et al., 2021), which are model-
based metrics that have been shown to correlate
well with human judgment on various text gener-
ation tasks. As BARTSCORE returns a score inter-
pretable as a log-probability, we report the natural
exponent of that score. We also use ROUGE (Lin,
2004) for evaluation as an alternative to BLEU, as
its scores tend to be less sensitive to length. In the
case of both BLEU and ROUGE, we perform eval-
uation with their unigram versions (BLEU-1 and
ROUGE-1) as they provide interpretability of the
results at the token level.
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