
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 3829–3846
December 6-10, 2023 ©2023 Association for Computational Linguistics

Adapting Language Models to Compress Contexts

Alexis Chevalier∗ Alexander Wettig∗ Anirudh Ajith Danqi Chen
Department of Computer Science & Princeton Language and Intelligence

Princeton University
{achevalier,anirudh.ajith}@princeton.edu

{awettig, danqic}@cs.princeton.edu

Abstract

Transformer-based language models (LMs)
are powerful and widely-applicable tools, but
their usefulness is constrained by a finite
context window and the expensive computa-
tional cost of processing long text documents.
We propose to adapt pre-trained LMs into
AutoCompressors. These language models are
capable of compressing long contexts into com-
pact summary vectors, which are then acces-
sible to the model as soft prompts. Summary
vectors are trained with an unsupervised objec-
tive, whereby long documents are processed in
segments, and summary vectors from all previ-
ous segments are used in language modeling.
We fine-tune OPT and Llama-2 models on se-
quences of up to 30,720 tokens and show that
AutoCompressors can utilize long contexts to
improve perplexity. We evaluate AutoCompres-
sors on in-context learning by compressing task
demonstrations and find that summary vectors
are good substitutes for plain-text demonstra-
tions, increasing accuracy while reducing infer-
ence costs. Finally, we explore the benefits of
pre-computing summary vectors for large cor-
pora by applying summary vectors to retrieval-
augmented language modeling and a passage
re-ranking task. Overall, AutoCompressors
emerge as a simple and inexpensive solution
to extend the context window of LMs while
speeding up inference over long contexts.1

1 Introduction

Transformer-based (Vaswani et al., 2017) language
models (LMs) have recently seen a sharp rise
in popularity and are now receiving millions of
queries, processing billions of tokens, and generat-
ing text for a wide variety of applications (Brown
et al., 2020; Touvron et al., 2023; Zhang et al.,

*AC and AW contributed equally. This work was done
when AC was at the Institute for Advanced Study and visited
the Princeton NLP group.

1Our code and models are publicly available at
https://github.com/princeton-nlp/AutoCompressors.

use for language modeling summary vectors

randomly
segmented input

summary
tokens

summary
vectors

LM

LM

LM

Figure 1: AutoCompressors process long documents
by recursively generating summary vectors which are
passed as soft prompts to all subsequent segments.

2022). With this rise in popularity comes the chal-
lenge for researchers to make LMs more efficient,
to speed up inference and to deploy LMs at scale,
while increasing their versatility, thus allowing
users to process more data in new ways.

With these goals in mind, we propose to teach
pre-trained LMs the ability to compress text into
summary vectors. Summary vectors are short soft
prompts (Lester et al., 2021), one or two orders of
magnitude shorter than the pre-compressed plain
text, that are obtained from the output states of a
language model. Summary vectors serve two gen-
eral purposes: they can help extend the language
model’s context window to very long documents
with minimal computational overhead, and they
help speed up inference on text for which summary
vectors have been pre-computed and cached.

Our models, which we call AutoCompressors,
are trained with a simple unsupervised learning
objective that encourages the model to store essen-
tial information in the summary vectors. Summary
vectors are produced segment by segment from
long documents and are used to improve language
modeling in future segments (Figure 1). Our work

3829

https://github.com/princeton-nlp/AutoCompressors

builds on the recently proposed RMT architecture
(Bulatov et al., 2022) with a crucial difference: we
introduce summary accumulation, in which sum-
mary vectors from all segments are concatenated
to produce the summary of the entire document.
We also train AutoCompressors with randomly seg-
mented inputs so they can better compress contexts
of variable lengths in downstream tasks. We show
that these innovations improve long-range informa-
tion retention and enable new ways of reasoning
over multiple passages.

AutoCompressors can be initialized with pre-
trained LMs to produce powerful and versatile
models. We fine-tune AutoCompressors from OPT-
2.7B (Zhang et al., 2022) and Llama-2-7B (Tou-
vron et al., 2023) models on sequences from 6,144
up to 30,720 tokens with a single NVIDIA A100
GPU of 80GB memory. We show that summary
vectors are effective for improving perplexity over
long documents and that these compression capa-
bilities are robust to domain generalization. Our
analysis suggests that AutoCompressors are able to
reason over summary vectors, making them useful
for a diverse set of downstream applications.

We apply AutoCompressors to in-context learn-
ing (ICL) by compressing up to 90 in-context
demonstrations. We consider 11 classification
tasks, including 7 SuperGLUE tasks (Wang et al.,
2019), and we find that summary vectors outper-
form few-shot ICL with a comparable number of
in-context tokens on 8 out of 11 tasks.

Finally, we explore two applications where
AutoCompressors can reduce inference costs by
pre-computing summary vectors for large corpora.
First, we adopt a setting for retrieval-augmented
language modeling (Shi et al., 2023). We find that
for equal sequence lengths, using summary vec-
tors achieves 1.5× the perplexity gains compared
to plain-text passages, and outperforms retrieval-
augmented methods for similar computational bud-
gets. Secondly, we consider a zero-shot passage
re-ranking task (Sachan et al., 2022). We estab-
lish that re-ranking passages based on their sum-
mary vectors achieves the best trade-off between
re-ranking performance and inference throughput.

In summary, our main contributions are the fol-
lowing: (1) We introduce a method for extending
LMs to long context windows under small-scale
computational requirements by learning to generate
summary vectors. We propose summary accumula-
tion and training with randomized segmenting as

key features of AutoCompressors. (2) We show
that summary vectors encode useful information
for downstream tasks and can be used to reduce
the inference cost of in-context learning. (3) We
demonstrate the benefits of pre-computing sum-
mary vectors for large corpora and using Auto-
Compressors in conjunction with retrievers.

2 Related Work

Soft prompts Soft prompt tuning is an effective
method to adapt pre-trained Transformers without
updating existing parameters (Lester et al., 2021;
Zhong et al., 2021; Liu et al., 2022). Newly ini-
tialized embeddings are prepended to the input se-
quence (the “soft prompt”), and optimization is
performed with respect to these new parameters
while the rest of the model is frozen. It is one
of many parameter-efficient fine-tuning methods
(Lialin et al., 2023) and is related to prefix tuning,
where newly initialized parameters are prepended
to the attention states instead (Li and Liang, 2021).
Prompt compression Wingate et al. (2022) pro-
pose to learn a soft prompt σ to compress the in-
formation contained in a context x. Given a pre-
trained language model pLM, they draw continu-
ations y ∼ pLM(· | x) based on x and use a dis-
tillation objective to align the model’s predictions
conditioned on the soft prompt pLM(y | σ) to the
predictions conditioned on the context pLM(y | x).
Wingate et al. (2022) find that soft prompts retain
high-level information and facilitate controllable
generation. However, the approach requires run-
ning the optimization for every new context x, with
no knowledge transfer between similar contexts.
In contrast, our AutoCompressors learn to predict
their own soft prompts σ as a function of x.
Context distillation A related line of work (Askell
et al., 2021; Snell et al., 2022) aims to distill in-
context information, e.g., instructions, into an un-
prompted student model. In concurrent work, Mu
et al. (2023) teach models to compress instructions
into short key-value attention prefixes. Our ap-
proach differs by learning to compress any context
information, including long documents, and results
in more compact soft prompts.
Long-range Transformers A number of archi-
tectural modifications have been proposed to scale
Transformers to longer context lengths while reduc-
ing the high memory costs of full attention. These
include restricting and sparsifying the attention
window (Dai et al., 2019; Child et al., 2019), ap-

3830

proximating the attention (Rae et al., 2020; Zheng
et al., 2022; Choromanski et al., 2021), as well as
introducing recurrent elements (Ma et al., 2022; Bu-
latov et al., 2022), conditional computation (Ainslie
et al., 2023), and retrieving previous tokens from
the context at the output layer (Zhong et al., 2022).
See Tay et al. (2022) for a comprehensive survey
of efficient long-range architectures.

Most of these architectures typically require ex-
pensive training from scratch, or will deviate sub-
stantially from a pre-trained initialization.2 More-
over, many language models lack the inductive
bias to extrapolate to longer sequences (Press et al.,
2022). While AutoCompressors could in principle
be trained from scratch, we show that they offer a
straightforward solution for extending the context
window of pre-trained models to longer sequences.

3 Method

We describe how we adapt a pre-trained language
model to compress text into summary vectors. An
overview of our architecture is shown in Figure 1.

Summary vectors The AutoCompressor builds
on the RMT architecture (Bulatov et al., 2022). We
extend the input vocabulary of the base model by
κ special summary tokens <Sum>i and initialize κ
new input embeddings.3 When we append the se-
quence <Sum>1 . . . <Sum>κ to an input, it signals to
the model to output special summary vectors of
the preceding context. These vectors can then be
passed to the next text segment as a soft prompt
of length κ. Since the embedding spaces of pre-
trained language models can span thousands of
dimensions, we expect that this mechanism has
a high capacity for passing information to subse-
quent segments. Furthermore, a soft prompt can
interpolate between many token embeddings, and
therefore represent more abstract concepts than a
single discrete token (Wingate et al., 2022).

Summary accumulation We split long docu-
ments into segments S1, . . . , Sn and process them
sequentially. Bulatov et al. (2022) incorporate in-
formation from previous segments by prepending
the compressed summary σi−1 produced from Si−1

to the embedded inputs of Si. We propose summary

2In our pre-liminary experiments, even fine-tuning a pre-
trained OPT-2.7b model with Transformer-XL-style training
(Dai et al., 2019) caused optimization difficulties and deterior-
iated the pre-trained model quality.

3When fine-tuning OPT models, we observe benefits with
initializing the embeddings of the summary tokens with the
pre-trained embedding for the end-of-sequence token </s>.

accumulation, which allows for a direct informa-
tion pathway between each segment and all seg-
ments preceding it: we concatenate the summary
vectors σ1 . . . , σi−1 to form σ<i and prepend σ<i

to Si. Note that the length of σ<i is now (i− 1)κ,
which grows linearly with the document length.
Positional embeddings When using a base Trans-
former architecture with absolute positional embed-
dings, such as the OPT architecture (Zhang et al.,
2022), we do not add positional embeddings to the
summary tokens <Sum>i, nor to the summary vec-
tors. This allows us to use all pre-trained position
embeddings as context tokens and makes it possi-
ble to scale the model to an arbitrary number of
compression steps during training. The model still
preserves the order of summary tokens due to their
separate token embeddings.

If the base Transformer uses relative positional
embeddings, such as RoPE (Su et al., 2022), we
apply the positional embedding to the summary to-
kens and vectors without any further modification.

3.1 Training Summary Vectors
We use a simple unsupervised training approach
which encourages the model to learn to compress
contexts over multiple steps.
Training objective Write (xi1, . . . , x

i
mi

) for the
segment Si for every i ≤ n, where mi is the
number of tokens in Si. Conditioning on the
concatenated summary vectors σ<i, we project
the Transformer outputs with the language mod-
eling head to obtain the next-token probabilities
p(xit | xi1, . . . , xit−1, σ<i). We minimize the cross-
entropy loss over the entire document:

L = − 1

N

n∑

i=1

mi∑

t=1

log p(xit | xi1, . . . , xit−1, σ<i).

where N is the total number of tokens. This ob-
jective retains the pre-trained language model’s
abilities on the first segment S1 and it incentivizes
the model to store useful information in the sum-
mary vectors, which future segments can leverage
to make better token predictions.

Unlike Wingate et al. (2022), we do not train
with a knowledge distillation objective, since the
pre-trained LM has a limited context window as
a teacher, whereas the AutoCompressor student
learns to process much longer documents.
Randomized segmenting We randomly vary the
lengths mi of the segments Si during training, sub-
ject to the condition that each segment fits into

3831

the model’s context window. This allows Auto-
Compressors to compress documents of different
lengths and improves performance under evalua-
tion with fixed-length segments (see Figure 2).

BPTT with stop-gradients We employ backprop-
agation through time (BPTT) and gradient check-
pointing (Chen et al., 2016) for each segment to
reduce the size of the computational graph. In addi-
tion, we compute and cache summary vectors and
stop their gradients after 2 compression steps, simi-
lar to caching past attention states in Transformer-
XL training (Dai et al., 2019). This assumes that
for learning to compress the useful information in
Si, it is sufficient to predict the tokens in the adja-
cent Si+1. In Figure 2, we confirm that this incurs
no penalty when predicting long segments, while
further reducing GPU memory requirements.

4 Language Modeling Evaluation

In this section, we train AutoCompressors and eval-
uate their long-range language modeling capabil-
ities by sampling long sequences which we split
into segments of 2,048 tokens. We fix the final
segment and compress the previous n segments.
We track the perplexity of the final segment when
conditioning on the summary vectors for each n.

We conduct our main experiments and ablations
with OPT models (Zhang et al., 2022) of 1.3B or
2.7B parameters, fine-tuned on 2B tokens from the
Pile (Gao et al., 2020). In Section 4.1, we evaluate
an AutoCompressor on sequences of 8,000 tokens
and compare to an equivalent RMT model and an
Extended Full Attention baseline. In Section 4.2,
we fine-tune an AutoCompressor on sequences of
30,000 tokens to demonstrate the feasibility on very
long sequences. Finally, in Section 4.3, we scale
up AutoCompressors by fine-tuning a Llama-2-7B
model on 15B tokens from RedPajama (Togeth-
erAI, 2023). Full model hyperparameters and data
information can be found in Appendix A.

4.1 Experiments on 8K-Token Sequences

Setting We initialize all models with the 2.7B-
parameter OPT model and fine-tune on 2B tokens
from 4 domains form the Pile (Gao et al., 2020).
Our AutoCompressor uses κ = 50 summary to-
kens and is fine-tuned with summary accumulation
over four segments, each ranging from 1,024 to
2,048 tokens. Compressing 2,048 tokens into 50
summary vectors achieves a compression rate of 40
tokens per summary vector. We use the following

baselines:
1. We fine-tune an OPT-2.7B baseline on our data.

This model is limited to sequences of 2,048
tokens due to pre-training.

2. Extended full attention: We fine-tune OPT-2.7B
on sequences of up to 4,096 tokens by extending
the model’s positional embeddings. We initial-
ize the embeddings for positions [2049..4096]
with the embeddings for positions [1..2048]. We
are not able to extend the context beyond 4,096
tokens due to GPU memory limitations.

3. RMT-2.7B: We fine-tune an RMT model on our
data with κ = 50 summary vectors.
We evaluate on documents of 8,192 tokens,

drawn from the 4 training domains or 4 held-out
domains. We generate summary vectors for up
to 3 segments of 2,048 tokens, but also for single
segments as short as 128 tokens. For the extended
full-attention baseline we prepend the previous con-
text tokens to the context window.

Results We show the results in Table 1. We find
that the AutoCompressor benefits from long con-
texts of 6,144 tokens and consistently outperforms
the RMT model.

We also find that the AutoCompressor benefits
from much shorter sequences than seen during
training, unlike RMT. See also Figure 2 and Ta-
ble 6 for the usefulness of randomized segmenting.

While extended full attention performs the best
on 4,096-long sequences, we observe a trade-off for
shorter contexts where AutoCompressors achieve
the best performance. We also stress that the
AutoCompressor attends to at most 150 additional
soft prompts during evaluation, whereas the full at-
tention model is given an additional 2,048 tokens.

These trends hold for both in-domain and out-
of-domain evaluation. However, the gap between
the AutoCompressor and the full-attention baseline
increases in the out-of-domain setting, suggesting
that the summary vectors generalize slightly less
than pre-trained attention heads.

4.2 Experiments on 30K-Token Sequences

Setting We fine-tune OPT-1.3B and OPT-2.7B as
AutoCompressors on 2B tokens but train on se-
quences of 30,720 tokens with 20 compression
steps.4 We use 50 summary tokens, randomized
segmenting, and stop-gradients as before. We also

4Due to the scarcity of very long sequences in the Pile,
we only train on data from the Books3 domain, and use the
Gutenberg domain as out-of-domain evaluation.

3832

In-domain Out-of-domain

Segments ———– 1 ———– – 2 – – 3 – ———– 1 ———– – 2 – – 3 –
Context tokens 128 512 2048 4096 6144 128 512 2048 4096 6144

Extended FA† 6.33† ↑1.0% 6.15† ↓2.1% 5.94† ↓5.4% - - 8.57† ↑0.5% 8.28† ↓2.9% 7.93† ↓7.0% - -

RMT 6.42↑2.2% 6.19↓1.4% 6.02↓4.1% 6.02↓4.1% 6.01↓4.3% 8.76↑2.7% 8.44↓1.1% 8.21↓3.8% 8.20↓3.9% 8.20↓3.9%

AutoCompressor 6.14↓2.2% 6.04↓3.8% 5.98↓4.8% 5.94↓5.4% 5.93↓5.6% 8.39↓1.6% 8.26↓3.2% 8.17↓4.2% 8.12↓4.8% 8.10↓5.0%

Table 1: Held-out perplexity on 2,048 tokens, while varying the length of the preceding context (all the experiments
are based on OPT-2.7B models). For RMT and AutoCompressor, we condition on summary vectors. We also report
the perplexity gains compared to the fine-tuned OPT baseline without extra context, which achieves 6.28 in-domain
and 8.53 out-of-domain (gains shown in colored numbers). †: Although the extended full attention (Extended
FA) achieves similar or slightly better perplexity, it uses up to 2,048 additional tokens and cannot extend further.
However, the AutoCompressor uses only 50× 3 = 150 summary vectors to process 6,144 context tokens.

Segments – 0 – – 7 – – 14 – CUDA
Context tokens 0 14336 28672 memory

RMT-1.3B 13.18 12.50 12.50 54GB
AutoCompressor-1.3B 13.21 12.49 12.47 38GB

RMT-2.7B - - - OOM
AutoCompressor-2.7B 11.86 11.21 11.18 75GB

Table 2: Evaluation results for AutoCompressors trained
on sequences of 30,720 tokens and evaluated on Books3
(in-domain) and Gutenberg (out-of-domain). We train
with a single NVIDIA A100 GPU and report the CUDA
memory required for fine-tuning using a single sequence
per batch. AutoCompressors require less memory be-
cause we stop gradients after two segments.

Segments – 0 – ––––––– 1 –––––– – 2 – – 3 –
Context tokens 0 128 512 2048 4096 6144

Llama-2 5.52 5.30 5.15 4.98 - -
Extended FA 5.40 5.19 5.06 4.88 4.80 4.76

AutoCompressor 5.40 5.23 5.16 5.11 5.08 5.07

Table 3: Evaluation results for our AutoCompressor
trained from Llama-2 7B on sequences of 6,144 tokens.
For the AutoCompressor, we condition on summary
vectors. For Llama-2 and the Extended Full Attention
(Extended FA), we condition on plain text tokens.

fine-tune an RMT model from OPT-1.3B, to use
as a baseline. We are not able to fine-tune a 2.7B-
parameter RMT baseline because the RMT method
leads to an out-of-memory error.

All models are evaluated on the final 2,048 held-
out tokens of documents of size 30,720 tokens by
compressing all previous 2,048-token segments.

Results We collect our results in Table 2. The
evaluation shows that both AutoCompressor mod-
els learn to utilize the entire 28K tokens to reduce
perplexity, while the RMT baseline does not benefit
from doubling the number of context tokens from
14K to 28K. This shows that summary accumula-

tion effectively captures long-range dependencies
in documents. We also report the CUDA memory
requirements for fine-tuning each model in Table 2.
We train with one NVIDIA A100 GPU with 80GB
of memory. Stopping gradients reduces CUDA
memory and makes it possible to fine-tune an Au-
toCompressor from OPT-2.7B, while fine-tuning
with RMT leads to out-of-memory at that scale.

4.3 Scaling Up AutoCompressors to Llama-2

Setting We fine-tune a 7B-parameter Llama-2
model as an AutoCompressor on a single GPU
by freezing the model and optimizing only the sum-
mary token embeddings and the attention weights
via LoRA (Hu et al., 2022). The model is trained on
15B tokens from RedPajama (TogetherAI, 2023),
split into sequences of 6,144 tokens, and we use
50 summary tokens, randomized segmenting, and
stop-gradients. We also fine-tune an Extended Full
Attention baseline on the same dataset. The context
window of the pre-trained model is extended by in-
creasing the θ value in RoPE following (Rozière
et al., 2023).

We compare both models to the pre-trained
Llama-2-7B model, which has a context window
of 4,096 tokens. All models are evaluated on the
final 2,048 tokens of 8,192-token documents.

Results We collect our results in Table 3. The
AutoCompressor benefits from the entire context
to reduce perplexity: compressing a 4,096-token
context into 100 summary vectors achieves simi-
lar perplexity to the Extended Full Attention base-
line with 512 plain text tokens, and compressing
a 6,144-token context into 150 summary vectors
further improves perplexity slightly. Moreover, we
find that summary vectors preserve perplexity when
short contexts are compressed.

However, Llama-2 and the Extended Full At-

3833

0 1000 2000 3000 4000 5000 6000
Number of context tokens

6.8

7.0

7.2

7.4

7.6

PP
L

AutoCompressor
AutoCompressor w/o summary accumulation
AutoCompressor w/o randomized segmenting
AutoCompressor w/o stop-gradients
RMT

Figure 2: Perplexity on 2048 held-out tokens given dif-
ferent numbers of compressed tokens. Compression is
performed on up to 3 segments of 2048 tokens. Abla-
tions show that the different components of our fine-
tuning strategy help boost performance and that stop-
gradients do not impact performance.

tention baseline outperform the AutoCompressor
when longer contexts are provided. Further re-
search is needed to construct summary vectors that
preserve all of the context information.

4.4 Analysis

Ablations We train OPT-2.7B models without ran-
domized segmenting, summary accumulation, or
stop gradients. The results are shown in Figure 2.
We find that randomized segmenting leads to better
compression of short segments, but still improves
perplexity when compressing multiple 2048 token
segments. As expected, summary accumulation
helps improve perplexity beyond one compressed
segment. We also confirm that stopping gradients
does not impact performance despite reducing GPU
memory requirements. In Table 2, we also show
that stopping gradients helps reduce GPU memory.

We also train AutoCompressors with κ = 20,
50, 70 or 100 summary tokens and report the held-
out perplexity results in Table 7 in the Appendix.
Surprisingly, we find that performance does not
increase with longer soft prompts, and κ = 50
performs the best overall. We hypothesize that
learning a larger number of summary vectors may
require a larger training budget.

Token-level analysis We seek to better understand
how summary vectors benefit individual token pre-
dictions. In Figure 5 in the Appendix, we show
perplexity gains at each token position for the Au-
toCompressor with summary vectors and for the
extended full-attention baseline.

We find that conditioning on summary vectors

improves perplexity over all 2048 token positions.
We observe that the extended full attention baseline
outperforms the AutoCompressor at the start of the
sequence, whereas the AutoCompressor achieves
the best performance towards the end of the se-
quence. This shows that summary vectors effec-
tively capture long-range textual dependencies.

In Appendix D, we show examples of sentences
and tokens which benefit the most from summary
vectors. We find that summary vectors contain
salient information, such as names or dates, and
that the model can reason over summary vectors.
This confirms that summary vectors are useful sum-
maries of the compressed text.

5 Compressing Demonstrations for
In-Context Learning

In this section, we study the usefulness of summary
vectors for performing downstream tasks. We show
that in-context demonstrations can reliably be com-
pressed down into summary vectors to improve
performance while also increasing efficiency on a
diverse set of NLP benchmarks.

Evaluation We evaluate the in-context learning
abilities of the AutoCompressor based on Llama-
2-7B from Section 4.3 on eleven classification and
multiple-choice question-answering datasets. For
each dataset, we evaluate the effect of compressing
1, 2 or 3 segments of demonstrations into 50, 100
or 150 summary vectors. For each segment, we
include as many demonstrations as possible until
we reach 750 tokens. For SST-2, this corresponds
to 30 demonstrations per segment on average. We
compare this compression approach with the results
obtained by prompting the model using 150 and
750 tokens’ worth of plain-text demonstrations.

We use contextual calibration (Zhao et al., 2021)
and class-balanced sampling when these techniques
improve performance on a validation set. For each
dataset, we report the mean accuracy and standard
deviation over 7 random seeds. The detailed set-
tings for each dataset can be found in Table 11.
In Table 12 in the Appendix, we also compare
the ICL performance of our OPT-2.7B based Au-
toCompressor models against the RMT baseline
and a pre-trained OPT-2.7B, and include the per-
formance of the pre-trained Llama-2-7B model.

Results We show evaluation results in Table 4.
Results show that summary vectors consistently
improve performance over the zero-shot baseline.
Furthermore, summary vectors increase accuracy

3834

AG News SST-2 BoolQ WIC WSC RTE CB COPA MultiRC MR Subj

Zero-shot 63.3(0.0) 67.7(0.0) 67.4(0.0) 50.8(0.0) 43.3(0.0) 58.8(0.0) 42.9(0.0) 52.5(0.0) 52.5(0.0) 57.4(0.0) 49.3(0.0)

50 summary vecs. 79.6(4.9) 94.2(1.6) 70.1(3.3) 51.6(2.1) 47.7(8.7) 66.3(7.0) 46.4(18.7) 84.5(1.0) 52.6(2.8) 91.5(1.0) 53.5(3.6)
100 summary vecs. 87.6(1.2) 92.6(3.3) 66.3(2.8) 52.5(2.2) 42.9(2.5) 63.5(6.6) 64.5(5.9) 85.9(0.4) 56.1(1.2) 90.7(2.6) 57.0(5.6)
150 summary vecs. 85.4(3.4) 92.3(2.9) 68.0(1.8) 52.8(1.5) 49.9(7.6) 65.3(6.6) 54.8(5.8) 86.1(0.6) 54.8(2.2) 91.1(2.2) 56.6(7.9)

ICL (150 tokens) 74.5(2.2) 92.4(3.1) 67.4(0.0) 52.4(2.7) 51.8(6.9) 69.1(2.1) 46.4(23.0) 80.0(1.9) 52.5(0.0) 79.7(15.7) 57.9(10.7)
ICL (750 tokens) 81.2(4.1) 93.8(1.2) 67.7(2.7) 52.4(2.0) 40.0(5.7) 73.1(3.5) 50.3(2.8) 82.6(1.6) 47.0(3.2) 91.6(0.8) 60.7(14.8)

Table 4: Evaluation of the ICL performance of the Llama-2 7B model. Each summary is 50 tokens-long and
corresponds to a segment of 750 tokens’ worth of demonstrations. We also report accuracies when prompting the
AutoCompressor with 150 and 750 tokens’ worth of plaintext demonstrations as baselines. Note that for BoolQ and
MultiRC, demonstrations are too long to fit into 150 tokens.

compared to 150 tokens worth of plain demonstra-
tions on 8/11 tasks. On 8 tasks (AG News, SST-2,
BoolQ, WiC, WSC, CB, COPA and MultiRC), sum-
mary vectors also out-perform ICL with 750 tokens’
worth of plain text demonstrations. Summary vec-
tors emerge as a strong alternative to plain text
demonstrations, as they increase accuracy while
reducing inference cost.

In Table 12 (Appendix E), we find that the OPT-
2.7B AutoCompressor achieves higher accuracies
than the RMT baseline on 8 out of 11 tasks and
that the RMT model does not benefit from multi-
ple compression steps. This shows that summary
accumulation is an effective mechanism for com-
pressing in-context demonstrations. We also ob-
serve that our fine-tuned Llama-2 AutoCompressor
has substantially worse zero-shot accuracy on some
tasks compared to the Llama-2 initialization, and
slightly worse ICL performance. We suspect that
this is due to domain mismatch in our fine-tuning
data and the Llama-2 pre-training corpus.

6 Compressing Retrieval Corpora for
Efficient Inference

We study the usefulness of pre-computing sum-
mary vectors for large collections of documents.
These can be stored and later retrieved for efficient
inference. Since inference is typically more expen-
sive than storage, this approach has the potential to
achieve good practical trade-offs.

6.1 Retrieval-augmented Language Modeling

Retrieval-augmented language models improve to-
ken predictions by retrieving information from a
data store. A number of approaches have been pro-
posed to infuse external knowledge in the input
layer (Guu et al., 2020; Shi et al., 2023), intermedi-
ate layers (Borgeaud et al., 2022) or at the output
layer (Khandelwal et al., 2020; Zhong et al., 2022).

Pre-process Corpus

AutoCompressor

AutoCompressor

O�f-the-shelf
Retriever

Retrieval-Augmented LM

Prompt

Generate...

pre-computed
summary

vectorsFetch
top-k

Figure 3: Efficient retrieval-augmented language mod-
eling with AutoCompressors. Large corpora can be
pre-processed into compressed summary vectors which
can be stored cheaply. Upon retrieval, compressed sum-
maries are fused for efficient access to multiple docu-
ments in a single forward pass.

REPLUG Our case study focuses on REPLUG
(Shi et al., 2023), which is a simple method for com-
bining a pre-trained language model with an off-
the-shelf retriever to improve language modeling
performance. Given access to an external corpus C,
REPLUG retrieves k passages D = {d1, . . . , dk}
based on a segment x to score the next segment y.
The overall probability for y is computed by ensem-
bling the predictions based on different passages:

p(y | x,D) =
∑

d∈D
λ(d, x) · p(y | CONCAT(d, x)),

where λ(d, x) are the normalized similarity scores
from the retriever and CONCAT(d, x) denotes con-
catenation of p and x. This method incurs a sub-
stantial overhead, since it requires k forward passes
over sequences CONCAT(d, x, y).
Fused Summaries We introduce a setting for
retrieval-augmented language modeling close to
fusion-in-decoder (Izacard and Grave, 2021). We
concatenate the summary vectors of retrieved pas-
sages D to form the fused summary vectors, σD =
CONCAT(σdk , . . . , σd1), where dk, . . . , d1 are or-
dered from least-to-most relevant. This resembles

3835

Perplexity Gain (%) Throughput (examples/s)

Passages top-1 top-2 top-5 top-10 top-1 top-2 top-5 top-10

50 tokens REPLUG -0.64 0.58 1.68 2.35 51 38 16 9
50 tokens Fused Passages 0.71 1.01 1.70 2.60 28 27 23 17
512 tokens → 50 sum. vecs. Fused Summaries 1.04 1.67 2.63 3.74 28 27 23 17

512 tokens REPLUG -1.47 2.24 5.25 8.30 18 10 6 3

Table 5: PPL gains (%) from different retrieval-augmented language modeling settings, over the no-retrieval baseline.
We evaluate the OPT-2.7B AutoCompressor and we report throughput on a single NVIDIA A100 GPU for each
method without batching examples. Fused Summaries outperforms Fused Passages and REPLUG with 50-token
passages. Moreover, Fused Summaries top-10 outperforms REPLUG top-2 with 512-token passages while also
gaining a 1.7× throughput increase.

summary accumulation as described in Section 3.
We also find it useful to smooth probability scores
and re-order the retrieved passages based on their
summary vectors (Appendix F). Figure 3 gives an
overview of our approach.
Fused Passages We establish a baseline for fus-
ing summary vectors by concatenating the plain-
text passages and computing smoothed probabili-
ties, see Appendix F. Unlike summary vectors, this
method is limited by the model’s context window.
Experiments We evaluate the OPT-2.7B Auto-
Compressor introduced in Section 4.1 without
any additional fine-tuning. Similar to Shi et al.
(2023), we retrieve from the Pile. We use Books3,
FreeLaw, GitHub, Wikipedia, Gutenberg, ArXiv,
HackerNews, and YoutubeSubtitles. We index 10B
tokens for each domain, which are split into pas-
sages of 512 or 50 tokens.

We sample segments of 256 tokens from the Pile
validation data, using the first 128 tokens as context
x for retrieval and the last 128 tokens y for evalua-
tion. We use the Contriever model (Izacard et al.,
2022) for retrieval, and retrieve the top 10 passages.
We also deduplicate our data by removing passages
that overlap with x by 64 tokens.
Results Results are shown in Table 5. We find that
Fused Summaries outperforms Fused Passages and
REPLUG when 50-token passages are retrieved.
We measure throughput empirically and show that
for 10 retrieved documents, Fused Summary Vec-
tors remains inexpensive. We note that compress-
ing the 10B token datasets results in disk space of
5TB per domain when stored in half-precision for-
mat.5 Therefore Fused Summaries achieves a good
trade-off between storage costs and throughput.

5For comparison, storing the transformer output at every
single token (e.g., in an encoder-decoder setting) would take
up 51 TB, and storing all attention states would be 3,276 TB.

Moreover, Fused Summaries outperforms RE-
PLUG top-2 with 512-token passages and sees a
1.7x throughput increase, which shows that the
model benefits from the diversity of compressed
documents. However, REPLUG top-10 outper-
forms Fused Summaries. We leave it as future work
to explore how to produce higher quality summary
vectors to better utilize the compressed passages.

We note that fusing summary vectors is effec-
tive despite a mismatch in training since we draw
independent summary vectors from separate docu-
ments. Furthermore, our AutoCompressor model
is only ever trained to accumulate 3 sets of sum-
mary vectors, and yet it benefits from fusing the
summary vectors of up to 10 documents.

6.2 Unsupervised Passage Re-ranking

Finally, we consider the case study of passage re-
ranking, in which a fast off-the-shelf retriever like
BM25 retrieves a large set of candidate passages,
and a more capable re-ranker refines the ranking to
increase the rank of the most relevant passages.

Method Sachan et al. (2022) introduce an effec-
tive method for leveraging language models as
re-rankers with no additional supervision or fine-
tuning. Given a query q and a set of candidate pas-
sages {p1, . . . , pk}, the language model scores the
likelihood of the query q conditioned on the prompt
“Passage: {pi}. Please write a question
based on this passage.” for each passage pi
and re-ranks the passages based on the scores.

Experiments We consider the task of re-ranking
BM25 passages on the NQ test set (Balachandran
et al., 2021) and compare out-of-the-box AutoCom-
pressors with 20 and 50 summary tokens to pre-
trained OPT models from 125M to 2.7B parameters.
We pre-compute summary vectors for 21M pas-
sages from a Wikipedia corpus (Karpukhin et al.,

3836

0 2 4 6 8 10 12

Re-ranking throughput (queries/s)

68

69

70

71

72

73

74

75

R
ec

al
l@

20

50
60

70

100

250

50

100

150
250

1000

50

100

250

1000

50

100

250

1000

50

100

250

50

100
250

Pareto front
AutoCompressorκ=20

AutoCompressorκ=50

OPT-2.7B
OPT-1.3B
OPT-350M
OPT-125M

Figure 4: We compare AutoCompressors (squares) in an
unsupervised passage re-ranking setting to pre-trained
language models (circles). The number on each data
point shows how many passages retrieved by BM25 are
re-ranked, and the vertical axis shows the Recall@20
performance of the re-ranking system on the NQ test
set. We consider the throughput on a single NVIDIA
A100 GPU and assume that multiple queries cannot be
batched. By leveraging pre-computed summary vectors
for passages, AutoCompressors lead to re-ranking solu-
tions that lie on the Pareto front of recall vs. compute.

2020), which requires 2.1TB and 5.4TB disk space
in half precision for 20 and 50 summary vectors re-
spectively. We measure the quality of the re-ranked
results using Recall@20.

Results The results are shown in Figure 4. We
measure throughput for individual un-batched
queries on a single NVIDIA A100 80GB GPU
and assume that the latency of loading summary
vectors is negligible. Although the passages are
only 100 words long, resulting in low compres-
sion rates, summary vectors substantially speed up
the inference, while sacrificing on performance less
than smaller models. This leads to a Pareto-optimal
trade-off between compute and performance and
demonstrates that summary vectors often retain
sufficient information from a passage to assess its
relevance for a particular query.

7 Conclusion

We have introduced a training strategy for adapting
pre-trained LMs into AutoCompressors, which re-
cursively compress contexts into summary vectors.
Our experiments indicate that summary vectors re-
tain important contextual information, that they can
encode in-context demonstrations, and that they

can be used in retrieval settings. Summary vec-
tors can also be pre-computed, cached and re-used.
This offers practical efficiency gains by reducing
the size of the attention window. Significant future
work remains in scaling AutoCompressors to big-
ger models and improving the quality of summary
vectors to further close the gap with full attention
over long-range contexts.

Limitations

1. We only apply AutoCompressors to OPT mod-
els of up to 2.7B parameters and a Llama model
of 7B parameters. Future work needs to estab-
lish how AutoCompressors perform for even
larger models. As the summary vector dimen-
sion grows, there is promise for retaining more
information per vector.

2. Our results suggest that summary vectors ig-
nore some useful information that is accessible
via full attention. Additionally, models do not
always benefit from increasing the number of
summary vectors. We suspect that the training
signal for learning summary vectors efficiently
might be limited by pre-trained models being
very good at making predictions from the plain-
text tokens in the current segment. Future work
is needed to improve this optimization.

3. Summary accumulation still leads to quadratic
complexity with increasing number of segments,
albeit at a much lower rate than full attention.
Future work may explore ways to combine
many summary vectors more efficiently.

Acknowledgments

We thank Mengzhou Xia, Howard Chen, Vishvak
Murahari, Aatmik Gupta, Zirui Wang, Jiatong Yu,
and the members of the Princeton NLP group for
helpful discussion and valuable feedback. This re-
search is supported by an NSF CAREER award
(IIS-2239290), a Sloan Research Fellowship, and
a Data Science Research Award from Adobe. AC
also gratefully acknowledges support from the Min-
erva Research Foundation.

References
Joshua Ainslie, Tao Lei, Michiel de Jong, Santiago On-

tañón, Siddhartha Brahma, Yury Zemlyanskiy, David
Uthus, Mandy Guo, James Lee-Thorp, Yi Tay, Yun-
Hsuan Sung, and Sumit Sanghai. 2023. CoLT5:
Faster long-range transformers with conditional com-
putation.

3837

http://arxiv.org/abs/2303.09752
http://arxiv.org/abs/2303.09752
http://arxiv.org/abs/2303.09752

Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain,
Deep Ganguli, Tom Henighan, Andy Jones, Nicholas
Joseph, Ben Mann, Nova DasSarma, et al. 2021. A
general language assistant as a laboratory for align-
ment. arXiv preprint arXiv:2112.00861.

Vidhisha Balachandran, Bhuwan Dhingra, Haitian Sun,
Michael Collins, and William Cohen. 2021. Inves-
tigating the effect of background knowledge on nat-
ural questions. In Proceedings of Deep Learning
Inside Out (DeeLIO): The 2nd Workshop on Knowl-
edge Extraction and Integration for Deep Learning
Architectures, pages 25–30, Online. Association for
Computational Linguistics.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo
Giampiccolo. 2009. The fifth PASCAL recognizing
textual entailment challenge. In TAC.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoff-
mann, Trevor Cai, Eliza Rutherford, Katie Milli-
can, George Bm Van Den Driessche, Jean-Baptiste
Lespiau, Bogdan Damoc, Aidan Clark, et al. 2022.
Improving language models by retrieving from tril-
lions of tokens. In International conference on ma-
chine learning, pages 2206–2240. PMLR.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Aydar Bulatov, Yuri Kuratov, and Mikhail Burtsev. 2022.
Recurrent memory transformer. In Advances in Neu-
ral Information Processing Systems.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos
Guestrin. 2016. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174.

Rewon Child, Scott Gray, Alec Radford, and
Ilya Sutskever. 2019. Generating long se-
quences with sparse transformers. arXiv preprint
arXiv:1904.10509.

Krzysztof Marcin Choromanski, Valerii Likhosherstov,
David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz
Mohiuddin, Lukasz Kaiser, David Benjamin Be-
langer, Lucy J Colwell, and Adrian Weller. 2021.
Rethinking attention with Performers. In Interna-
tional Conference on Learning Representations.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina

Toutanova. 2019. BoolQ: Exploring the surprising
difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2924–2936, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The PASCAL recognising textual entailment
challenge. In the First International Conference on
Machine Learning Challenges: Evaluating Predic-
tive Uncertainty Visual Object Classification, and
Recognizing Textual Entailment.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive language models beyond
a fixed-length context. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 2978–2988, Florence, Italy. Asso-
ciation for Computational Linguistics.

Tri Dao, Daniel Y Fu, Stefano Ermon, Atri Rudra, and
Christopher Re. 2022. FlashAttention: Fast and
memory-efficient exact attention with IO-awareness.
In Advances in Neural Information Processing Sys-
tems.

Marie-Catherine de Marneffe, Mandy Simons, and Ju-
dith Tonhauser. 2019. The CommitmentBank: Inves-
tigating projection in naturally occurring discourse.
Proceedings of Sinn und Bedeutung, 23(2):107–124.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho-
race He, Anish Thite, Noa Nabeshima, et al. 2020.
The Pile: An 800GB dataset of diverse text for lan-
guage modeling. arXiv preprint arXiv:2101.00027.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat,
and Mingwei Chang. 2020. Retrieval augmented
language model pre-training. In Proceedings of the
37th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning
Research, pages 3929–3938. PMLR.

R Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo
Giampiccolo, Bernardo Magnini, and Idan Szpektor.
2006. The second pascal recognising textual entail-
ment challenge. In Proceedings of the Second PAS-
CAL Challenges Workshop on Recognising Textual
Entailment, volume 7, pages 785–794.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebas-
tian Riedel, Piotr Bojanowski, Armand Joulin, and
Edouard Grave. 2022. Unsupervised dense informa-
tion retrieval with contrastive learning. Transactions
on Machine Learning Research.

3838

https://doi.org/10.18653/v1/2021.deelio-1.3
https://doi.org/10.18653/v1/2021.deelio-1.3
https://doi.org/10.18653/v1/2021.deelio-1.3
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.232.1231&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.232.1231&rep=rep1&type=pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://openreview.net/forum?id=Uynr3iPhksa
https://openreview.net/forum?id=Ua6zuk0WRH
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/N19-1300
https://kdd.cs.ksu.edu/Courses/Fall-2008/CIS798/Handouts/06-dagan05pascal.pdf
https://kdd.cs.ksu.edu/Courses/Fall-2008/CIS798/Handouts/06-dagan05pascal.pdf
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285
https://openreview.net/forum?id=H4DqfPSibmx
https://openreview.net/forum?id=H4DqfPSibmx
https://doi.org/10.18148/sub/2019.v23i2.601
https://doi.org/10.18148/sub/2019.v23i2.601
https://proceedings.mlr.press/v119/guu20a.html
https://proceedings.mlr.press/v119/guu20a.html
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=jKN1pXi7b0
https://openreview.net/forum?id=jKN1pXi7b0

Gautier Izacard and Edouard Grave. 2021. Leveraging
passage retrieval with generative models for open do-
main question answering. In Proceedings of the 16th
Conference of the European Chapter of the Associ-
ation for Computational Linguistics: Main Volume,
pages 874–880, Online. Association for Computa-
tional Linguistics.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769–6781,
Online. Association for Computational Linguistics.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2020. Generalization
through memorization: Nearest neighbor language
models. In International Conference on Learning
Representations.

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth,
Shyam Upadhyay, and Dan Roth. 2018. Looking
beyond the surface: A challenge set for reading com-
prehension over multiple sentences. In Proceedings
of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 252–262, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In International
Conference on Learning Representations (ICLR), San
Diega, CA, USA.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045–3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Hector J. Levesque, Ernest Davis, and Leora Morgen-
stern. 2012. The winograd schema challenge. In 13th
International Conference on the Principles of Knowl-
edge Representation and Reasoning, KR 2012, Pro-
ceedings of the International Conference on Knowl-
edge Representation and Reasoning, pages 552–561.
Institute of Electrical and Electronics Engineers Inc.
13th International Conference on the Principles of
Knowledge Representation and Reasoning, KR 2012
; Conference date: 10-06-2012 Through 14-06-2012.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597, Online. Association for Computational Lin-
guistics.

Vladislav Lialin, Vijeta Deshpande, and Anna
Rumshisky. 2023. Scaling down to scale up: A guide
to parameter-efficient fine-tuning. arXiv preprint
arXiv:2303.15647.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengx-
iao Du, Zhilin Yang, and Jie Tang. 2022. P-tuning:
Prompt tuning can be comparable to fine-tuning
across scales and tasks. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 61–68,
Dublin, Ireland. Association for Computational Lin-
guistics.

Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian
He, Liangke Gui, Graham Neubig, Jonathan May,
and Luke Zettlemoyer. 2022. Mega: moving av-
erage equipped gated attention. arXiv preprint
arXiv:2209.10655.

Jesse Mu, Xiang Lisa Li, and Noah Goodman. 2023.
Learning to compress prompts with gist tokens.
arXiv preprint arXiv:2304.08467.

Bo Pang and Lillian Lee. 2004. A sentimental education:
Sentiment analysis using subjectivity. In Proceedings
of ACL, pages 271–278.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting
class relationships for sentiment categorization with
respect to rating scales. In Proceedings of ACL, pages
115–124.

Mohammad Taher Pilehvar and Jose Camacho-Collados.
2019. WiC: the word-in-context dataset for evalu-
ating context-sensitive meaning representations. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 1267–1273,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Ofir Press, Noah Smith, and Mike Lewis. 2022. Train
short, test long: Attention with linear biases enables
input length extrapolation. In International Confer-
ence on Learning Representations.

Jack W. Rae, Anna Potapenko, Siddhant M. Jayaku-
mar, Chloe Hillier, and Timothy P. Lillicrap. 2020.
Compressive transformers for long-range sequence
modelling. In International Conference on Learning
Representations.

Melissa Roemmele, Cosmin Adrian Bejan, and An-
drew S Gordon. 2011. Choice of plausible alter-
natives: An evaluation of commonsense causal rea-
soning. In AAAI Spring Symposium: Logical Formal-
izations of Commonsense Reasoning.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle,
Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish
Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wen-
han Xiong, Alexandre Défossez, Jade Copet, Faisal

3839

https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://openreview.net/forum?id=HklBjCEKvH
https://openreview.net/forum?id=HklBjCEKvH
https://openreview.net/forum?id=HklBjCEKvH
https://doi.org/10.18653/v1/N18-1023
https://doi.org/10.18653/v1/N18-1023
https://doi.org/10.18653/v1/N18-1023
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.18653/v1/N19-1128
https://doi.org/10.18653/v1/N19-1128
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=SylKikSYDH
https://openreview.net/forum?id=SylKikSYDH

Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. 2023. Code
llama: Open foundation models for code.

Devendra Sachan, Mike Lewis, Mandar Joshi, Armen
Aghajanyan, Wen-tau Yih, Joelle Pineau, and Luke
Zettlemoyer. 2022. Improving passage retrieval with
zero-shot question generation. In Proceedings of
the 2022 Conference on Empirical Methods in Nat-
ural Language Processing, pages 3781–3797, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Weijia Shi, Sewon Min, Michihiro Yasunaga, Min-
joon Seo, Rich James, Mike Lewis, Luke Zettle-
moyer, and Wen-tau Yih. 2023. REPLUG: Retrieval-
augmented black-box language models. arXiv
preprint arXiv:2301.12652.

Charlie Snell, Dan Klein, and Ruiqi Zhong. 2022.
Learning by distilling context. arXiv preprint
arXiv:2209.15189.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631–1642, Seattle, Washington, USA. Association
for Computational Linguistics.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha,
Bo Wen, and Yunfeng Liu. 2022. Roformer: En-
hanced transformer with rotary position embedding.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Met-
zler. 2022. Efficient transformers: A survey. ACM
Comput. Surv., 55(6).

TogetherAI. 2023. RedPajama: An open source recipe
to reproduce llama training dataset.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. LLaMA: Open and ef-
ficient foundation language models. arXiv preprint
arXiv:2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2019. SuperGLUE: A stickier
benchmark for general-purpose language understand-
ing systems. In Advances in Neural Information
Processing Systems, volume 32. Curran Associates,
Inc.

David Wingate, Mohammad Shoeybi, and Taylor
Sorensen. 2022. Prompt compression and contrastive
conditioning for controllability and toxicity reduction
in language models. In Findings of the Association
for Computational Linguistics: EMNLP 2022, pages
5621–5634, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
OPT: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in Neural Information Pro-
cessing Systems, volume 28. Curran Associates, Inc.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. In
Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pages 12697–12706.
PMLR.

Lin Zheng, Chong Wang, and Lingpeng Kong. 2022.
Linear complexity randomized self-attention mech-
anism. In Proceedings of the 39th International
Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pages
27011–27041. PMLR.

Zexuan Zhong, Dan Friedman, and Danqi Chen. 2021.
Factual probing is [MASK]: Learning vs. learning
to recall. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 5017–5033, Online. Association
for Computational Linguistics.

Zexuan Zhong, Tao Lei, and Danqi Chen. 2022. Train-
ing language models with memory augmentation.
In Proceedings of the 2022 Conference on Empir-
ical Methods in Natural Language Processing, pages
5657–5673, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

3840

http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2308.12950
https://aclanthology.org/2022.emnlp-main.249
https://aclanthology.org/2022.emnlp-main.249
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
http://arxiv.org/abs/2104.09864
http://arxiv.org/abs/2104.09864
https://doi.org/10.1145/3530811
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://arxiv.org/pdf/2302.13971.pdf
https://arxiv.org/pdf/2302.13971.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://aclanthology.org/2022.findings-emnlp.412
https://aclanthology.org/2022.findings-emnlp.412
https://aclanthology.org/2022.findings-emnlp.412
https://proceedings.neurips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.mlr.press/v139/zhao21c.html
https://proceedings.mlr.press/v139/zhao21c.html
https://proceedings.mlr.press/v162/zheng22b.html
https://proceedings.mlr.press/v162/zheng22b.html
https://doi.org/10.18653/v1/2021.naacl-main.398
https://doi.org/10.18653/v1/2021.naacl-main.398
https://aclanthology.org/2022.emnlp-main.382
https://aclanthology.org/2022.emnlp-main.382

A Models and Data

All models are fine-tuned from OPT models on
the Pile. We conduct our experiments using a sin-
gle NVIDIA A100 80GB GPU and we use Flash
Attention (Dao et al., 2022) as an efficient imple-
mentation of exact attention over long sequences.
We also use gradient checkpointing between com-
pressed segments to reduce GPU memory.

A.1 OPT Experiments on 8K Tokens
We fine-tune our models on 2B tokens from the
Pile. We sample 500M tokens from the following
Pile subdomains: Books3, FreeLaw, GitHub and
Wikipedia.

The following models use a learning rate of 2e-5,
a batch size of 130K tokens, 1,00 warm-up steps,
and the Adam optimizer (Kingma and Ba, 2015):
1. The fine-tuned OPT-2.7B baseline is fine-tuned

on documents of up to 2,048 tokens.
2. The extended full-attention baseline is fine-

tuned on documents of up to 4,096 tokens by ex-
tending the positional embeddings of OPT-2.7B
to 4,096 positions. We initialize the embeddings
for positions [2049..4096] with the embeddings
for positions [1..2048].

3. The RMT baseline is fine-tuned on documents
of up to 8,192 tokens. Each document is seg-
mented into four segments of 2,048 tokens. We
use κ = 50 summary vectors but we do not use
summary accumulation, randomized segment-
ing, or stop-gradients.

4. Our AutoCompressor is fine-tuned on docu-
ments of up to 6,144 tokens. Each document is
randomly segmented into four segments such
that the first two segments add up to 3,072 to-
kens. The length of each segments ranges from
1,024 to 2,048 tokens. We use κ = 50 summary
vectors and summary accumulation. We stop
gradients every two compression steps.

All models are evaluated on documents sam-
pled from the Pile with a fixed length of 8,192
tokens. We sample 610 documents from each of
the following domains: Books3, FreeLaw, GitHub,
Wikipedia (in-domain), and ArXiv, Gutenberg,
HackerNews, YoutubeSubtitles (out-of-domain).
Examples of documents from each of those do-
mains can be found in Tables 9 and 10.

A.2 OPT Experiments on 30K Tokens
We fine-tune our models on 2 billion tokens from
the Books3 subdomain of the Pile. All models are

fine-tuned on documents of up to 30,720 tokens.
We use a learning rate of 2e-5, a batch size of
130k tokens, 1,000 warm-up steps and the Adam
optimizer.
1. RMT-1.3B uses κ = 50 summary vectors and is

fine-tuned without summary accumulation, ran-
domized segmenting, or stop-gradients. Each
document is split into 15 segments of 2,048 to-
kens Even with gradient checkpointing, attempt-
ing to fine-tune a 2.7B parameter RMT model
on this dataset leads to an out-of-memory error.

2. The AutoCompressor models are fine-tuned
from OPT-1.3B and 2.7B on documents of up
to 30,720 tokens. Each document is split into
20 segments such that segment 2i and segment
2i+1 add up to 3,072 tokens. The length of each
segment is randomly sampled between 1,024
and 2,048. We use κ = 50 summary vectors
with summary accumulation and we stop gradi-
ents every two compression steps.

All models are evaluated on documents of
30,720 tokens from the Pile. We use 1,000 doc-
uments from Books3 (in-domain) and 1,000 docu-
ments from Gutenberg (out-of-domain).

A.3 Llama-2 Experiments on 8K Tokens

We fine-tune our Llama-2 models on 15B tokens
from RedPajama. We sample 1B tokens from long
documents in ArXiv, Books, C4, GitHub, as well
as 10B tokens from CommonCrawl, 800M from
Wikipedia and 70M tokens from StackExchange.

Both our AutoCompressor and our Extended
Full Attention baseline are fine-tuned from Llama-
2-7B on sequences of 6,144 tokens with LoRA (Hu
et al., 2022) parameter efficient fine-tuning applied
to the attention heads. We use a LoRA dimension
of 16 applied to the QKV- and Out-projections. We
use a learning rate of 4e-4, a batch size of 200K
tokens, 5,000 warm-up steps and the Adam opti-
mizer. For the AutoCompressor, we also optimize
the newly initialized summary token embeddings.

We train our AutoCompressor in the same way
as the OPT-2.7B AutoCompressor, with κ = 50,
randomly segmenting each sequence into four sem-
gents, and stopping gradients every two compres-
sion steps. The Extended Full Attention baseline is
fine-tuned with a RoPE θ value of 80,000.

We evaluate our models on 500 sequences of
8,192 tokens from each of ArXiv, Books, C4,
GitHub, StackExchange, and 5,000 sequences from
CommonCrawl.

3841

B No-context Language Modeling

In Table 6, we verify that our fine-tuning strategy
does not significantly affect the language modeling
capabilities of the OPT AutoCompressors when no
summary tokens are given. We find that the Auto-
Compressor performs slightly better than the RMT
model and significantly better than the extended
full attention model when no additional context
is given. Moreover, the AutoCompressor almost
matches the OPT02.7B fine-tuned baseline, with
perplexity increasing by less than 1%.

In-domain Out-of-domain

OPT-2.7B 7.53↑19.9% 9.19↑7.7%

OPT-2.7B fine-tuned 6.28 8.53

AutoCompressor-2.7B 6.31↑0.5% 8.60↑0.8%

RMT-2.7B 6.34↑1.0% 8.62↑1.1%

Extended full attention 6.57↑6.4% 8.94↑4.8%

Table 6: Held-out perplexity of all models on 2048
tokens without summary vectors or additional context.

C AutoCompressor Ablations

We train OPT AutoCompressor models as in Sec-
tion 4.1 while varying κ = 20, 50, 70, 100. In
Table 7, we report the perplexity evaluation on
documents of 8192 tokens across all evaluation
domains.

Compressed tokens

κ 0 2048 4096 6144

20 7.36 7.05 7.01 7.00
50 7.37 6.99 6.94 6.93
70 7.41 7.01 6.97 6.95

100 7.48 7.07 7.01 7.00

Table 7: Held-out perplexity across all evaluation do-
mains for AutoCompressors based on OPT-2.7B trained
with different numbers of summary tokens κ. We ob-
serve that κ = 50 performs the best overall.

D Token-level AutoCompressor Analysis

In Figure 5, we plot the perplexity gains achieved
by the OPT AutoCompressor and the extended
full attention baseline from Section 4.1 over the
pre-trained OPT-2.7B model. We plot the gains
achieved by the AutoCompressor both without any
additional context and with the summary vectors
obtained from 2048 compressed tokens.

Results show that the summary vectors help re-
duce perplexity over the entire 2,048-token seg-
ment. This shows that summary vectors do not
only contain information which helps continue the
previous sequence.

Figure 5 also shows that the extended full-
attention baseline benefits more from the additional
2,048 context tokens than the AutoCompressor at
the start of the sequence, but that the AutoCom-
pressor achieves stronger gains at the end of the
sequence. This shows that summary vectors ef-
fectively capture long-range textual dependencies
and that fine-tuning AutoCompressors produces
more robust models than fine-tuning extended full-
attention models.

0 400 800 1200 1600 2000
Token position

0

10

20

30

40

50

60

70

80

PP
L

ga
in

(%
)→

Extended full attn. (2048 tokens)
AutoCompressor (2048 tokens)
AutoCompressor (no context)

Figure 5: We plot the perplexity gain over OPT-2.7B
for our AutoCompressor model and the 4096-extended
attention baseline. We track the perplexity at each to-
ken position in sequences of 2048 tokens. The Auto-
Compressor model almost matches the strong extended-
attention baseline at the start of sequences and outper-
forms it at the end of sequences.

In Tables 9 and 10, we give hand-picked exam-
ples of sequences from each evaluation domain,
highlighting which tokens benefit the most from
the compressed context. We compress the first 300
tokens in every document from the evaluation set
and evaluate on the following 100 tokens. In the
notation of Section 3.1, we measure the perplexity
gain of each token as

p(x2t | x21, . . . , x2t−1, σ1)

p(x2t | x21, . . . , x2t−1)
.

For each example, we record the top 3-5 most im-
proved token predictions.

We find that the tokens which benefit the most
from the summary vectors are often interpretable.
Names of characters, dates, and locations are often

3842

copied through the summary vectors (see the ex-
amples for Wikipedia, FreeLaw, or HackerNews).
We also find that the model is able to reason over
the summary vectors, as the tokens which benefit
the most are sometimes not explicitly present in
the compressed context, but are closely associated
with the domain of speech (see the examples for
Books3, Gutenberg and YoutubeSubtitles.). Finally,
we find that summary vectors are often useful for
continuing the previous sentence (see the GitHub
example.)

E In-Context Learning Details

We evaluate on in-context examples of the follow-
ing datasets: AG News (topic classification, Zhang
et al. (2015)), SST-2 (sentiment analysis, Socher
et al. (2013)), BoolQ (Boolean Questions, Clark
et al. (2019)), WiC (Word-in-Context, word sense
dismabiguation, Pilehvar and Camacho-Collados
(2019)), WSC (Winograd Schema Challenge, coref-
erence resolution, Levesque et al. (2012)), RTE
(Recognizing Textual Entailment, Dagan et al.
(2005); Haim et al. (2006); Bentivogli et al. (2009)),
CB (CommitmentBank, de Marneffe et al. (2019)),
COPA (Choice of Plausible Alternatives, Roem-
mele et al. (2011)), MultiRC (Multi-Sentence Read-
ing Comprehension, Khashabi et al. (2018)), MR
(Movie Reviews, Pang and Lee (2005)), Subj (Sub-
jectivity, Pang and Lee (2004). We follow the GPT-
3 prompt templates (Brown et al., 2020) and detail
our evaluation setting for OPT and Llama-2 in Ta-
ble 11.

In Table 12, we compile evaluation results for
OPT-2.7B, Llama-2-7B, as well as our AutoCom-
pressor and RMT models.

F Fused Retrieval-augmented Language
Modeling

Perplexity Gain (%)

Passages top-1 top-2 top-5 top-10

Fused Summaries 1.04 1.67 2.63 3.74
Fused Summaries w/o re-ranking 1.04 1.52 2.02 2.63

Table 8: PPL gains (%) over the no-retrieval baseline
for Fused Summary with and without re-ranking. In
re-ranking, we order the passages based on the ℓ2 norms
of their summary vectors before concatenating the sum-
mary vectors, whereas w/o re-ranking we use the re-
trieval scores from the Contriever model. Re-ranking
consistently produces higher perplexities.

We provide details and ablations for our pro-
posed REPLUG alternative. Inspired by fusion-in-
decoder (Izacard and Grave, 2021), we fuse sum-
mary vectors or passages in a single forward pass.
Fused Summary Vectors The summary vectors
of retrieved passages D are concatenated in order
of increasing retrieval scores to form fused sum-
mary vectors, σD = Concat[σdk , . . . , σd1]. This
resembles summary accumulation as described in
Section 3, but differs in that the retrieved summary
vectors were produced independently rather than
recursively. Nevertheless, we find that AutoCom-
pressors transfer well to this setting.

Furthermore, we find it beneficial to smooth the
conditioned probabilities with the unconditioned
probabilities p(y | x), and compute

p(y | x,D) =
p(y | Concat[σD, x]) + p(y | x)

2
.

We also show that language-modeling perfor-
mance improves when D is re-ordered based on the
smallest ℓ2 distance between the summary vectors
{σ(d1), . . . , σ(dk)} and σx. This incurs negligible
overhead since σx can be constructed during the
same forward pass which computes p(y | x). The
ablation for this is shown in Table 8
Fused Passages We establish a baseline for Fusing
Summary Vectors by concatenating the correspond-
ing plain-text passages D = Concat[dk, . . . , d1]
and computing

p(y | x,D) =
p(y | Concat[D,x]) + p(y | x)

2
.

Note that this approach is quickly limited by the
size of the pre-trained language model’s context
window, especially when retrieving many long pas-
sages.

3843

Domain Compressed context Evaluation sequence Most
improved
tokens

Books3 Surrealism—not for Breton’s depreciation of "Red Front," but for a seemingly insignificant
aside. In early March, before sending the text to press, Breton showed it to Aragon. The
latter consented to the publication, with one exception: a footnote in which Breton quoted the
PCF official’s remark (which Aragon had earlier reported to him) about "complicating the
simple, healthy relations between men and women"—a clear illustration, Breton felt, of "just
how much bad faith or mental indigence we were up against." Aragon considered internal
Party statements to be confidential, and asked that the footnote be removed; according to
him, Breton "spontaneously crossed out the note on the galleys with a delete mark that I can
still recall... saying that he wanted to give the Party no excuse for expelling me." But when
The Poverty of Poetry came off press the next day, the incriminating footnote was still
there.
Whether Breton retained the note as a test of Aragon’s loyalty, or whether he deemed this
example of PCF stupidity too good to waste, or whether the printer simply neglected to make
the correction, no one has ever established. But the result was that this single act came to
represent for Aragon every philosophical difference, stricture, and humiliation that had ever
darkened his long friendship with Breton. On March 10, he responded to the tract via an
anonymous note in

L’Humanité : "Our comrade Aragon in-
forms us that he has absolutely nothing to
do with the publication of a pamphlet entitled
The Poverty of Poetry... He wishes to make
it clear that he entirely disavows both the con-
tents of this pamphlet and the attention it has
drawn to his name, every Communist being
duty-bound to condemn the attacks contained
in this pamphlet as incompatible with the class
struggle." This short paragraph was the only
notice he ever saw fit to give of

Poverty
Po
Ar
agon
Human

Wikipedia </s>Shi Ce
Shi Ce (; born 15 December 1985) is a Chinese deaf female table tennis player. She has
represented China at the Deaflympics four times from 2005-2017. Shi Ce has been regarded
as one of the finest athletes to have represented China at the Deaflympics, having won 14
medals at the event since making her debut in the 2005 Summer Deaflympics.
Biography
Shi Ce was born in Yichun, Heilongjiang on 15 December 1985. She was born with an
ear condition that impaired her hearing which resulted in her deafness and has congenital
malformation in her right ear. Her parents decided to consult a doctor and took her to an
hospital in the Zhejiang Province in order to cure her ear impairment when she was just
five years old. The doctor suggested that surgery would cause facial paralysis after Shi Ce’s
parents demanded for a surgery. Shi Ce took the sport of Table tennis and started playing it
at the age of nine.
Career
Shi Ce has won 14 medals in her Deaflympic career as a Table tennis player including 11
gold medals. Shi Ce was eligible to compete at the National Games of China despite her
deafness, in 2015. In the competition, she secured gold medals in singles, doubles, mixed
doubles and in the team events.
2005 Summer Deaflympics Shi Ce made her first appearance at an international sports

event during the 2005 Summer Deaflympics
and excelled on her debut Deaflympic event
after winning gold medals in the women’s sin-
gles, doubles and in the mixed doubles. She
was also the part of the Chinese Table ten-
nis team which secured the silver medal in
the 2005 Deaflympics. In the same year, she
received the Deaf Sportswoman of the Year
award from the ICSD for her remarkable per-
formances at the 2005 Summer Deaflympics.
Shi Ce

Ce
De
2005
Summer
Shi

Github </s> import sys
import datetime
def basic(arguments):

import api
critic = api.critic.startSession(for_testing=True)
repository = api.repository.fetch(critic, name="critic")
branch = api.branch.fetch(critic,

repository=repository, name=arguments.review)
review = api.review.fetch(critic, branch=branch)
alice = api.user.fetch(critic, name="alice")
bob = api.user.fetch(critic, name="bob")
dave = api.user.fetch(critic, name="dave")
erin = api.user.fetch(critic, name="erin")
all_comments = api.comment.fetchAll(critic)
assert isinstance(all_comments, list)
EXPECTED = { 0: { "text": "This is a general issue.", "location": None,

"type": "issue", "state": "open" },
1 : {"text": "This is a general note.",

"location": None,
"type": "issue",

1
location
}
text
issue

FreeLaw 8
By the end of 1975, Farmers National was insolvent and under investigation by the Florida
Department of Insurance. The Miami newspapers published a series of articles describing
the relationship between Hauser and the company. Lawrence Lee, an attorney for an Arizona
union group, investigated Farmers National in connection with an Old Security-Farmers
National proposal. He was told by the Florida insurance department that Farmers National
was connected with Hauser, that it had been injected with questionable assets which were
being investigated by the department, and that it had been fined $5,000 for failing to disclose
both Hauser’s ownership and a loan to one of its directors. Lee contacted Richard Halford,
vice-president at Old Security in charge of union group insurance, and related the information
he had received. Halford assured Lee that he was aware of Hauser’s reputation, but that
Hauser was no longer involved with Farmers National. Halford then called Kavanagh,
who told him that Hauser had no official capacity with the company, and that the financial
problems had been cleared up. Halford did not attempt to check the accuracy of Kavanagh’s
representations with the Florida Department of Insurance.
9
Hauser controlled a second company, Family Provider Life Insurance Company ("Family
Provider"). In 1975, the company had no business, no office, and assets of $50,000. Because
of Farmers National’s insolvency, Hauser decided to activate

Family Provider, and its assets were increased
to $250,000, the minimum required to con-
duct business in Arizona, where the company
was licensed. In January 1976, Boden and
Kavanagh met with Halford and Robert Bar-
ton, president of Old Security, to propose
a new agreement between Old Security and
Family Provider for the purpose of obtaining
the Fund business. Both Barton and Halford
considered Family Provider and Farmers Na-
tional to be "synonymous" and believed that
Kavanagh and Boden

Security
Old
Family
avan
assets

Table 9: Examples of sequences from in-domain test Pile domains. We highlight the tokens from the evaluation
sequence which benefit the most from the summary vectors. In Books3, L’Humanité is prominent French newspaper
associated with Breton and his circle. In GitHub, the summary vectors carry information about the logical and
syntactical continuation of the context.

3844

Domain Compressed context Evaluation sequence Most
improved
tokens

HackerNews Hackers steer Tesla into oncoming traffic by placing three stickers on the road
- velmu https://www.businessinsider.com/tesla-hackers-steer-into-oncoming-traffic-with-
stickers-on-the-road-2019-4
====== chrisbolt From yesterday:
[https://news.ycombinator.com/item?id=19536375]
(https://news.ycombinator.com/item?id=19536375)
——
gregmac
While I’m hugely skeptical of the current state of self-driving cars, you could probably get
human drivers to make the same mistake if you were to repaint the lines. However, humans
will also notice the oncoming cars (if there are any) and avoid getting in a head-on collision.
The thing missing from this test is that critical practical piece: if there was an oncoming
car, will the Tesla do something to avoid the collision? I would assume that not getting in a
head-on crash is higher priority than staying in the lane markings.
Without oncoming traffic, all this is testing is what the Tesla considers valid line markings.
I’m sure there’s room for improvement here (such as checking where the other lane is, raising
the requirement for how well-defined the lines have to be, etc), but

those are also going to involve trade-offs
where there are legitimate situations that will
stop working.
I think you could just as easily title this video
"Tesla auto-pilot follows road markings even
if they’re really bad".
Edit: The best shot I could get from the video
[1] makes me even more upset at this test:
these look like the temporary markings of-
ten used during construction, just before they
come and paint the normal lines using the big

Tesla
test
markings
auto

ArXiv zk = hk (xk) + vk, vk ∼ N (0, Rk)
In the above equations, we see that the transition matrix Fk,k−1 has been replaced by the
nonlinear vector-valued function fk,k−1 (·), and similarly, the matrix Hk, which transforms
a vector from the state space into the measurement space, has been replaced by the nonlinear
vector-valued function hk (·). The method proposed by the Extended Kalman Filter is to
linearize the nonlinearities about the current state prediction (or estimate). That is, we
choose Fk,k−1 as the Jacobian of fk,k−1 evaluated at x̂k−1|k−1, and Hk as the Jacobian of
hk evaluated at x̂k|k−1 and proceed as in the linear Kalman Filter of Section sec :: kf .[1̂8]
Numerical accuracy of these methods tends to depend heavily on the nonlinear functions. If
we have linear constraints but

a nonlinear fk,k−1 (·) and hk (·), we can adapt
the Extended Kalman Filter to fit into the
framework of the methods described thus far.
Nonlinear Equality and Inequality Constraints
———————————————
Since equality and inequality constraints we
model are often times nonlinear, it is important
to make the extension to nonlinear equality and
inequality constrained Kalman Fil

Extended
linear
h
k
Kal

Gutenberg eight or nine cents. Telegrams in foreign languages are sent within the empire for five sen
per word, with a minimum charge of twenty-five sen for five words or a fraction thereof. No
charge is made for delivery within a radius of 2-1/2 miles of the telegraph office.
There are no private telegraph corporations. The government builds, owns, and operates the
lines just as it does the mails. The postal and 101 telegraph systems are intimately connected,
and the same office does service for both.
The first telegraph line in Japan was opened in 1869. The venture proving a success, the
following year the line was extended and a general telegraphic system for the whole country
decided upon. The rapid construction of telegraph lines began in 1872, from which year it
has gone forward uninterruptedly. At present the lines extend to every corner of the empire.
The first lines were surveyed, built, and operated under foreign experts; but the natives have
learned so rapidly that they have been enabled to do away with all foreign employees. All of
the materials and instruments in use, with the exception of submarine cables and the most
delicate electrical measuring apparatus, are made in Japan.
MAILS.–The Japanese mail system was modeled after the American in 1871.

At first it was limited to postal service between
the three large cities of Tokyo, Kyoto, and Os-
aka; but in 1872 it was extended to the whole
country, with the exception of a certain part of
the Hokkaido, which was without roads and
almost without population. To-day there is no
village or hamlet in the whole land which does
not enjoy the convenience of a good postal sys-
tem. The mails are sent with promptness and

limited
postal
Tokyo

YoutubeSubtitles te que no voy a esa escuela."
Johnny Galecki
El Dr. Leonard Hofstadter obtuvo su doctorado a los 24 años, pero el actor que lo interpreta
sólo llegó a medio camino de la secundaria. En una entrevista con Time Out Chicago en el
2009, Johnny Galecki reveló que abandonó la escuela a mediados del octavo grado luego de
años de evitar ir a clases a toda costa. Le dijo a Time Out, "Una vez que las divisiones largas
aparecieron en tercer grado, iba al baño por 45 minutos y nadie lo notaba, todos los días a
la misma hora del día, sólo para escapar de ellas." Puede que Galecki no tenga un cerebro
matemático, pero siempre tuvo inteligencia callejera. "El conocimiento es el mejor y más
seguro tesoro... Vaya, me aburro a mí mismo." A los 14 años, vivió solo en un apartamentito
en Burbank, California, mient

ras trabajaba en la comedia American
Dreamer, su primer gran trabajo. Su familia
pasó nueve meses en Long Beach antes de
regresar a Chicago, y él se quedó para concen-
trarse en su carrera como actor.
Jim Parsons
El Dr. Sheldon Cooper fue un niño prodigio.
Comenzó la universidad cuando tenía 11 años

Parsons
aba
Jim
Dr

Table 10: Examples of sequences from out-of-domain test Pile domains. We highlight the tokens from the evaluation
sequence which benefit the most from the summary vectors. In Gutenberg, ‘Tokyo’ is not copied over from the
compressed context but is inferred from the discussion of Japan. In YoutubeSubtitles, ‘Jim Parsons’ benefits the
most from the summary vectors because the context discusses his co-star John Galecki in The Big Bang Theory.

3845

Dataset Prompt template OPT-based models Llama-2-based models

Toks. / dem. Cal. Bal. Toks. / dem. Cal. Bal.
AG News Article: {text}\nTopic: {label} 65 ✓ 75 ✓

SST-2 Sentence: {sentence}\nSentiment: {label} 22 ✓ ✓ 25 ✓ ✓
BoolQ {passage}\nquestion: {question}?\nanswer: {label} 165 ✓ 170 ✓
WiC {sentence1}\n{sentence2}\nquestion: Is the word ’{word}’ 45 ✓ 45 ✓

used the same way in the two sentences above?\nanswer: {label} ✓
WSC Question: In the sentence "{text}", does the pronoun ’{span2_text}’ 61 50 ✓

refer to {span1_text}?\nAnswer: {label}

RTE {premise}\nquestion: {hypothesis} True or False?\nanswer: {label} 75 85

CB {premise}\nquestion: hypothesis. true, false or neither?\nanswer: {label} 98 ✓ 95 ✓
COPA Context: {premise}\nAnswer: {answer} 21 ✓ 22 ✓ ✓

MultiRC Context: {paragraph}\n{question}\n{answer}\nanswer: {label} 350 ✓ ✓ 350 ✓ ✓
MR Review: {text}\nSentiment: {label} 36 ✓ 40 ✓ ✓
Subj input: {text}\ntype: {label} 40 ✓ 40 ✓ ✓

Table 11: Details of the datasets and prompts used for the ICL evaluation of our OPT-2.7B and Llama-2-7B
AutoCompressors and baselines. “Toks / dem.” (Tokens per demonstration) denotes how long demonstrations
are for the average example. “Cal.” (Calibration) denotes whether we use calibration (Sachan et al., 2022), and
“Bal.” (Balanced) means whether we enforce class-balanced sampling. We decide the ticks based on which method
performs best on a held-out validation set.

AG News SST-2 BoolQ WiC WSC RTE CB COPA MultiRC MR Subj

OPT-2.7B AutoCompressor

Zero-shot 68.2(0.0) 78.0(0.0) 60.2(0.0) 49.5(0.0) 60.6(0.0) 55.2(0.0) 43.6(0.0) 69.0(0.0) 43.8(0.0) 60.0(0.0) 56.7(0.0)
50 summary vecs. 72.7(1.4) 84.3(9.2) 55.8(4.2) 50.4(1.0) 61.3(5.8) 54.8(3.4) 55.9(5.4) 71.6(0.6) 44.1(1.1) 70.4(10.2) 63.2(7.7)

100 summary vecs. 71.2(3.8) 87.0(3.5) 57.5(4.6) 50.7(1.0) 60.2(6.7) 55.5(2.5) 54.4(4.0) 71.9(0.4) 45.6(2.8) 73.1(12.9) 62.2(5.8)
150 summary vecs. 68.2(3.3) 82.6(5.6) 59.8(1.8) 51.8(1.1) 63.5(0.0) 55.8(1.8) 58.3(5.1) 71.4(0.5) 46.7(2.1) 67.0(11.9) 58.5(6.7)

ICL (150 tokens) 72.5(2.5) 70.8(12.6) 60.2(0.0) 50.4(1.1) 52.3(13.9) 57.6(4.3) 51.1(7.1) 71.3(1.5) 43.8(0.0) 86.4(4.2) 61.7(11.2)
ICL (750 tokens) 67.3(3.4) 87.5(5.0) 69.1(1.0) 51.0(1.7) 62.9(0.8) 57.4(4.4) 49.0(1.1) 72.0(0.7) 52.0(5.4) 86.7(5.9) 73.6(13.9)

OPT-2.7B RMT

Zero-shot 66.9(0.0) 72.8(0.0) 58.4(0.0) 50.3(0.0) 64.4(0.0) 55.2(0.0) 42.2(0.0) 68.8(0.0) 43.9(0.0) 62.5(0.0) 69.8(0.0)
1-step summary vecs. 66.3(5.5) 86.5(5.1) 49.6(8.1) 51.0(1.00 57.7(6.6) 51.3(1.2) 53.3(3.8) 67.4(1.1) 44.9(1.2) 52.6(2.8) 63.3(11.2)
2-step summary vecs. 65.2(7.2) 88.6(2.3) 54.8(4.1) 50.3(0.8) 58.6(6.7) 50.2(1.4) 49.5(4.8) 68.2(1.2) 45.5(1.8) 54.1(1.9) 54.6(1.7)
3-step summary vecs. 63.9(3.3) 84.5(6.6) 41.8(9.7) 50.6(0.6) 54.3(7.9) 50.2(1.4) 49.5(3.6) 68.0(0.9) 45.5(1.0) 52.8(1.6) 58.4(8.6)

ICL (150 tokens) 70.8(1.9) 75.1(13.3) 58.4(0.0) 51.7(2.8) 52.5(13.1) 57.2(3.6) 46.5(3.6) 69.3(1.5) 43.9(0.0) 89.0(1.4) 60.7(12.1)
ICL (750 tokens) 65.8(4.2) 85.7(9.7) 57.2(7.6) 51.5(2.7) 59.2(8.5) 57.8(2.0) 48.2(0.7) 70.9(0.7) 54.6(3.6) 87.5(4.6) 71.6(12.6)

OPT-2.7B Pre-trained

Zero-shot 65.1(0.0) 79.1(0.0) 55.8(0.0) 49.4(0.0) 53.9(0.0) 51.2(0.0) 21.2(0.0) 66.8(0.0) 43.7(0.0) 59.0(0.0) 66.2(0.0)
ICL (150 tokens) 71.6(2.6) 68.56(14.9) 55.8(0.0) 50.6(1.0) 53.30(11.1) 56.1(2.4) 46.2(6.4) 71.7(1.2) 43.7(0.0) 86.7(4.3) 61.9(10.9)
ICL (750 tokens) 63.3(5.1) 91.0(3.2) 63.0(1.3) 50.0(0.4) 63.5(0.6) 54.7(3.0) 52.1(4.8) 73.4(1.0) 53.5(6.2) 89.9(2.2) 64.4(10.7)

Llama-2-7B AutoCompressor

Zero-shot 63.3(0.0) 67.7(0.0) 67.4(0.0) 50.8(0.0) 43.3(0.0) 58.8(0.0) 42.9(0.0) 52.5(0.0) 52.5(0.0) 57.4(0.0) 49.3(0.0)
50 summary vecs. 79.6(4.9) 94.2(1.6) 70.1(3.3) 51.6(2.1) 47.7(8.7) 66.3(7.0) 46.4(18.7) 84.5(1.0) 52.6(2.8) 91.5(1.0) 53.5(3.6)

100 summary vecs. 87.6(1.2) 92.6(3.3) 66.3(2.8) 52.5(2.2) 42.9(2.5) 63.5(6.6) 64.5(5.9) 85.9(0.4) 56.1(1.2) 90.7(2.6) 57.0(5.6)
150 summary vecs. 85.4(3.4) 92.3(2.9) 68.0(1.8) 52.8(1.5) 49.9(7.6) 65.3(6.6) 54.8(5.8) 86.1(0.6) 54.8(2.2) 91.1(2.2) 56.6(7.9)

ICL (150 tokens) 74.5(2.2) 92.4(3.1) 67.4(0.0) 52.4(2.7) 51.8(6.9) 69.1(2.1) 46.4(23.0) 80.0(1.9) 52.5(0.0) 79.7(15.7) 57.9(10.7)
ICL (750 tokens) 81.2(4.1) 93.8(1.2) 67.7(2.7) 52.4(2.0) 40.0(5.7) 73.1(3.5) 50.3(2.8) 82.6(1.6) 47.0(3.2) 91.6(0.8) 60.7(14.8)

Llama-2-7B Pre-trained

Zero-shot 68.8(0.0) 87.2(0.0) 70.0(0.0) 51.4(0.0) 65.4(0.0) 62.8(0.0) 32.1(0.0) 75.5(0.0) 54.5(0.0) 84.1(0.0) 48.9(0.0)
ICL (150 tokens) 71.9(3.8) 91.6(2.9) 70.0(0.0) 51.0(1.9) 55.4(3.2) 70.9(1.7) 39.3(21.2) 84.2(1.3) 54.5(0.0) 90.6(3.3) 63.6(10.8)
ICL (750 tokens) 78.2(3.8) 94.5(0.8) 70.3(6.1) 54.9(1.9) 42.2(5.0) 71.3(4.4) 51.3(3.5) 85.3(0.7) 47.0(1.5) 92.9(0.5) 65.4(14.5)

Table 12: We evaluate the following models on 11 in-context learning tasks: The OPT-2.7B AutoCompressor and
RMT model, the Llama-2-7B AutoCompressor, and the respective pre-trained models. For each fine-tuned model,
numbers in bold are the highest evaluation results using at most 150 additional tokens. When using summary
vectors, the OPT-2.7B AutoCompressor outperforms the RMT model on 8/11 tasks. Moreover, the OPT-2.7B
AutoCompressor benefits from multiple compression steps on most tasks whereas the RMT model performs best
without summary vectors on 7/11 tasks and benefits from 3-step summary vectors on none of the above tasks. The
Llama-2 AutoCompressor achieves the absolute highest accuracy using summary vectors on 7/11 tasks. It also
achieves the highest accuracy with summary vectors on 9/11 tasks using at most 150 additional tokens.

3846

