Evaluating Large Language Models on Controlled Generation Tasks

Jiao Sun'* Yufei Tian>* Wangchunshu Zhou** Nan Xu'*
Qian Hu* Rahul Gupta® John Wieting® Nanyun Peng? Xuezhe Ma'
'University of Southern California ?University of California, Los Angeles
3 ETH Zurich * Amazon 5 Google DeepMind
{jiaosun,nanx,xuezhema}@usc.edu {yufeit,violetpengl}@cs.ucla.edu
wangchunshu. zhou@inf.ethz.ch {hugia, gupra}@amazon.com
jwieting@google.com

Abstract

While recent studies have looked into the abili-
ties of large language models in various bench-
mark tasks, few studies have looked into the
controllability of large language models on gen-
eration tasks. We present a systematic and ex-
tensive analysis of the controllability of large
language models on ten benchmarks, includ-
ing a new simple yet challenging numerical
planning benchmark with different granulari-
ties. After comparing large language models
against state-of-the-start finetuned smaller mod-
els, we present a spectrum showing when large
language models fall behind, are comparable,
or exceed the ability of smaller models. We
conclude that large language models struggle
at meeting fine-grained hard constraints.

1 Introduction

Text generation models should generate texts
that meet controllable constraints as humans
wish (Zhang et al., 2022). For example, one can
avoid the blandness caused by repetitive patterns by
controlling the syntax of generated sentences (Iyyer
et al., 2018; Qian et al., 2019). In a customized di-
alogue system, one should be able to control the
persona of the utterance (Smith et al., 2020). Previ-
ous works either finetune generation models such
as BART (Lewis et al., 2019) on specific tasks for
better controllability (e.g., controlled paraphrase
generation (Sun et al., 2021)) or design constrained
decoding strategies (e.g., look-back decoding strat-
egy by Xu et al. (2023a)) for controlled generation.

Large Language Models (LLMs) have re-
cently shown great potential in various genera-
tion tasks. For example, Jiao et al. (2023a)
shows that ChatGPT with GPT-4 as an engine
achieves commercial-level machine translation
quality. Laskar et al. (2023) find that annotators
prefer summaries generated from ChatGPT over
state-of-the-art summarization models. However,

*The first four authors contribute equally.

Task Control Benchmark Evaluation

constrained Amazon Review

content sentiment, topic, CommonGen off—(;(hle—shlelf
model,
generation keyword M2D2 PP
stor repetition,
@) Y i prefix ROC diversity,
generation writing prompts .oherence
O ratlonale; correct answer CoS-E increased
generation ECQA accuracy
numerical 0 prefix & number of NPB MSE,
' planning words & end word success rate
lexical
paraphrase . ParaNMT overlapping,
generation semantic & syntax QQPPoS syntax match

Figure 1: We test large language models on five con-
trolled generation tasks with various control factors us-
ing automatic evaluation methods. We show a spectrum
of abilities of large language models on such tasks and
conclude that large language models struggle at fine-
grained hard constraints such as numerical planning.

few works investigate the controllability of large
language models. Towards this end, we aim to
study and understand the controllability of large
language models to answer the question: Are large
language models better than finetuned smaller mod-
els at controllability on generation tasks?.

The main contribution of this work is to conduct
a comprehensive analysis of LLM’s controllabil-
ity on five tasks and ten generation benchmarks,
including controlled story generation, controlled
free-form generation with sentiment and topics,
controlled paraphrase generation, and controlled
rationale generation as in Figure 1. We further
design a new simple yet challenging benchmark
named Numerical Planning Benchmark (NPB),
where the task is to satisfy numerical constraints
from four granularities (word-, syllable-, sentence-
and paragraph-level) and under different content
controls (e.g., prefix and ending). For evaluation,
we use automatic metrics, which are imperfect yet
convenient and reproducible.’

1ht’cps: //github.com/sunjiaol123sun/

3155

Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 3155-3168
December 6-10, 2023 ©2023 Association for Computational Linguistics

https://github.com/sunjiao123sun/llm-controlgen

After an in-depth examination, we categorize
LLM’s controllability on a spectrum: from lagging
behind and being on par with to surpassing smaller
finetuned models. Our findings indicate that large
language models have difficulties adhering to spe-
cific hard constraints, such as numerical planning.

We first introduce the numerical planning task
and the associated evaluation as this is a new, intu-
itively simple, yet challenging task (§2). For the
rest, we rank them by the task difficulty indicated
in Figure 1 from easy to hard: constrained content
generation (§3), story generation (§4), rationale
generation (§5) and paraphrase generation (§6).

2 Numerical Planning

Can LLMs count from two to ten?

Task Description. We introduce the Numerical
Planning Benchmark (NPB) as an intuitive task that
tests the basic numerical planning ability of LLMs.
The high-level task descriptions can be found in Ta-
ble 1. We are inspired by real-world scenarios such
as creative writing. For example, writers may wish
to generate sentences or poems with a specific struc-
ture, such as a fixed number of words or syllables
in each line, aiming to adhere to particular forms
(e.g., sonnets, where each line contains exactly 10
or 11 syllables (Tian and Peng, 2022)). Meanwhile,
humans may also want full control over the start
and end of each line for rhetorical purposes such as
alliteration and rhyming. Inductively, we formulate
our numerical planning benchmark from four dif-
ferent granularities: generating a piece of text that
contains a predefined number of words, syllables,
sentences, or paragraphs given a plausible pair
of prefix (start) and suffix (ending) as constraints.
The prefix is given to LLMs such that they are only
queried to generate the continuations.

Evaluation Metrics. We use success rate (SR)
and mean squared error (MSE) as automatic eval-
uation metrics. As our control is two-fold, we
separately calculate the success rates of 1) gener-
ating the continuation with the correct counts and
2) generating the continuation with the proper end-
ing. We also calculate the MSE between our input
numbers and output numbers.

Evaluate with LLMs. We evaluate ChatGPT and
Alpaca-7b on our NPB benchmark in zero-shot
and few-shot settings. Each request used to query
the LLMs corresponds to a real case in the datasets

1lm-controlgen

Granularity | Task Ilustration

Generate a sentence using exactly 5

Word/Syllable words/syllables.

Complete sentence “This is a story”
using exactly 5 words/syllables.

Complete sentence “This is a story”
using exactly 5 words/syllables,
including the last word as “town”.

Sentence | Generate a paragraph with 5 sentences, ...

Paragraph ‘ Generate an article with 5 paragraphs, ...

Table 1: Task illustration for the Numerical Planning
Benchmark. We test LLMs’ numerical planning abil-
ity under various constraints (word counting and end
word) and granularities (word, syllable, sentence, and
paragraph). Due to space limitations, we only show the
full constraints under the word granularity here.

of Romance Books and Reddit Short Stories.?
For word-level planning tasks (word and sylla-
ble count), we randomly select sentences from the
above datasets. Then, we select the last word in
each sentence as the suffix. Depending on how
many additional words we query the LLMs to gen-
erate, we select the first few words in each sentence
as the prefix (if we simply ask LLMs to generate
freely without a prefix, the outputs lack diversity).
Our prompt is written as Complete a sentence that
starts with {prefix} using exactly {N} additional
words (including the last word {last word}). The
sentence must end with the word {last word}. Sen-
tence: {prefix}, and LLMs will continue. In the
few-shot setting, we provide the task description
and three examples. For each example, we also pro-
vide explanations to help LL.Ms better understand
our task. For example,

##Prefix: This is a story about a young girl’s
##Last word: town

##N: 5

##Output: This is a story about a young girl’s
redemption in a small town.

##Explanation: We generated “redemption in
a small town”. It contains exactly 5 words and
ends with the last word ‘town’.

We query the LLMs to generate outputs from
N = 2to N = 10 words. Each number N has
100 evaluation samples. For paragraph-level tasks,
the prefix and suffix are the first and last sentences
in the corresponding paragraphs. For all experi-

’huggingface.co/datasets/AlekseyKorshuk/romance-
books, www.kaggle.com/datasets/trevordu/reddit-short-stories

3156

https://github.com/sunjiao123sun/llm-controlgen
https://github.com/sunjiao123sun/llm-controlgen
https://github.com/sunjiao123sun/llm-controlgen
https://github.com/sunjiao123sun/llm-controlgen
https://github.com/sunjiao123sun/llm-controlgen
https://github.com/sunjiao123sun/llm-controlgen
https://github.com/sunjiao123sun/llm-controlgen
https://github.com/sunjiao123sun/llm-controlgen
https://github.com/sunjiao123sun/llm-controlgen
https://github.com/sunjiao123sun/llm-controlgen
https://github.com/sunjiao123sun/llm-controlgen
https://github.com/sunjiao123sun/llm-controlgen
https://github.com/sunjiao123sun/llm-controlgen
https://github.com/sunjiao123sun/llm-controlgen
https://github.com/sunjiao123sun/llm-controlgen
https://github.com/sunjiao123sun/llm-controlgen
https://github.com/sunjiao123sun/llm-controlgen
https://github.com/sunjiao123sun/llm-controlgen
https://github.com/sunjiao123sun/llm-controlgen
https://github.com/sunjiao123sun/llm-controlgen
https://github.com/sunjiao123sun/llm-controlgen
https://github.com/sunjiao123sun/llm-controlgen
https://github.com/sunjiao123sun/llm-controlgen
https://github.com/sunjiao123sun/llm-controlgen
https://github.com/sunjiao123sun/llm-controlgen
https://github.com/sunjiao123sun/llm-controlgen
https://github.com/sunjiao123sun/llm-controlgen
https://github.com/sunjiao123sun/llm-controlgen
https://github.com/sunjiao123sun/llm-controlgen
https://github.com/sunjiao123sun/llm-controlgen
https://github.com/sunjiao123sun/llm-controlgen
https://github.com/sunjiao123sun/llm-controlgen
https://github.com/sunjiao123sun/llm-controlgen
https://github.com/sunjiao123sun/llm-controlgen
https://github.com/sunjiao123sun/llm-controlgen
https://github.com/sunjiao123sun/llm-controlgen
https://github.com/sunjiao123sun/llm-controlgen
https://github.com/sunjiao123sun/llm-controlgen
https://github.com/sunjiao123sun/llm-controlgen
https://github.com/sunjiao123sun/llm-controlgen
https://github.com/sunjiao123sun/llm-controlgen
https://github.com/sunjiao123sun/llm-controlgen
https://github.com/sunjiao123sun/llm-controlgen
https://github.com/sunjiao123sun/llm-controlgen
https://github.com/sunjiao123sun/llm-controlgen
https://github.com/sunjiao123sun/llm-controlgen
https://github.com/sunjiao123sun/llm-controlgen
https://github.com/sunjiao123sun/llm-controlgen
https://github.com/sunjiao123sun/llm-controlgen

2 -
nums’\\'\p

0.6
0.5
0.4
0.3
0.2

0.1
0.0

put

5 :
nums_\\'\

Figure 2: Histogram visualization in the distribution (frequency, z-axis) of input numbers (x-axis) and output
numbers (y-axis) for word count planning. Left: querying ChatGPT to generate a continuation of a given prefix with
N words. Right: querying ChatGPT to generate a continuation with /N words of a given prefix that ends with a
given word. Small red dots * mark those bars where output numbers equal input numbers. These bars represent the
fine-grained success rates. For either case, there is a significant drop when the input number reaches six.

Model SR - SR - SR- MSE -
ode count last word both count
GPT-2 (fine-tuned) 0.64 0.86 0.60 1.62
Alpaca-7bzs 0.17 0.31 0.09 9.19
Alpaca-7byc 0.14 0.34 0.07 9.76
Vicunazg 0.08 0.09 0.03 27.68
Vicunagcp 0.13 0.30 0.04 13.43
Falconzs 0.13 0.42 0.08 11.60
Falcon-7b1cL 0.11 0.34 0.03 13.72
ChatGPT 0.41 0.74 0.36 3.64
ChatGPTcL 0.37 0.78 0.34 495

Table 2: Success rates for the word count planning
task. Surprisingly, few-shot in-context learning (ICL)
underperforms zero-shot (zs) on numerical planning.

ments, our decoding strategy is top p (p = 0.95)
sampling with temperature 7' = 0.3 unless other-
wise specified.

Result. We report the model performance of
LLMs and a fine-tuned GPT-2-large model on the
task of word count planning in Table 2. Due to
space limitations, we compile the results of the
remaining tasks in Appendix A. First, it is clear
LLMs are poor at numerical planning, although it
is an extremely simple task for humans. Given its
extremely poor performance, we consider Alpaca
incapable of doing numerical planning. Secondly,
LLMs learn to incorporate literal constraints, such
as the last word, via few-shot in-context learning.
Interestingly, few-shot in-context learning dete-
riorates the performance of numerical planning.

Upon further inspection, we find that LLMs try
to mimic the style or features (such as length) in
the in-context examples and are, therefore, more
likely to generate outputs with the wrong word
counts once the input number N cannot be found
in the examples. Our results resonate with Yin et al.
(2023); Kung and Peng (2023); Sinha et al. (2023)
that LMs do not truly understand task definitions
via in-context learning.

Figure 2 is a fine-grained visualization of the
input and output numbers distribution by zero-shot
ChatGPT. Specifically, we compare LLMs’ numeri-
cal planning abilities with (e.g., complete sentence
with “redemption in a small town” using exactly
5 words, including the last word as “happy”) and
without additional suffix constraint (e.g., complete
sentence with “redemption in a small town” us-
ing exactly 5 words). LLMs can generate more
freely without suffix constraints to meet the nu-
merical constraint. However, ChatGPT doesn’t al-
ways translate to a higher success rate. We find out
that only when NN is small (i.e., 2 and 3), ChatGPT
achieves a higher success rate if explicitly told the
last word of the target sentence.

Finally, we would like to point out a few be-
haviors. First, although the general trend is that
LLMs’ numerical planning ability drops as [V in-
creases, N = 3 is a clear exception (performs
worse) among various experiments we repeated.
Second, by checking the failure cases, we find that

3157

ChatGPT always generates shorter continuations
than required. Moreover, we see a sudden drop in
model performances (from above ~0.6 to ~0.4)
when the input number N increases from 5 to 6.
We encourage future research to investigate these
behaviors.

3 Content-Controlled Generation

Task Description. We consider three types of
content constraints: topic, sentiment, and keyword.
The detailed task definitions and dataset can be
found in Appendix B.

Evaluation Metrics. We use the success rate
as the evaluation metric to measure how well
LLMs can follow the content constraints. Specifi-
cally, we use GPT-3.5 (Ouyang et al., 2022) based
topic/sentiment classifiers with in-context learn-
ing using five examples per category to evaluate
whether the generated texts belong to the specified
topic or sentiment class. We consider an LLM to
succeed in one example if the predicted class of the
generated text is identical to the input constraint.
For a keyword-constrained generation, we use the
keyword coverage metric that measures the per-
centage of input keywords included in generated
texts.

Evaluate with LLMs. For the content con-
strained generation with LLMs, we follow Zhou
et al. (2023) and use natural language instructions
to prompt LLMs. Specifically, we use a prompt
template of “Write a sentence about {topic name}”
for topic-constrained generation, “Write an Ama-
zon review with {level number} star about a ran-
dom thing. The number of stars ranges from one to
five. One star is the most negative, and five stars
are the most positive” for sentiment constraints,
and “Write a sentence using the following key-
words: {keywords}” for keyword constraints.

In addition to zero-shot evaluation, we also eval-
uvate LLMs in the in-context learning setting by
appending the following demonstration template:
“Below are some examples for the task: Input: {input
1}, Output: {output 1}; Input: {input 2}, Output:
{output 2} ... 7. We use 5 in-context examples per
class following the practice in Zhou et al. (2023).

We compare various LLMs including ChatGPT,
LLaMA, Alpaca, Vicuna, and Falcon in our exper-
iments. We also report the results of Diffusion-
LM (Li et al., 2022b) based on BERT-large (Devlin

Model Topic Sentiment Keyword
Diffusion-LM 68.9 83.7 932
GPT-2 (1.5B, fine-tuned) 63.4 76.5 88.9
T5 (3B, fine-tuned) 67.3 83.9 94.8
LLaMA-7Bzs 453 584 83.5
LLaMA-7B1cL 63.5 85.1 93.0
Alpaca-7Bzg 58.9 78.4 91.2
Alpaca-7B1cL 65.2 86.9 94.8
Vicuna-7Bzs 61.0 80.5 91.6
Vicuna-7B1cL 65.8 87.4 94.3
Falcon-7Bzs 61.9 81.0 92.1
Falcon-7B1cL 66.0 87.7 94.2
ChatGPTzs 66.4 84.5 97.3
ChatGPTycL 88.4 90.3 98.1

Table 3: Results on content-constrained text generation.

et al., 2019) and task-specific classifiers as a com-
petitive non-LLM baseline

Results. The results are shown in Table 3. We
find that Alpaca significantly outperforms LLaMA
in the zero-shot setting. This is intuitive since
natural language instruction of constraints resem-
bles instruction tuning data. However, this perfor-
mance gap is significantly reduced when in-context
learning is used. We think this is because the role
of instruction tuning is mainly to adapt an LLM
to human-friendly prompt formats instead of in-
creasing the LLM’s capability. We also find that
ChatGPT achieves competitive performance with-
out in-context learning and outperforms Diffusion-
LM, a competitive supervised baseline, by a large
margin. Moreover, the performance of ChatGPT
can be further improved by adding in-context ex-
amples to the prompt. This suggests that LLMs’
ability to follow content constraints expressed in
natural language depends on three confounding fac-
tors: instruction tuning or supervised fine-tuning,
in-context learning, and model capacity.

4 Story Generation

Task Description. Given the beginning text of
a story, open-ended story generation aims to de-
code texts that are coherent with previous topics,
and informative without undesired repetitions (Su
et al., 2022; Su and Xu, 2022; Xu et al., 2023b).
Despite the impressive success on generating flu-
ent and accurate sentences for low-entropy tasks
such as summarization or translation, large-scale
language models (LLMs) still suffer from serious
degeneration problems, such as undesired repeti-
tions (Holtzman et al., 2020; Su et al., 2022) and

3158

LM Method rep-2| rep-3] rep-4] diversityl coherencel
ROC

Human 1.74 0.32 0.04 0.97 0.48
. Nucleus 1.80 0.35 0.12 0.97 0.33
x Typical 2.06 0.4 0.16 0.97 0.33
a n-sampling 0 0 0 1.00 0.34
% SimCTG 3.10 0.46 0.23 0.96 0.32

Look-back 7.24 0.92 0.14 0.92 0.47
- Vicuna 2.36 0.45 0.15 0.97 0.60
3 Falcon 2.52 1.87 1.86 0.94 0.69
= ChatGPT 1.18 0.10 0.02 0.98 0.52

Writing Promts

Human 15.61 3.78 1.24 0.80 0.31
. Nucleus 5.40 2.41 1.72 0.91 0.34
~ Typical 3.60 1.51 1.10 0.94 0.30
‘;.“ n-sampling ~ 6.17 2.88 2.16 0.89 0.35
% SimCTG 2.84 0.36 0.19 0.97 0.31

Look-back 7.94 1.25 0.33 0.91 0.52
= Vicuna 8.27 2.59 1.14 0.88 0.49
3 Falcon 11.20 7.79 6.94 0.76 0.53
= ChatGPT 5.99 1.15 0.35 0.92 0.52

Table 4: Performance of different decoding strategies
and LLMs for open-ended story generation. Vicuna
stands for Vicuna-7B, Falcon for Falcon-7B-Instruct.

unnatural topic drifts (Li et al., 2022a), under open-
ended settings.

Datasets. We evaluate different generation meth-
ods on two popular benchmark story datasets:
ROCStories and Writing Prompts. ROCStories
(ROC) (Mostafazadeh et al., 2016) is a corpus
comprising commonsense stories written by crowd-
sourced workers within 5 short sentences. Given
the first sentence as a prefix, generation methods
are required to produce four continuing sentences.
Writing Prompts (WP) is a challenging task for
inspiring continuations with abstract, high-level
story prompts submitted by online users and con-
tinuations by others on Reddit (Fan et al., 2018).
Following prior literature (Xu et al., 2023b), we
utilize the first 32 tokens as the prefix and ask for
continuation with 256 tokens. Since we prompt
different language models or decoding algorithms
without extra fine-tuning, we directly sample 1,000
development and 1,000 testing instances from both
ROC and WP.

Baselines. We evaluate the pre-trained LLM,
GPT-2-XL (Radford et al., 2019), with both search
(SimCTG (Su et al., 2022) and Look-back (Xu
et al., 2023b)) and sampling decoding methods
(Nucleus sampling (Holtzman et al., 2020), Typical
decoding (Meister et al., 2022) and n-sampling (He-
witt et al., 2022)).

Evaluation Metrics. Following open-ended
story generation literature (Su et al., 2022; Li et al.,
2022a; Xu et al., 2023b), we adopt the following
automatic metrics to evaluate generation quality: 1)
rep-n to measure sequence-level repetition accord-
ing to the portion of duplicate n-grams (Welleck
et al., 2019); 2) diversity to assess the overall model
repetition by considering rep-n at different n-gram
levels; 3) coherence measured as the cosine simi-
larity between prefix and continuation embeddings
represented by SImCSE (Gao et al., 2021). We do
not report MAUVE (Pillutla et al., 2021) score due
to the concern that MAUVE may not accurately
reflect human preferences considering contradicted
results between MAUVE and human evaluations
observed in prior work (Su and Xu, 2022).

Evaluate with LLMs. Chatbots that fine-tune
LLMs on instructions are also evaluated: Vicuna-
7B (Chiang et al., 2023), Falcon-7B-Instruct (Al-
mazrouei et al., 2023) and ChatGPT. 3 We prepend
the following instruction before the story prefix
as prompt: 1) ROC: “Please continue writing this
story within 4 very short sentences: <prefix>", 2)
WP: “Please continue writing this story within 256

words: <prefix>"4.

Results. As shown in Table 4, both Vicuna-7B
and ChatGPT are able to continue writing more
fluent and coherent stories on both ROC and WP
compared with other decoding methods based on
GPT2-XL. Falcon-7B-Instruct obtains consistently
lower diversity than other baselines, while ChatGPT
achieves more robust performance in terms of di-
versity and coherence on both datasets.

5 Rationale Generation

Task Description. Free-form rationales are
known to aid model interpretability by providing
additional world knowledge or commonsense rea-
soning steps (Kim, 2015; Lipton, 2018; Alvarez-
Melis and Jaakkola, 2018). Wei et al. (2022) show
that rationales can improve large language models’
ability to solve complex reasoning tasks. Extractive
rationales in question-answering tasks are based on
the input passage to extract related information
to answer the question. Conversely, free-form ra-
tionales in the question-answering tasks are open-

3ht’cps: //chat.openai.com/

*We adopt generation parameters for different LLMs sug-
gested from their respective documents or APIs. We leave
evaluation on more configurations in our repository: https:
//github.com/sunjiao123sun/11lm-controlgen.

3159

https://chat.openai.com/
https://github.com/sunjiao123sun/llm-controlgen
https://github.com/sunjiao123sun/llm-controlgen

-0 0.87
I+Rcos-g =0 0.92

I+RECQA —0 0.99

Model Leakage Non-Leakage
I"'RAlpaca—7B -0 091 0.86
I+R| | amp-78 O 0.87 0.79
+Ryjcyna-78 7O 0.95 0.74
+Rpa1c0n-78 7O 0.83 0.65
I+Rchatgpr O 098 0.93

Table 5: Rationales generated by ChatGPT are on par
with best-crowdsourced rationales ECQA with FlanT5-
XXL (Chung et al., 2022b) as the backbone model. Rul-
ing out leakage results in at least 5% accuracy drop.

ended and condition on purely the question and
options. (Sun et al., 2022) studies how different
the quality of rationales would impact rationales’
utilities in terms of improving the model perfor-
mance and claims that crowdsourced rationales are
superior to generated rationales. Sun et al. (2022)
finetunes T5-base for both rationale generation and
question answering. With the power of LLMs, we
want to revisit the problem and see whether the
utility of generated rationales conditioned on the
question and options has been improved.

Evaluation. We follow previous works and use
the performance gap before and after adding ratio-
nales in the input to measure the utility of ratio-
nales, written as acc(J+R—0) - acc(I—0), where
I stands for question and options as input, R stands
for rationales, and O stands for one of the op-
tions as output. For the backbone model for ques-
tion answering, we use flanT5-XXL (Chung et al.,
2022a) instead of T5-base as it can handle longer
sequences and is better at reasoning.

Sun et al. (2022) shows that two factors are
mainly affecting the utility of rationales. One is
leakage, which means that the correct answer is
explicitly written in the rationales, and one can
choose the correct answer among all the options
by rationales without knowing the questions. The
other is background knowledge, which is the ad-
ditional background knowledge or reasoning step
that can help answer the question.

Datasets. CoS-E (Rajani et al.,, 2019) and
ECQA (Aggarwal et al., 2021) are the most popular
free-form rationale datasets through crowdsourcing.
ECQA builds on CoS-E and improves the quality of
the CoS-E dataset from various aspects, including
completeness, comprehensiveness, coherence, etc.

They share the same sets of questions and options.
Based on the findings from Sun et al. (2022), both
CoS-E and ECQA tend to leak the correct answer
in the rationale, while ECQA rationales contain the
background necessary to answer the questions. We
conduct our analysis on question-answer pairs from
the test set. Based on the evaluation acc(I+R—O) -
acc(I—0), since we are evaluating on the same set
of question-answer pairs, acc(I—0) is always the
same. Therefore, we only compare acc(I+R—O)
with different LLMs.

Evaluate with LLMs. We prompt LL.Ms to pro-
vide background knowledge that can help answer
the question and control whether to leak the cor-
rect options in rationales. We use ChatGPT as the
example for illustration:

* Leakage. We have ChatGPT take the role
of A teacher who is trying to explain to
students the rationale behind choosing the
correct option for a multiple-choice question.
Then prompt it with Question: {question}
Options: {concatenated options} Explain
the rationale behind choosing the correct option
“[correct answer}”.

Non-leakage. The role of ChatGPT becomes
A teacher who is trying to explain to students
the rationale behind a multiple-choice question.
However, you do not want to leak the correct
answer directly. and prompt it with Question:
{question} Options: {concatenated options}
Explain the rationale behind choosing the cor-
rect answer. Do not mention the correct answer
“{correct answer}” explicitly.

We highlight the difference between the two modes
with underline. When prompting LLaMA and Al-
paca, we remove the role description and only use
the prompts. Through analysis, we aim to answer
two questions: 1) Are LLM-generated rationales on
par with crowdsourced rationales? 2) How much
would leakage impact the utility of rationales?

Result. Compared to TS5, FlanT5 has better rea-
soning abilities (Chung et al., 2022b) and is more
capable of understanding instructions. Therefore,
we use FlanT5 instead of using TS5 as the back-
bone model for question answering, which can
theoretically examine the utility of rationales bet-
ter ruling out the incapability of models. Simply
given the question and the option strings, Table 5
shows that FlanT5-XXL has an accuracy of 0.87

3160

(while TS5 in (Sun et al., 2022) scores 0.57 under
the same setting). We then show the performance
with crowdsourced rationales from both ECQA and
CoS-E. With crowdsourced rationales from ECQA,
the model almost solved the task and reached a
performance of 0.99. With CoS-E rationales, the
accuracy is 0.92. Our finding echoes with Sun et al.
(2022) that ECQA rationales are better quality.
We then evaluate the utility of LLM-generated
rationales under both the Leakage and Non-leakage
scenarios. As the majority of crowdsourced ratio-
nales contain leakage (Sun et al., 2022), we con-
sider it fair to compare LL.M-generated rationales
under the Leakage scenarios against crowdsourced
rationales. We have two major findings:

* ChatGPT generated rationales are on par with
ECQA rationales from crowdsourcing.

* We quantify the influence of leakage in measur-
ing the utility of rationales: whether or not having
leakage in rationales could result in an accuracy
difference of at least 5%.

6 Controlled Paraphrase Generation

Task Description. Syntactically-controlled para-
phrase generation can benefit a wide range of
NLP applications such as dialogue generation (Gao
et al., 2020), improving the robustness of mod-
els (Huang and Chang, 2021) or metrics (Aggarwal
etal., 2022), and diversifying other generation tasks
such as diverse question generation. Syntactically-
controlled paraphrase generation is challenging be-
cause it requires satisfying two folds of control
signals: semantic preservation and syntactic con-
formation. By definition of paraphrases, the gen-
eration should have exactly the same semantics as
the input text. With syntax as part of the input,
generated paraphrases should also conform with
the indicated syntax. The input syntax can come
from a variety of sources.

Datasets. We evaluate on ParaNMT-small (Chen
et al., 2019), derived from ParaNMT (Wieting and
Gimpel, 2018), and QQP-Pos (Kumar et al., 2020).
Our train/dev/test split follows previous works (Ku-
mar et al., 2020; Sun et al., 2021). Each instance is
a tuple of {source sentence, exemplar, ground-truth
paraphrase}, where the exemplar shares the same
syntax with the ground-truth paraphrase.

Evaluation Metrics. We use two sets of evalua-
tion metrics to evaluate the quality of generated
paraphrases. We use lexical-overlapping-based
scores to evaluate the semantic preservation and
tree-edit distances to evaluate the syntactic confor-
mation. For lexical-overlapping-based scores, the
higher is better. For tree edit distance, the lower
is better, indicating that the newly derived syntax
matches more closely with the expected syntax. In
this work, we prune the constituency parse trees at
a level of 2 and only compare the high-level syntac-
tic structure. TED-R means the tree edit distance
between the candidate-generated sentence with the
ground-truth paraphrase as the reference. TED-E
compares the candidate sentence against the exem-
plar that only provides the syntax.

Evaluate with LLMs. We provide three ways to
prompt for the controlled paraphrase generation:

* Direct. We prompt LLMs directly without speci-
fying any constraints. The prompt is written as
Paraphrase {source sentencej. Please only have
the paraphrase in the response.

* Control. Under this mode, we use the exemplar
sentence for the syntactic control signal. The
prompt is written as Paraphrase “{source sen-
tence}” so that it uses the syntactic structure from
“{exemplar}”; please only have the paraphrase in
the response.

We observe that under the Control mode, the gener-
ated paraphrases would sometimes take the syntac-
tic information from the exemplars and the seman-
tic meaning from exemplar sentences. To solve this,
we introduce the third mode Control with syntax
explanation. We first extract the constituency parse
structure from the exemplar sentence using Stan-
ford CoreNLP, prune the parse tree at the height
of two (i.e., parse at H2), and then ask ChatGPT
to generate a natural language explanation of the
pruned syntactic parse, which we refer to as syntax
explanation. The generated syntax explanation will
be part of the input.

* Control with Syntax Explanation. The prompt is
written as Paraphrase “{source sentence}" so
that the sentence has a syntactic structure of
“{pruned syntax}". {generated explanation for
the syntax.} Please only have the generated para-
phrase, not its parse, in the response.

Table 7 shows examples of generated explana-
tions for constituency parse trees pruned at height

3161

BLEU? METEORt ROUGE-11 ROUGE-27 ROUGE-Lt TEP'Ri TE_D'm
(H=2) (H=2)

Direct 10.8 26.2 442 18.6 449 1.4 1.5

ParaNMT | Ctrl 14.3 30.7 514 25.8 50.7 13 1.2
-Small Syntax exp. 13.6 273 46.4 20.2 47.0 1.4 1.4
| WAESOP 229 327 54.4 29.8 56.4 0.9 0.5

QQPPos | Direct 6.7 252 39.8 15.6 415 1.8 1.8
Curl 10.5 25.6 43.0 19.8 452 1.4 1.4

Syntax exp. 9.0 26.5 42.8 17.8 14.2 1.8 1.8

| WAESOP 473 49.7 73.3 54.1 75.6 0.4 0.3

Table 6: Performance comparison with ground-truth syntactic control for AESOP (Sun et al., 2021) and fine-shot
ChatGPT. With coarse syntactic control from a shallow height of pruning, AESOP, the state of the finetuned small
model, outperforms five-shot ChatGPT across all semantic preservation (BLUE, ROUGE Scores, and METEOR)
and syntactic conformation metrics (TED-R and TED-E at the height of two) by a large margin. 1 means higher is
better, while | means lower is better. By comparing ctrl with syntax explanation, we show that ChatGPT is better at
mimicking the syntactic structure from an exemplar than utilizing the syntactic information directly from the syntax.

Pruned Parse at H=2

Explanation

This represents a sentence structure
with a noun phrase and a verb phrase
as its constituents.

(ROOT (S (NP) (VP)))

This is a sentence with a fragment
that includes a subordinate clause
followed by a period.

(ROOT (FRAG (SBAR)
()]

This sentence structure represents an
interrogative sentence with a subord
-inate clause before the main clause.

(ROOT (SBARQ
(WHADVP) (SQ) (-)))

This is a parse tree for a sentence
containing a main verb and its subject,
with a possible adverb and complement
structure.

(ROOT (SQ (VBP)
(RB) (NP) (VP) (.))

Table 7: Examples of generated explanations for pruned
constituency parse trees by ChatGPT.

two by ChatGPT. We prompt ChatGPT from zero
shots to five shots for our experiments, find that
ChatGPT’s performance peaks with five shots as
expected, and compare the performance of five-
shot ChatGPT with AESOP (Sun et al., 2021). The
backbone of AESOP is the BART-base model, a
140m-parameter model finetuned with specialized
input and output format tailored for the controlled
paraphrase generation task. To the best of our
knowledge, AESOP remains the state-of-the-art
paraphrase generation model on both ParaNMT-
small and QQPPos datasets.

Result. Table 6 shows the performance compar-
ison between five-shot ChatGPT and AESOP. We
show that AESOP surpasses ChatGPT across all
evaluation metrics for both semantic preservation
metrics (lexical-overlapping based metrics includ-
ing BLEU, ROUGE scores, and METEOR) and

syntactic conformation metrics (TED-R and TED-
E at the height of two). In addition, we find that
ChatGPT’s performance is the best under the set-
ting of Control, where we use exemplar sentences
for control signals. Compared with the setting Con-
trol with syntax explanation, Table 6 shows that
ChatGPT is good at mimicking syntactic structures
from sentences instead of directly incorporating the
syntactic parses. Besides ChatGPT, we also tried
Alpaca (Taori et al., 2023) and LLaMA (Touvron
et al., 2023) on the controlled paraphrase genera-
tion task. However, they repeat input sentences and
struggle to generate meaningful content. Therefore,
we do not include them here for comparison.

7 Related Works

LLM Evaluation. While the advancement of
more potent large language models drives our work,
our focus aligns more with recent studies evaluat-
ing LLMs’ performance on academic NLP bench-
marks. We roughly categorize these studies as ei-
ther general or specific NLP tasks. For general
NLP tasks, Qin et al. (2023) shows that ChatGPT
performs well on many tasks involving reasoning
capabilities but not on sequence tagging. Ahuja
et al. (2023) evaluate LLMs on various multilingual
NLP tasks. For specific tasks, Jiao et al. (2023b)
shows that ChatGPT has achieved competitive per-
formance on machine translation. Gao et al. (2023)
uses ChatGPT for event extraction and shows that
it only matches with around a half percent of spe-
cialized event extraction models. To the best of the
authors’ knowledge, we are the first to study the
controllability of LLMs and the tasks in our work

3162

have not been previously studied. Instead of having
a single conclusion on if LLMs perform well at cer-
tain task, we provide a spectrum showcasing how
LLMs’ abilities vary according to different control
granularities.

8 Discussion: Why and How

We believe that our work makes a substantial con-
tribution to the field of benchmarking LLMs’ con-
trollabiltiy, especially considering the prevalence
of LLMs these days. That being said, we do have
a few hypotheses to investigate why LLMs fail at
numerical planning and how we could potentially
increase their controllability.

Tokenization. On one hand, tokenization indeed
makes the task of numerical planning more chal-
lenging than without, by separating the generative
process (i.e., subword-level generation) and the nu-
merical planning process (i.e., counting complete
words). However, we posit that tokenizers not nec-
essarily impact the ability of word planning, as it is
a standard practice that a subword starting with a
special token will indicate the start of a new word
(e.g., “G” in BPE tokenizer,” which has been used
by many LL.Ms such as GPT and RoBERTa). Nor
are we aware of evidence that the subwords of a
tokenizer roughly correspond to units of syllables.
For example, Tian et al. (2023) shows that smaller
models such as GPT-2-large fine-tuned on syllable-
related data can achieve a success rate of close to
90% on the same syllable-planning task. On the
other hand, the best performance of ChatGPT is
37%.

Decoding Methods. The reported results are
based on sampling with a temperature of 0.3. More-
over, we have experiments showing that our con-
clusion is robust to the change of decoding mech-
anisms, where we try other decoding methods be-
yond sampling with 7" = 0.3.

Specifically, we tried 1) greedy decoding, 2)
beam search with beam size 8, and 3) sampling
with temperature 7' = {0.3, 0.7, 1.0}. For the prior
two, most of the generated outputs are highly simi-
lar, plain, and lack diversity. As for sampling with
T = {0.3,0.7,1.0}, the success rate decreases as
T increases. We think 7" = 0.3 is a reasonable bal-
ance between diversity and quality. We believe that
our results convey meaningful signals since each

Shttps://huggingface.co/learn/nlp-course/
chapter6/5?fw=pt#byte-pair-encoding-tokenization

number N has been averaged over 100 different
evaluation samples to reduce noise. However, none
of these experiments show that LLMs can do better
than fine-tuned GPT-2.

In-Context Learning. We try to give more
demonstration of NPB in our prompts and we sur-
prisingly found that this does not help once the
input number N cannot be found in the examples.
Our results resonate with Yin et al. (2023); Kung
and Peng (2023) that LLMs do not truly understand
task definitions via in-context learning.

How to Improve. We encourage future work
to explore from two different directions: 1)
chain/tree/graph-of-thought reasoning, and 2)
bridging LLMs with non-autoregressive generation
abilities (e.g., NADO (Meng et al., 2022)). For the
first one, one can try both simple chain/tree/graph-
of-thought prompting or even pretrained LLMs
with chain-of-thought/scratchpad pairs, as it shows
promises for mathematical reasoning (Zhou et al.,
2022). However, this will not fundamentally solve
the planning issue. It is straightforward that auto-
regressively generating the next tokens will lead
to the problem of models not “looking back™ and
therefore not adhering to the fine-grained control
signals. Therefore, we encourage researchers to
also investigate multi-step planning and iterative
revisions with LLMs, or, more fundamentally, chal-
lenge the autoregressive architecture of LLMs.

9 Conclusion

We test the controllability of large language mod-
els on five tasks and ten benchmarks, including a
numerical planning benchmark that is easy for hu-
mans while challenging for LLMs. From there, we
draw a spectrum by comparing the performance
between LLMs and smaller specialized models.
LLMs are able to generate human-level rationales
and conform with coarse control signals, such as
sentiment, topic and keyword incorporation. How-
ever, they struggle at fine-grained hard constraints,
such as numerical planning and paraphrase gener-
ations. We hope that our work can inspire down-
stream applications on when to adopt LLMs. For
example, we find that LLMs are good at generating
rationales, and these automatic rationales could be
used to further boost LLMs’ performance through
chain-of-thought reasoning.

3163

https://huggingface.co/learn/nlp-course/chapter6/5?fw=pt##byte-pair-encoding-tokenization
https://huggingface.co/learn/nlp-course/chapter6/5?fw=pt##byte-pair-encoding-tokenization

Acknowledgement

The authors thank anonymous reviewers for their
constructive feedback and suggestions that helped
improve the draft, especially reviewer rXWW. Jiao
and Yufei are supported by Amazon fellowships.

Limitations

This work is subject to couple of limitations. First,
all of our experiments involved heavy prompt en-
gineering effort. Although we have attempted to
choose the best performing prompts, there might
be room for better prompts which could influence
the reported evaluation metrics. Second, automatic
evaluations are imperfect. Last, we have not pro-
posed solutions after identifying tasks where LLMs
struggle. We leave this for future work.

References

Arshiya Aggarwal, Jiao Sun, and Nanyun Peng.
2022. Towards robust NLG bias evaluation with
syntactically-diverse prompts. In Findings of the As-
sociation for Computational Linguistics: EMNLP
2022, pages 6022—6032, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.

Shourya Aggarwal, Divyanshu Mandowara, Vishwa-
jeet Agrawal, Dinesh Khandelwal, Parag Singla, and
Dinesh Garg. 2021. Explanations for Common-
senseQA: New Dataset and Models. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 3050-3065, Online.
Association for Computational Linguistics.

Kabir Ahuja, Harshita Diddee, Rishav Hada, Milli-
cent Ochieng, Krithika Ramesh, Prachi Jain, Ak-
shay Nambi, Tanuja Ganu, Sameer Segal, Maxamed
Axmed, Kalika Bali, and Sunayana Sitaram. 2023.
Mega: Multilingual evaluation of generative ai.

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Al-
shamsi, Alessandro Cappelli, Ruxandra Cojocaru,
Merouane Debbah, Etienne Goffinet, Daniel Hes-
low, Julien Launay, Quentin Malartic, Badreddine
Noune, Baptiste Pannier, and Guilherme Penedo.
2023. Falcon-40B: an open large language model
with state-of-the-art performance.

David Alvarez-Melis and T. Jaakkola. 2018. Towards
robust interpretability with self-explaining neural net-
works. In NeurIPS.

Peter Anderson, Basura Fernando, Mark Johnson, and
Stephen Gould. 2017. Guided open vocabulary im-
age captioning with constrained beam search. In
Proceedings of the 2017 Conference on Empirical

Methods in Natural Language Processing, pages 936—
945, Copenhagen, Denmark. Association for Compu-
tational Linguistics.

Mingda Chen, Qingming Tang, Sam Wiseman, and
Kevin Gimpel. 2019. A multi-task approach for dis-
entangling syntax and semantics in sentence represen-
tations. pages 2453-2464, Minneapolis, Minnesota.
Association for Computational Linguistics.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang,
Mostafa Dehghani, Siddhartha Brahma, Albert Web-
son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suz-
gun, Xinyun Chen, Aakanksha Chowdhery, Sharan
Narang, Gaurav Mishra, Adams Yu, Vincent Zhao,
Yanping Huang, Andrew Dai, Hongkun Yu, Slav
Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam
Roberts, Denny Zhou, Quoc V. Le, and Jason Wei.
2022a. Scaling instruction-finetuned language mod-
els.

Hyung Won Chung, Le Hou, Shayne Longpre, Bar-
ret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022b. Scaling instruction-finetuned language mod-
els. arXiv preprint arXiv:2210.11416.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018.
Hierarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 889—-898, Melbourne, Australia. Association
for Computational Linguistics.

Jun Gao, Huan Zhao, Changlong Yu, and Ruifeng Xu.
2023. Exploring the feasibility of chatgpt for event
extraction.

Silin Gao, Yichi Zhang, Zhijian Ou, and Zhou Yu. 2020.
Paraphrase augmented task-oriented dialog genera-
tion. ArXiv, abs/2004.07462.

Tianyu Gao, Xingcheng Yao, and Dangi Chen. 2021.
SimCSE: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 6894—6910, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

3164

https://aclanthology.org/2022.findings-emnlp.445
https://aclanthology.org/2022.findings-emnlp.445
https://doi.org/10.18653/v1/2021.acl-long.238
https://doi.org/10.18653/v1/2021.acl-long.238
http://arxiv.org/abs/2303.12528
https://proceedings.neurips.cc/paper/2018/hash/3e9f0fc9b2f89e043bc6233994dfcf76-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/3e9f0fc9b2f89e043bc6233994dfcf76-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/3e9f0fc9b2f89e043bc6233994dfcf76-Abstract.html
https://doi.org/10.18653/v1/D17-1098
https://doi.org/10.18653/v1/D17-1098
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://doi.org/10.48550/ARXIV.2210.11416
https://doi.org/10.48550/ARXIV.2210.11416
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P18-1082
http://arxiv.org/abs/2303.03836
http://arxiv.org/abs/2303.03836
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552

John Hewitt, Christopher Manning, and Percy Liang.
2022. Truncation sampling as language model
desmoothing. In Findings of the Association for Com-
putational Linguistics: EMNLP 2022, pages 3414—
3427, Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text
degeneration.

Kuan-Hao Huang and Kai-Wei Chang. 2021. Generat-
ing syntactically controlled paraphrases without us-
ing annotated parallel pairs. ArXiv, abs/2101.10579.

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke
Zettlemoyer. 2018. Adversarial example generation
with syntactically controlled paraphrase networks. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1875-1885, New Or-
leans, Louisiana. Association for Computational Lin-
guistics.

Wenxiang Jiao, Wenxuan Wang, Jen tse Huang, Xing
Wang, and Zhaopeng Tu. 2023a. Is chatgpt a good
translator? yes with gpt-4 as the engine.

Wenxiang Jiao, Wenxuan Wang, Jen tse Huang, Xing
Wang, and Zhaopeng Tu. 2023b. Is chatgpt a good
translator? yes with gpt-4 as the engine.

Phillip Keung, Yichao Lu, Gyorgy Szarvas, and Noah A.
Smith. 2020. The multilingual Amazon reviews cor-
pus. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 4563—4568, Online. Association for
Computational Linguistics.

Been Kim. 2015. Interactive and interpretable machine
learning models for human machine collaboration.
Ph.D. thesis, Massachusetts Institute of Technology.

A. Kumar, Kabir Ahuja, Raghuram Vadapalli, and
P. Talukdar. 2020. Syntax-guided controlled genera-
tion of paraphrases. Transactions of the Association
for Computational Linguistics, 8:330-345.

Po-Nien Kung and Nanyun Peng. 2023. Do models
really learn to follow instructions? an empirical study
of instruction tuning. ACL 2023.

Md Tahmid Rahman Laskar, M Saiful Bari, Mizanur
Rahman, Md Amran Hossen Bhuiyan, Shafiq R. Joty,
and J. Huang. 2023. A systematic study and compre-
hensive evaluation of chatgpt on benchmark datasets.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdel rahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2019. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and compre-
hension. In Annual Meeting of the Association for
Computational Linguistics.

Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy
Liang, Jason FEisner, Tatsunori Hashimoto, Luke
Zettlemoyer, and Mike Lewis. 2022a. Contrastive de-
coding: Open-ended text generation as optimization.
arXiv preprint arXiv:2210.15097.

Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy
Liang, and Tatsunori Hashimoto. 2022b. Diffusion-
LM improves controllable text generation. In Ad-
vances in Neural Information Processing Systems.

Bill Yuchen Lin, Wangchunshu Zhou, Ming Shen, Pei
Zhou, Chandra Bhagavatula, Yejin Choi, and Xiang
Ren. 2020. CommonGen: A constrained text gen-
eration challenge for generative commonsense rea-
soning. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 1823—1840,
Online. Association for Computational Linguistics.

Zachary C Lipton. 2018. The mythos of model inter-
pretability: In machine learning, the concept of in-
terpretability is both important and slippery. Queue,
16(3):31-57.

Ximing Lu, Peter West, Rowan Zellers, Ronan Le Bras,
Chandra Bhagavatula, and Yejin Choi. 2021. Neuro-
Logic decoding: (un)supervised neural text genera-
tion with predicate logic constraints. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 4288-4299,
Online. Association for Computational Linguistics.

Clara Meister, Tiago Pimentel, Gian Wiher, and Ryan
Cotterell. 2022. Typical decoding for natural lan-
guage generation. arXiv preprint arXiv:2202.00666.

Tao Meng, Sidi Lu, Nanyun Peng, and Kai-Wei Chang.
2022. Controllable text generation with neurally-
decomposed oracle. In Advances in Neural Informa-
tion Processing Systems, volume 35, pages 28125—
28139. Curran Associates, Inc.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,
Pushmeet Kohli, and James Allen. 2016. A corpus
and cloze evaluation for deeper understanding of
commonsense stories. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 839-849, San Diego,
California. Association for Computational Linguis-
tics.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback.

Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers,
John Thickstun, Sean Welleck, Yejin Choi, and Zaid

3165

https://aclanthology.org/2022.findings-emnlp.249
https://aclanthology.org/2022.findings-emnlp.249
http://arxiv.org/abs/1904.09751
http://arxiv.org/abs/1904.09751
https://doi.org/10.18653/v1/N18-1170
https://doi.org/10.18653/v1/N18-1170
http://arxiv.org/abs/2301.08745
http://arxiv.org/abs/2301.08745
http://arxiv.org/abs/2301.08745
http://arxiv.org/abs/2301.08745
https://doi.org/10.18653/v1/2020.emnlp-main.369
https://doi.org/10.18653/v1/2020.emnlp-main.369
https://dspace.mit.edu/handle/1721.1/98680
https://dspace.mit.edu/handle/1721.1/98680
https://openreview.net/forum?id=3s9IrEsjLyk
https://openreview.net/forum?id=3s9IrEsjLyk
https://doi.org/10.18653/v1/2020.findings-emnlp.165
https://doi.org/10.18653/v1/2020.findings-emnlp.165
https://doi.org/10.18653/v1/2020.findings-emnlp.165
https://queue.acm.org/detail.cfm?id=3241340
https://queue.acm.org/detail.cfm?id=3241340
https://queue.acm.org/detail.cfm?id=3241340
https://doi.org/10.18653/v1/2021.naacl-main.339
https://doi.org/10.18653/v1/2021.naacl-main.339
https://doi.org/10.18653/v1/2021.naacl-main.339
https://proceedings.neurips.cc/paper_files/paper/2022/file/b40d5797756800c97f3d525c2e4c8357-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b40d5797756800c97f3d525c2e4c8357-Paper-Conference.pdf
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2203.02155

Harchaoui. 2021. Mauve: Measuring the gap be-
tween neural text and human text using divergence
frontiers. Advances in Neural Information Process-
ing Systems, 34:4816-4828.

Matt Post and David Vilar. 2018. Fast lexically con-
strained decoding with dynamic beam allocation for
neural machine translation. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Pa-
pers), pages 1314-1324, New Orleans, Louisiana.
Association for Computational Linguistics.

Lihua Qian, Lin Qiu, Weinan Zhang, Xin Jiang, and
Yong Yu. 2019. Exploring diverse expressions
for paraphrase generation. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pages 3173-3182, Hong Kong,
China. Association for Computational Linguistics.

Chengwei Qin, Aston Zhang, Zhuosheng Zhang, Jiaao
Chen, Michihiro Yasunaga, and Diyi Yang. 2023. Is
chatgpt a general-purpose natural language process-
ing task solver?

Lianhui Qin, Sean Welleck, Daniel Khashabi, and Yejin
Choi. 2022. COLD decoding: Energy-based con-
strained text generation with langevin dynamics. In
Advances in Neural Information Processing Systems.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Nazneen Fatema Rajani, Bryan McCann, Caiming
Xiong, and Richard Socher. 2019. Explain your-
self! leveraging language models for commonsense
reasoning. In Proceedings of the 2019 Conference
of the Association for Computational Linguistics

(ACL2019).

Machel Reid, Victor Zhong, Suchin Gururangan, and
Luke Zettlemoyer. 2022. M2D2: A massively multi-
domain language modeling dataset. In Proceedings
of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 964-975, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Koustuv Sinha, Jon Gauthier, Aaron Mueller, Kan-
ishka Misra, Keren Fuentes, Roger Levy, and Adina
Williams. 2023. Language model acceptability judge-
ments are not always robust to context. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 6043-6063, Toronto, Canada. Association for
Computational Linguistics.

Eric Michael Smith, Diana Gonzalez-Rico, Emily Di-
nan, and Y-Lan Boureau. 2020. Controlling style in
generated dialogue.

Yixuan Su, Tian Lan, Yan Wang, Dani Yogatama, Ling-
peng Kong, and Nigel Collier. 2022. A contrastive
framework for neural text generation. arXiv preprint
arXiv:2202.06417.

Yixuan Su and Jialu Xu. 2022. An empirical study
on contrastive search and contrastive decoding
for open-ended text generation. arXiv preprint
arXiv:2211.10797.

Jiao Sun, Xuezhe Ma, and Nanyun Peng. 2021. AESOP:
Paraphrase generation with adaptive syntactic control.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
5176-5189, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Jiao Sun, Swabha Swayamdipta, Jonathan May, and
Xuezhe Ma. 2022. Investigating the benefits of free-
form rationales. In Findings of the Association for
Computational Linguistics: EMNLP 2022, pages
5867-5882, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Yufei Tian, Anjali Narayan-Chen, Shereen Oraby,
Alessandra Cervone, Gunnar Sigurdsson, Chenyang
Tao, Wenbo Zhao, Tagyoung Chung, Jing Huang, and
Nanyun Peng. 2023. Unsupervised melody-to-lyrics
generation. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 9235-9254, Toronto,
Canada. Association for Computational Linguistics.

Yufei Tian and Nanyun Peng. 2022. Zero-shot sonnet
generation with discourse-level planning and aesthet-
ics features. In Proceedings of the 2022 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 3587-3597, Seattle, United States.
Association for Computational Linguistics.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed H. Chi, Quoc Le, and Denny Zhou. 2022.
Chain of thought prompting elicits reasoning in large
language models. CoRR, abs/2201.11903.

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Di-
nan, Kyunghyun Cho, and Jason Weston. 2019. Neu-
ral text generation with unlikelihood training. arXiv
preprint arXiv:1908.04319.

3166

https://doi.org/10.18653/v1/N18-1119
https://doi.org/10.18653/v1/N18-1119
https://doi.org/10.18653/v1/N18-1119
https://doi.org/10.18653/v1/D19-1313
https://doi.org/10.18653/v1/D19-1313
http://arxiv.org/abs/2302.06476
http://arxiv.org/abs/2302.06476
http://arxiv.org/abs/2302.06476
https://openreview.net/forum?id=TiZYrQ-mPup
https://openreview.net/forum?id=TiZYrQ-mPup
https://arxiv.org/abs/1906.02361
https://arxiv.org/abs/1906.02361
https://arxiv.org/abs/1906.02361
https://aclanthology.org/2022.emnlp-main.63
https://aclanthology.org/2022.emnlp-main.63
https://doi.org/10.18653/v1/2023.acl-long.333
https://doi.org/10.18653/v1/2023.acl-long.333
http://arxiv.org/abs/2009.10855
http://arxiv.org/abs/2009.10855
https://doi.org/10.18653/v1/2021.emnlp-main.420
https://doi.org/10.18653/v1/2021.emnlp-main.420
https://aclanthology.org/2022.findings-emnlp.432
https://aclanthology.org/2022.findings-emnlp.432
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://doi.org/10.18653/v1/2023.acl-long.513
https://doi.org/10.18653/v1/2023.acl-long.513
https://doi.org/10.18653/v1/2022.naacl-main.262
https://doi.org/10.18653/v1/2022.naacl-main.262
https://doi.org/10.18653/v1/2022.naacl-main.262
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903

John Wieting and Kevin Gimpel. 2018. ParaNMT-50M:
Pushing the limits of paraphrastic sentence embed-
dings with millions of machine translations. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 451-462, Melbourne, Australia. As-
sociation for Computational Linguistics.

Nan Xu, Chunting Zhou, Asli Celikyilmaz, and Xuezhe
Ma. 2023a. Look-back decoding for open-ended text
generation.

Nan Xu, Chunting Zhou, Asli Celikyilmaz, and Xuezhe
Ma. 2023b. Look-back decoding for open-ended text
generation. arXiv preprint arXiv:2305.13477.

Fan Yin, Jesse Vig, Philippe Laban, Shafiq Joty, Caim-
ing Xiong, and Chien-Sheng Jason Wu. 2023. Did
you read the instructions? rethinking the effective-
ness of task definitions in instruction learning. ACL
2023.

Hanqging Zhang, Haolin Song, Shaoyu Li, Ming Zhou,
and Dawei Song. 2022. A survey of controllable
text generation using transformer-based pre-trained
language models. ArXiv, abs/2201.05337.

Hattie Zhou, Azade Nova, Hugo Larochelle, Aaron
Courville, Behnam Neyshabur, and Hanie Sedghi.
2022. Teaching algorithmic reasoning via in-context
learning.

Wangchunshu Zhou, Yuchen Eleanor Jiang, Ethan
Wilcox, Ryan Cotterell, and Mrinmaya Sachan. 2023.
Controlled text generation with natural language in-
structions.

Cansen Caglayan and Murat Karakaya. 2021. Topic-
controlled text generation. In 2021 6th International
Conference on Computer Science and Engineering
(UBMK), pages 533-536.

Model SR - SR- SR- MSE-
count suffix both count
syllable planning
ChatGPT 0.37 0.75 032 4383
ChatGPT ICL 0.30 0.84 028 6.10
Alpaca-7b 0.15 0.33 0.07 944
Alpaca-7b ICL 0.12 0.36 0.05 10.61
sentence planning
ChatGPT 0.38 0.625 029 1.69
ChatGPT ICL 0.36 0.66 027 2.05
Alpaca-7b 0.19 0.19 0.07 6.56
Alpaca-7b ICL 0.17 0.26 0.10 8.04
paragraph planning
ChatGPT 0.69 0.17 0. 3.24
ChatGPT ICL 0.57 0.17 034 443
Alpaca-7b Failed
Alpaca-7b ICL Failed

Table 8: Success rates for the syllable, sentence, and
paragraph count planning tasks. LLMs are best at sen-
tence count planning and worst at syllable count plan-
ning.

A SPB additional results

We report the additional results of ChatGPT and
Alpaca on the SPB benchmark in Table 8. Recall
that the suffix for the paragraph planning task is
the last sentence. In practice, LLMs are unable
to follow instructions and copy the requirement as
prompted. Hence, when we compute the success
rate for this last task, we check the token overlap
between the generated sentence and our require-
ment, and if more than 2/3 of the tokens overlap,
we will consider it as a success.

Taking all four tasks in the SPB benchmark into
account, we find out that Alpaca-7b have very little
numerical planning ability. ChatGPT on the hother
hand is best at sentence count planning, and worst
at syllable count planning.

B Additional Information of Content
Controlled Generation

Controlled content generation refers to the task
of controlling the content of generated texts. We
consider three types of content constraints:

 Topic constraint. It requires the model to gen-
erate texts about certain topics. Traditional
methods for topic constrained generation ei-
ther append a special token for different top-
ics (Caglayan and Karakaya, 2021) or use trained
topic classifiers (Qin et al., 2022) to guide the

generation process.
* Sentiment constraint. Similar to topic constraint,
this task requires the model to generate texts of

3167

https://doi.org/10.18653/v1/P18-1042
https://doi.org/10.18653/v1/P18-1042
https://doi.org/10.18653/v1/P18-1042
http://arxiv.org/abs/2305.13477
http://arxiv.org/abs/2305.13477
http://arxiv.org/abs/2211.09066
http://arxiv.org/abs/2211.09066
http://arxiv.org/abs/2304.14293
http://arxiv.org/abs/2304.14293
https://doi.org/10.1109/UBMK52708.2021.9558910
https://doi.org/10.1109/UBMK52708.2021.9558910

certain sentiments. The aforementioned methods
for topic constrained generation also apply to
sentiment constrained generation.

* Keyword constraint. Keyword constrained, or
lexical constrained text generation requires the
model to generate texts that contain certain key-
words or tokens. Traditional methods for key-
word constrained text generation generally en-
force lexical constraints on the outputs by mod-
ifying the search space according to the con-
straints (Anderson et al., 2017; Post and Vilar,
2018; Lu et al., 2021).

Datasets. For topic constraints, we use a sub-
set of the topics from the first hierarchy in the
M2D2 dataset (Reid et al., 2022) which contains
domains such as health, history, society, technol-
ogy, arts, science, etc. The total number of topics
is 10 in our experiments. We use the Amazon Re-
view dataset (Keung et al., 2020) for sentiment
constrained text generation. The sentiment is mea-
sure by 1 to 5 stars. For lexical constrained text
generation, we use the CommonGEN dataset (Lin
et al., 2020) which requires the model to generate
a sentence using three to five keywords.

3168

