
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 2604–2620
December 6-10, 2023 ©2023 Association for Computational Linguistics

Improving Summarization with Human Edits

Zonghai Yao †
University of Massachusetts, Amherst

zonghaiyao@umass.edu

Benjamin J Schloss
Abridge AI Inc.

ben.j.schloss@gmail.com

Sai P. Selvaraj
Abridge AI Inc.

aps.prabhakar@gmail.com

Abstract

Recent work has shown the promise of learn-
ing with human feedback paradigms to pro-
duce human-determined high-quality text. Ex-
isting works use human feedback to train large
language models (LLMs) in general domain
abstractive summarization and have obtained
summary quality exceeding traditional likeli-
hood training. In this paper, we focus on a
less explored form of human feedback – Hu-
man Edits. We propose Sequence Alignment
(un)Likelihood Training (SALT), a novel tech-
nique to use both the human-edited and model-
generated data together in the training loop.
In addition, we demonstrate simulating Hu-
man Edits with ground truth summaries com-
ing from existing training data – Imitation edits,
along with the model-generated summaries ob-
tained after the training, to reduce the need
for expensive human-edit data. In our experi-
ments, we extend human feedback exploration
from general domain summarization to medical
domain summarization. Our results1 demon-
strate the effectiveness of SALT in improving
the summary quality with Human and Imita-
tion Edits. Through additional experiments, we
show that SALT outperforms the conventional
RLHF method (designed for human prefer-
ences) – DPO, when applied to human-edit data.
We hope the evidence in our paper prompts
researchers to explore, collect and better use
different human feedback approaches scalably.

1 Introduction

Large-scale language model pretraining has be-
come increasingly prevalent to achieve high per-
formance on various natural language processing
(NLP) tasks (Brown et al., 2020; Sanh et al., 2021;
Chowdhery et al., 2022; Longpre et al., 2023; Ope-
nAI, 2023; Cai et al., 2023). When applying these

1Code and the public dataset (Appendix A.2) is at https:
//github.com/seasonyao/LearnFromHumanEdit

† Work was done during internship at Abridge AI Inc

models to a specific task, they are usually fine-
tuned to maximize the likelihood of human-written
text. While this strategy has led to markedly im-
proved performance in many metrics, models still
cannot consistently produce human-determined
high-quality output. The NLP community has
pointed out some key drawbacks of traditional fine-
tuning. First, important errors (e.g. hallucinations)
and unimportant errors (e.g. minor grammar errors)
equally contribute to the final loss. Second, the
model weighs the loss equally on all labeled data
of different types, qualities, and difficulties. Third,
distribution shifts in new data degrade performance
(catastrophic forgetting)(Kirkpatrick et al., 2017).

CC Ground truth summary

DR: Plus ribavirin, roughly based
on your weight. Like 3 pills in the
morning, 3 pills in the evening.

Start ribavirin 3 pills twice a day

CCUser SAI SE

DR: Uh, and have you had any
more chest pain?
PT: I did, yeah, I do.

chest pain Confirms chest pain.

DR: Uh, and have you had any
more chest pain?
PT: Not really. No.

chest pain Denies chest pain.

DR: And then I have gemfibrozil
600 mg twice a day.
DR: Fish oil, you do 2 capsules
twice a day.

Fish oil. Fish oil 2 capsules
twice a day.

Table 1: Example of conversation-to-notes summariza-
tion data from Clinician Conversations (CC) dataset and
corresponding human-edit dataset, CCUser, where user-
edited summaries– SE , made from the AI-generated
ones– SAI , from our SOAP generation pipeline.

Some works tackle these problems with human
feedback (HF). Specifically, they fine-tune lan-
guage models with HF using reward learning (Sti-
ennon et al., 2020; Ziegler et al., 2019). With a
large amount of HF data, these works demonstrate
that large-scale LMs, such as GPT-3 (Brown et al.,
2020), have a text generation quality exceeding
traditional likelihood training. However, the acqui-
sition cost of large-scale HF is high, and whether
smaller LMs can also benefit is not fully studied. In

2604

https://github.com/seasonyao/LearnFromHumanEdit
https://github.com/seasonyao/LearnFromHumanEdit

addition, because LLMs are often provided in the
form of third-party APIs and are too large for many
companies’ and labs’ infrastructure to host, smaller
models (e.g., T5 family (Raffel et al., 2020)) still
play important roles in many domains (e.g., medi-
cal), where privacy issues and pragmatic economics
dominate decision-making strategies.

Our goal in this paper is to explore methods to
train language models to improve the summary
quality with HF inexpensively. HF for summa-
rization can come in different forms. One is to
obtain human scores for the summaries. Previous
work (Stiennon et al., 2020; Ziegler et al., 2019)
focuses on training a reward function through HF
data and using such rewards as training objectives
by comparing different summaries’ scores. More
recently, this is used by generative AI works (e.g.,
ChatGPT and GPT4 (Ouyang et al., 2022; OpenAI,
2023)), and they call the method RLHF. Another
HF is obtaining edits to make the summary correct.
The second approach is a natural way to collect
feedback from users in workflows where users may
be working off of an AI-generated summary in
their workflow. For example, the summaries SE ,
in Table 1 are the results of clinicians/scribes mod-
ifying our AI-generated EHR summaries SAI . In
addition, the second approach might be more data
efficient in improving the summarization models
than the first, as it conveys more granular infor-
mation than a score for the entire summary. Hu-
man Edits from the second approach can also be
converted to scores with simple rules like the per-
centage of edits, although this has not been studied
extensively. Hence, from an ML data point of view,
the second approach has certain unique advantages.
Furthermore, large-scale expert feedback is hard
to get using annotation ways in RLHF, consider-
ing the expert/user’s time, cost, and willingness.
But, Human Edits, which can be obtained from the
users using the AI summaries for their work, may
become a more reasonable alternative in various
professional-knowledge-intensive domains.

We explore how to use Human Edits to improve
summary quality. In addition to general domain
summarization, we also focus on a medical domain
summarization task in automatic clinical note gen-
eration from doctor-patient conversations, which
is understudied due to privacy and data inaccessi-
bility problems. Table 1 provides an example of a
Clinician Conversation from our dataset (CC). We
present our work from two experiments on a novel

technique, Sequence Alignment (un)Likelihood
Training (SALT), which uses Human Edits and
unlikelihood objectives together with the standard
likelihood training paradigm to improve the sum-
mary quality. Unlikelihood training was proposed
to reduce the probability of unlikely tokens pre-
dicted by models (Welleck et al., 2019).

In our first experiment, we use the Human Edits
from physicians editing AI-generated clinical sum-
maries from medical conversations to improve the
summarization models. In our second, we explore
how we can get similar benefits with pre-existing
ground-truth human summaries that are not written
as edits to the AI-generated summaries, which we
call Imitation Edits. We refer to AI-generated sum-
mary SAI , human-edit summary SE , and imitation-
edit summary SI . We show how the unlikelihood
objective can be generalized to improve the sum-
mary quality together with (SAI , SE) and (SAI ,
SI) pairs. In addition, our results show that SALT
stably improves summary quality for T5 (small and
large) summarization models with Human and Imi-
tation Edits. Further experiments show how SALT
can address the catastrophic forgetting problem
arising from the distribution difference between
SAI and SE with the help of RSALT, which is an
improved version of the Replay-based methods in
Continual Learning (Rebuffi et al., 2017).

Finally, to compare SALT and RLHF, we experi-
ment with SALT and Direct Preference Optimiza-
tion (DPO) (Rafailov et al., 2023) on human edit
data and demonstrate the superiority of SALT on
this type of human feedback.

To conserve space constraints, we have relegated
specific contents to the appendix. In Appendix A.1
and A.2, we provide definitions of the SOAP Struc-
ture and implementation details. In Appendix A.3,
we focus on the utilization of Imitation Edits and
SALT for training on publicly available datasets,
accompanied by the experimental results. Lastly, in
Appendix A.4, we have more discussion about the
relation between SALT and various other RLHFs.
In summary, our contributions are as follows:

• To our knowledge, we are the first to extend
current HF trends in summarization research to
the automatic clinical note-generation task.

• Different from the form of HF used in previ-
ous work, we explore Human Edits to improve
summary quality in this paper.

• We show how to construct Imitation Edits to
reduce the need for expensive HF data.

2605

• We show SALT extends unlikelihood train-
ing into a general framework using sequence
alignment and further combines SALT and
Replay-based methods (Rebuffi et al., 2017)
into RSALT for tackling catastrophic forgetting.

• Finally, we show that SALT achieves better per-
formance than DPO on human-edit feedback.

2 Related Work

Most directly related to our work is research
on automatic clinical note generation from doctor-
patient conversations (Schloss and Konam, 2020;
Ramprasad et al., 2023; Krishna et al., 2020;
Abacha et al., 2023a; Ben Abacha et al., 2023; Yim
et al., 2023; Wang et al., 2023), and the difference is
that those works focus on training a summarization
model with pre-labeled data, while we focus on
using HF further to improve the summary quality
of the trained models.

Previous work used HF to train summarization
models with reinforcement learning (RL) (Böhm
et al., 2019; Ziegler et al., 2019; Stiennon et al.,
2020) and used GPT-2 and GPT-3 to optimize HF
across various summarization tasks. These RL-
based methods focus on training a reward function
through HF data and use such rewards as train-
ing objectives by comparing different summaries
(RLHF). Recently, some RLHF variants collect
or use rewards more flexibly and stably (Akyürek
et al., 2023; Dong et al., 2023; Zhao et al., 2023;
Yuan et al., 2023). We introduce unlikelihood train-
ing as an additional learning objective in supervised
learning. Our technique aims to decrease the proba-
bility of unlikely sequences, defined as those which
appear in the SAI but not in SE , and increase the
probability of verified sequences, which are in SAI

and reinforced by SE , as well as novel sequences
which do not appear in SAI but do appear in SE .

Unlikelihood training (Welleck et al., 2019) in-
volves adding unlikelihood loss to lower the prob-
ability of negative candidates. Previous work has
explored many scenarios with various negative can-
didates for unlikelihood training, including: style
transfer (Devaraj et al., 2021), repetition, copy-
ing, and contradictions (Li et al., 2019), factuality
(Cao and Wang, 2021), text degeneration (Su et al.,
2022), and clinical summarization (Adams et al.,
2022). In this work, we align the SE with SAI

to identify negative candidates and train different
tokens with unlikelihood and likelihood loss. We
also show that our experiments on Human Edits

Subsection for S, O, A, P CC CCUser

Family Medical History 9.155 9.131

Past Surgical History 6.070 6.957

Review of Systems 8.043 7.183

Chief Complaint 4.199 4.162

Allergies 6.000 7.523

Past Medical History 5.158 4.435

Social History 8.631 9.880

Medications 6.618 3.762

Immunizations 5.758 7.281

Laboratory and Imaging Results 8.352 8.544

Assessment 29.31 33.85

Diagnostics and Appointments 9.724 10.73

Prescriptions and Therapeutics 10.42 7.928

Table 2: Average words in CC and CCUser.

can be extended to Imitation Edits to reduce the
need for HF data which can be expensive to get.

3 Dataset

3.1 Clinician Conversations (CC) Dataset

This dataset is a collection of 63000 consented
doctor-patient de-identification conversations with
human transcripts with an average duration of 9
minutes. We segmented the dataset to create train-
ing, validation, and test sets of 52,000, 5,000, and
6,000 files each while controlling important char-
acteristics of the distribution in each split. The
transcripts of the conversations were annotated ac-
cording to the traditional SOAP format 2. A SOAP
note can contain numerous observations that are
grounded to shorter excerpts from the transcript
via timestamps that relate back to the original au-
dio. There are several sections and subsections in
the SOAP structure, each of which needs specific
information and is written in a different format. Ta-
ble 2 shows the average length span of different
subsections is large.

3.2 CCUser Dataset

In order to generate SOAP notes from doctor-
patient conversations, our pipeline follows (Ram-
prasad et al., 2023; Krishna et al., 2020). We
first record the clinical conversation, then tran-
scribe it either using humans or using Google’s
medical-conversations Automatic Speech Recog-
nition (ASR) service. Then, using our proprietary
models, we classify utterances into SOAP sections.
Finally, using our section-conditioned summariza-
tion model trained on the CC dataset, we generate
summaries for each of the utterance clusters be-
longing to each section.

2SOAP structure details can be found in the Appendix A.1.

2606

We use our pipeline to extract SOAP summaries
for our clinician users who record their conversa-
tions with their patients via a mobile app. The
generated summaries were edited by scribes and
doctors using our dashboard for their documenta-
tion tasks. The dashboard is built for doctors and
scribes to check and fix AI-generated summaries in
their regular workflow quickly. Hence, we didn’t
enforce any training/instructions that might make
the data more useful for research, and the users
were free to use the dashboard as they saw fit.

The distribution of the CCUser dataset differs
from the CC dataset in the following ways. First,
CC uses human-written transcripts as training in-
puts, while CCUser uses our pipeline’s inputs from
ASR transcripts rather than human-tagged utter-
ances. Second, the average length of a conversation
was 20 min for CCUser compared to 9 min for CC
dataset, which could mean more complex conver-
sations. The dataset has 215 ASR transcripts with
AI-generated notes (along with the Human Edits)
from 10 physicians. We randomly select 70 notes
from 7 physicians as a training dataset, 10 for each
physician, and divide the remaining 145 notes into
evaluation and test sets. Finally, our dataset is split
as a train:eval:test = 1279:1457:1458 – (utterance
cluster, edited summary, AI summary) triplet.

4 Methods

Given a tokenized utterance cluster as input
U = [x1, x2, x3, ...xlenU], the CC summariza-
tion model M generates a summary SAI =
[y′1, y

′
2, y

′
3, ...y

′
lenSAI

] for it. The user edits
this summary from SAI to SE , where SE =
[y1, y2, y3, ...ylenSE

]. We aim to update parame-
ters in M based on both SAI and SE . Let, lenU ,
lenSAI , and lenSE be the number of tokens in U ,
SAI , and SE respectively.

4.1 Sequence Alignment (un)Likelihood
Training (SALT) using SAI and SE

When a user edits a summary from SAI to SE ,
they can modify or delete a span of tokens, insert
a new span of tokens, or not change anything to a
span of tokens. We want to use these Human Edits
to improve our summarization models and produce
outputs that are closer to the user’s modified sum-
mary than before. We do this using both SAI and
SE in the training. We train the model to:

(i) Lower the probability of producing words that
the user deleted or modified in SAI .

(ii) Reinforce the probability of producing words
that the user didn’t change in SAI and are
retained in SE .

(iii) Increase the probability of producing words
that the new user added in SE .

The loss functions to train the summarization
model with SAI and SE :

LSAI =
∑

x∈SAI

[1AI−C (t) wAI−C Lp(x, t) +

1AI−NC (t) wAI−NC Lr(x, t)]

(1)

LSE =
∑

x∈SE

[1E−C (t) wE−C Lp(x, t) +

1E−NC (t) wE−NC Lr(x, t)]

(2)

Lp(x, t) = − log (1− pθ(xt|x<t, U)) (3)

Lr(x, t) = − log pθ(xt|x<t, U) (4)

Where:
1. U is the utterance cluster used as input
2. C and NC mean “changed” and “not changed”

tokens when we align SAI and SE sequences.
3. 1AI−C (t) and 1AI−NC (t) are the indicator

function to signify if the token xt in SAI is
changed or not-changed by the user. Similarly,
1E−C (t) and 1E−NC (t) corresponds to SE .

4. wx are the loss weights, for example, wAI−C

is the weight to penalize tokens that are in SAI

but not in SE .
5. Lr(x, t) and Lp(x, t) are the likelihood and

unlikelihood loss functions
The losses LSAI

and LSE
used in the (SAI , SE)

pair are used to train the summarization model.
The indicator functions used in the above equa-
tions can be found by tracking the user changes as
they edit the summary or by aligning SE to SAI

using a sequence alignment algorithm. We use
sequence alignment (the Needleman-Wunsch Al-
gorithm (Needleman and Wunsch, 1970)) in this
work because our dashboard doesn’t log the users’
keystrokes. Assume we have a pair from SAI and
the corresponding SE , “patient takes one aspirin
daily” and “patient doesn’t want to take aspirin”.
We can align these two sentences as below:
patient − − − takes one aspirin daily

patient doesn
′
t want to take − aspirin −

C I I I S D C D

Where “C” is “Correspondence” (matching), “I”
is “Inserted”, “D” is “Deleted”, and “S” is “Sub-
stituted”. Note that we do it on the token level in
the implementation. For SAI word list [“patient”,
“takes”, “one”, “aspirin”, “daily”], the correspond-
ing indicator function in Equation 1 are:

2607

1AI−C (t) = [0, 1, 1, 0, 1]

1AI−NC (t) = [1, 0, 0, 1, 0]

For SE word list [“patient”, “doesn’t”, “want”,
“to”, “take”, “aspirin”], the corresponding indicator
function in Equation 2 are:

1E−C (t) = [0, 1, 1, 1, 1, 0]

1E−NC (t) = [1, 0, 0, 0, 0, 1]

4.2 Imitation Edits

SE is a special kind of ground truth summary
from the user. SE is obtained by the user using
U and SAI – SE = Fn(U, SAI). An interest-
ing question is whether we can approximate the
edited summary SI (Imitation Edits), and use it to
improve the models in the absence of actual Hu-
man Edits with SALT. In our work, we use the
pre-existing ground-truth summaries as SI even
though they were not explicitly written as edits to
SAI . Leveraging such data has several advantages.
First, SE is not easy to obtain, approximating SE

with SI can increase the amount of data available
for unlikelihood training. And we will be able to
use SALT even without human-edit data or any new
annotations. Second, under the premise of ensuring
that the Imitation Edits are of high quality, combin-
ing Human Edits and Imitation Edits can further
improve the model’s performance since both of
them bring effective data points for training. Third,
Imitation Edits can be used to solve the forgetting
problem when we do SALT training with SAI and
SE , we show this in the next section.

To imitate Human Edits, we assume the original
ground truth summary is generated from SAI and
its utterance cluster U (even though the ground
truth notes were written independently). Similar
to the above setting with SAI and SE , we use the
alignment algorithm to align SAI and SI . Then we
calculate LSI

.

LSI =
∑

x∈SI

[1I−C (t) wI−CLp(x, t) +

1I−NC (t) wI−NCLr(x, t)]

(5)

where 1I−C (t) and 1I−NC (t) signify if the token
xt in SI is changed or not-changed compared to
SAI , and wx are the loss weights.

4.3 Replay-based SALT (RSALT) for
Catastrophic Forgetting Problem

We continue training the model M that has con-
verged in the original summarization dataset (e.g.,
CC) on the Human Edits dataset (e.g., CCUser) to

improve the summary quality, subjecting the model
to the catastrophic forgetting problem because of
the distribution differences between them. We
use the traditional Replay-based methods, (Rebuffi
et al., 2017), which sample a part of the data from
the seen dataset (e.g., CC) and add it to the unseen
data (e.g., CCUser), to address the catastrophic
forgetting problem. Here, the likelihood loss is
calculated for both sampled seen data SI(seen) and
human-edit data SE(unseen) with the loss function
L = MLESI(seen) + MLESE(unseen)

, where we
use Maximum Likelihood Estimation for the loss.

Following Section 4.1, we can use both
SAI(unseen) and SE(unseen) to do SALT training.
Following Section 4.2, for the sampled previously
seen data, we can also get (SAI(seen), SI(seen))
pairs and do SALT training. According to Equa-
tions 1, 2, 5, the loss function with RSALT is

LSALT = LSAI(unseen)
+ LSE(unseen)

(6)

LRSALT = LSAI(seen)
+ LSI(seen)

(7)

L = LSALT + LRSALT (8)

5 Metrics

ROUGE and UMLS-F1 Models are evaluated
with full-length F1-scores of ROUGE (Lin, 2004).
We use QuickUMLS3 to extract medical concepts
from both model-generated and ground truth sum-
maries and then calculate F1-scores for these
two lists of concepts, which is named UMLS-
F1 (Adams et al., 2023; Ramprasad et al., 2023).

GPT4 & Human preference Recent work shows
a higher correlation between human and GPT4 eval-
uation than traditional metrics (Moramarco et al.,
2022; Gao et al., 2023; Fu et al., 2023), so we also
use GPT4 preference as measurements to evaluate
summary quality. Specifically, we instruct GPT4 to
give preference ranking on different AI-generated
summaries based on the conversation snippet and
reference summary 4. Similarly, we asked 2 med-
ical students5 to rate summaries from CC based
on the same information, for privacy reasons, we
did not evaluate CCUser with humans. We discuss
the Mean Reciprocal Rank (MRR) (Radev et al.,
2002) of different models in Section 6.4. Generally,
a higher MRR value implies that evaluators have
more preference over an approach.

3https://github.com/Georgetown-IR-Lab/QuickUMLS
4Prompts can be found in Appendix.
5Both with hospital internship experience

2608

SAGE ROUGE and UMLS-F1 measure the de-
gree of “likelihood,” i.e., they evaluate whether or
not the model can generate something closer to
some references. However, we don’t just want to
know how much “closer to SE” is newly generated
summary, but also how “far away from the bad part
of SAI” – spans that are changed by the Human
Edits. To address this problem, we design an evalu-
ation method to measure how likely machines are
to make the same mistakes as before and how likely
they are to generate summaries more like the target
users (as identified during the editing process). We
call this System output Against the Generated and
Edited sentence (SAGE). Given the evaluation data
(U , SAI , SE), where SAI is generated by the model
trained by the original summarization dataset (e.g.,
CC) and SE is edited by human based on (U , SAI),
we can get the new summary Snew generated by the
new model trained by Human Edits dataset (e.g.,
CCUser). Using (Snew, SAI , SE), we can define
three groups of words after removing stop words
and punctuation in Snew:

1. Gw1(AI−E) = {w|w ∈ SAI ∧ w /∈ SE}
2. Gw2(E−AI) = {w|w /∈ SAI ∧ w ∈ SE}
3. Gw3(AI∩E) = {w|w ∈ SE ∧ w ∈ SAI}
By training on HF, we aim to have Snew closer

to SE while avoiding the mistakes found in SAI .
So SAGE counts how many words in Snew are
in Gw1(AI−E), Gw2(E−AI), and Gw3(AI∩E). We
call this word level SAGE (SAGEw). Similarly,
we can define Gc1(AI−E), Gc2(E−AI), Gc3(AI∩E)

and make Concept-level SAGE (SAGEc) based on
UMLS concept overlap in Snew, SAI , and SE .

We have two assumptions regarding SAGE:
1. users can accept machines making some mis-

takes, but they can’t tolerate machines making
the same mistake, again and again.

2. users will be more satisfied if the model, over
time, learns to generate outputs more similar
to the user’s edited summaries

According to Assumption 1 and 2, a model
trained on HF should be able to generate less con-
tent belonging to G1 (Gw1 and Gc1), and more con-
tent belonging to G2 (Gw2 and Gc2). The model
should also be able generate G3 (Gw3 and Gc3)
since G3 represents human-verified information.

6 Experiments

We use the following symbols:
1. M refers to models that are trained and al-

CCUsereval CCeval

R1 U-f R1 U-f

M - - 36.07 48.97

SALTl 57.77 61.02 34.27 46.45

SALTld 57.70 61.06 34.46 46.58

SALTli 57.84 60.81 34.68 46.77

SALTu 57.57 61.09 34.47 46.64

SALTl+u 58.39 62.13 34.79 47.06

SALTl+RSALTl 59.57 62.52 35.55 48.25

SALTl+u+RSALTl 59.60 62.57 35.43 48.20

SALTl+RSALTl+u 59.88 62.60 36.24 48.42

SALTl+u+RSALTl+u 60.43 63.44 36.26 48.69

Table 3: Human Edits results. Compared to the likeli-
hood training SALTl, our proposed SALTl+u has better
performance on both new human-edit CCUsereval and
the model’s prior training CCeval dataset, when using
just CCUsereval for training (Section 6.1.1). Further,
we show that the catastrophic forgetting problem can
be addressed with Replay-based argumentation to our
method– RSALT (Section 6.3). 6

ready converged on the CC dataset. All meth-
ods below are initialized from M and continue
training on SE , SI , and SAI .

2. SALTl: the baseline, which is only based on
likelihood training on SE or SI

3. SALTld (or SALTli): likelihood training on
SE or SI , but with decreased (or increased)
weights for 1E−C or 1I−C tokens

4. SALTu: only unlikelihood training on SAI

5. SALTl+u: both likelihood (on SE or SI) and
unlikelihood (on SAI)

6. SALTx: all the above SALT variations
7. SALTx+RSALTl is the traditional replay-

based method. When continuing to train M
with different SALT variations on new data,
this method will sample a part of the data from
the dataset that M has already seen and use
them for training with likelihood loss.

8. SALTx+RSALTl+u: following Section 4.3,
RSALT treats sampled data from the replay-
based method as imitation-edit data and uses
both likelihood and unlikelihood training.

6.1 SALT in human-edit dataset

6.1.1 Analyzing the behavior of SALT
In Table 3, the evaluation on the CCUsereval

shows compared to the regular likelihood training

6There are no scores for M on human-edit evaluation data
(CCUser) here. Because human-edit data is directly modified
from M ’s SAI , so it is unfair to calculate the scores of its SAI

and human-edit data and compare with other methods.

2609

SALTx
SALTl

SAGEw SAGEc

Gw1 ↓ Gw2 Gw3 Gc1 ↓ Gc2 Gc3

SALTl 1 1 1 1 1 1

SALTld
0.982 0.889 1.005 1.022 1.011 1.001

SALTli
0.992 1.043 1.022 1.026 1.080 1.009

SALTu 0.833 0.824 0.977 0.894 0.954 0.981

SALTl+u 0.946 0.926 1.029 0.990 1.068 1.026

Table 4: Word-level and concept-level SAGE for
CCUsereval normalize by SALTl as the baseline.

(SALTl), changing loss weights for 1E−C tokens in
likelihood training (SALTld or SALTli) can bring
changes to their performance. Predictably we see
in Table 4, that SALTli produces higher Gw2 than
SALTld , and the trends in other columns are not
as pronounced since SAI isn’t considered. Simi-
larly, SALTu produces lower Gw1 than the others.
However, SALTl+u achieves significantly higher
performance on both CC and CCUser. We further
show how we can manipulate a model’s behaviors
using different SALT through SAGE in Table 4.

First, SALTl only uses SE , and all tokens in SE

contribute to the loss equally. SALT can increase
or decrease the emphasis of the model on 1E−C

through different weights on the loss function. In-
creasing the loss weight of 1E−C will make the
model generate more words/concepts belonging to
1E−C (Gw2 and Gc2), which follows our SAGE
Assumption 2. While reducing the loss weight of
1E−C will make the model generate fewer words
and concepts belonging to 1E−C (Gw2 and Gc2),
at the same time it can also reduce the genera-
tion of words/concepts belonging to 1AI−C (Gw1

and Gc1), which satisfies our SAGE Assumption 1.
So SALTld and SALTli make the model better for
users according to the SAGE metric.

Second, unlike the three above SALT variations,
SALTu only uses SAI but it knows which tokens
in SAI belong to 1AI−C and 1AI−NC respectively.
So SALTu significantly reduces the words and con-
cepts belonging to 1AI−C . However, because the
data of 1E−NC has not been seen, SALTu rarely
generates related words and concepts.

Finally, SALTl+u has more granular
information– that tokens belonging to 1AI−C ,
1AI−NC , 1E−C , and 1E−NC in SAI (SE) through
their corresponding loss weights. Therefore,
SALTl+u can learn the more suitable distribution,
which decreases the generation of words and
concepts belonging to 1AI−C while increasing the
generation of words and concepts belonging to
1AI−NC , 1E−C and 1E−NC .

6.1.2 Reducing the forgetting problem
In Table 3, we see a dip in evaluation metrics

for SALTl in the old evaluation dataset CCeval

when we train the model trained on the CCUser
– catastrophic forgetting. The reason could be the
distribution difference between CCUser and CC
dataset described in Section 3.2. Both SALTu and
SALTl+u have different degrees of improvement
in ROUGE-1 and UMLS-F1 on CCeval data. This
result shows that SALT training also alleviates the
forgetting problem to a certain extent.

One widely used and effective technique to re-
duce catastrophic forgetting is the replay-based
method, which mixes in the seen data the model
was trained on (e.g., CC). In this work, we set the
ratio of CCUser and CC data to 2:1. That is, assum-
ing that there are n CCUser data, we will sample
0.5 ∗ n CC data to train together 7. Table 3 shows
that SALTx+RSALTl is effective in helping the
model reduce the catastrophic forgetting problem.
Adding the sampled seen data improves the model’s
performance in both the new – CCUser and the
original – CC data. However, we still see a reduc-
tion in the performance of SALTx+RSALTl in the
CC dataset compared with M , which shows that
the traditional replay-based method cannot com-
pletely solve this problem. In Section 6.3, we show
how we address the problem further with SALT,
imitation-edit data, and RSALT.

6.2 SALT in imitation-edit dataset
SALT uses the relationship between SE and SAI

to get better performance than using just SE and
likelihood training. In this section, we show that we
can directly improve the summarization model M
using a similar relationship between SI (the ground
truth data) and SAI without new human-edit data
or additional annotation, i.e., by assuming that the
SI is the output of human-edit data on SAI . Simu-
lating Human Edits this way lets us 1) demonstrate
the effectiveness of SALT on a public dataset that
does not have the human-edit component in them,8

and 2) reduce the amount of Human Edits needed
as it is hard to get.

Although both come from humans, SE and SI

are fundamentally different in their relationship
with SAI . The former is modified from SAI while
humans generate the latter from scratch. There-

7Adjusting this ratio will bring some improvements in
certain SALTx, but we found that 2:1 has relatively good
performance in most SALTx, so we use this ratio uniformly.

8Due to the space limit, we put results in the Appendix.

2610

M l ld li u l + u

R1 36.07 35.77 35.76 35.65 37.39 36.16
U-f 48.97 48.86 48.60 48.97 49.45 49.24

Table 5: SALT results for imitation-edit experiments.
The imitation-edit data come from the training dataset
which the model M has already seen by assuming the
ground truth is generated by editing the model’s output.

CCtest−r CCeval

R1 U-f R1 U-f

M 36.01 58.15 36.07 48.97

SALTl 36.09 57.55 36.14 48.50

SALTl+u 36.57 58.12 36.28 48.84

SALTl+RSALTl+u 36.73 57.48 36.61 48.61

SALTl+u+RSALTl+u 36.74 58.48 36.65 48.77

Table 6: Imitation Edits experiments. Here the imitation-
edit data comes from a subset of the corresponding test
dataset (we don’t use them in the table for metrics),
which M has never seen before. We use CC-test for
SALT and CC-train for RSALT during training.

fore, SE is directly dependent on SAI , but SI is
not. Consequently, even though SE and SI are de-
pendent on the same data as input, the differences
between SAI and SI are likely to be larger than
between SAI and SE . We can see this difference in
the average percentage of changed tokens – 1E−C

and 1I−C is 1, the former (6.17%) is much lower
than the latter (45.59%). Hence, after we do se-
quence alignment between SI and SAI , we perform
a two-step post-processing operation 9 to ensure the
training stability, which helps us to reduce the per-
centage of changed tokens from 45.59% to 19.07%
with an acceptable amount of data lost (21.38%).

6.2.1 Imitation Edits using seen data
We use the training data from CC to experiment

with the effects of SALT and Imitation Edits on
seen data. First, for the CC dataset, the results
in Table 5 show that continuing to use likelihood
loss on the training dataset to train the already con-
vergent M does not improve the performance and
leads to overfitting. However, when we use SI as
imitation-edit data and do SALT training on it with
SAI , we can see an improvement. Second, we see
similar results for the CNN dataset. Even though
there is no performance degradation arising from
overfitting for SALTl, doing SALT training with SI

and SAI can improve the performance more than
using just the likelihood training. These results
show that we can get additional improvement on
the model by continuing to train it with SALT on

9The details are in Appendix A.3.1.

the seen dataset even if the model is already con-
verged (on the seen/original training data). Third,
different from previous human-edit results, SALTu

of CC is better than SALTl+u. We think this is
because M has started to overfit on CC data, so
continuing to add likelihood to the original training
data reduces the scores.

6.2.2 Imitation Edits using unseen data
We use a part of the test dataset (not used in

the evaluation) from CC to experiment with the
effects of SALT and Imitation Edits on unseen data.
In Table 6, we take M (trained on CC-train) and
train it with a part of CC-test as the imitation-edit
data with SALT. We take the remaining test data
of the CC-test to evaluate the model performance
in new imitation-edit data and then use CC-eval to
evaluate the model performance in the original data.
In imitation-edit evaluation results (CCtest−r) of
Table 6, SALTl+u has better performance than the
baseline method SALTl, which is consistent with
our results using human-edit data in Table 3. In the
original data evaluation results (CCeval) of Table 6,
although there was no forgetting problem arising
from distribution shift, SALTl+u still has a higher
score than the baseline model SALTl.

6.3 Solving forgetting problem with RSALT

Through previous analysis, we see that SALT
helps M to continue training on human-edit data or
imitation-edit data. In Section 6.1.2 and 6.2.2, we
observed that the traditional replay-based method
cannot completely solve the catastrophic forgetting
problem, so the performance of SALTx+RSALTl

on Table 3 and 6 is still lower than M ’s perfor-
mance if there are distribution differences.

We report the results of SALTx+RSALTl+u in
Table 3 and 6. We find that SALTx+RSALTl+u

does not have the forgetting problem when continu-
ing to train with human-edit data. We attribute this
result to the data augmentation that RSALT brings
to the traditional replay-based method. RSALT not
just reuses the seen data to prevent the model from
forgetting the learned distribution but also uses the
output generated by the model itself with SALT to
expand the effective training data points further.

6.4 Preference Evaluation

In CC dataset, GPT4 (on 500 data points) ranks
SALTl+u+RSALTl+u higher than other variations
(SALTl and SALTl+u) and M . To verify the GPT
ranking, we performed human evaluation on a

2611

Figure 1: CCUser&CC GPT4 preference. We instructed
GPT4 to give preference ranking for 4 AI-generated
summaries (on 500 data points): M (not trained on
CCUser), SALTl, SALTl+u, SALTl+u+RSALTl+u. (1)
SALTl+u is most preferred by GPT4 on CCUser, (2)
while SALTl+u+RSALTl+u is most preferred by GPT4
on CC. (3) CC on human preference (on 25 data points)
for M, SALTl, SALTl+u, and SALTl+u+RSALTl+u.

smaller set (25 data points). Human ranking agrees
with the GPT4 ranking. In CCUser, GPT4 (on 500
data points) ranks SALTl+u higher than other vari-
ations, which is expected as SALTl+u+RSALTl+u

is also trained on the replay dataset. Because of pri-
vacy reasons, we did not do the human evaluation
on CCUser. In Appendix Table 12, we show the
prompt used with GPT4 for ranking the summaries.
We show all the MRR scores for different models
in our work in Figure 1.

7 Discussion: SALT vs RLHF

First, we argue that Human Edits is a more natu-
ral way to collect feedback from users as they fix
AI-generated text for their workflow to improve
generation. Collecting other forms of feedback that
are not directly tied to the user’s workflow will not
scale as much, this is especially true in domains
requiring expert domain knowledge and with nu-
anced user goals. Considering the cost, time, and
availability of the experts, it is important to collect
HF from the expert’s daily workflow.

Second, we experiment with Direct Preference
Optimization (DPO) (Rafailov et al., 2023) to com-
pare the difference between RLHF and SALT while
using a human edit feedback dataset. The train-
ing setup of DPO and SALT are similar, they are
trained directly on the human preference dataset
without training explicit reward models. We use
SAI as the rejected summary and SE as the cho-
sen summary and calculate the DPO loss – LDPO,
between them to train the model.

lRatioθ = log πθ(SE |U)− log πθ(SAI |U) (9)

lRatioref = log πref (SE |U)− log πref (SAI |U) (10)

LDPO = −log σ(β ∗ (lRatioθ − lRatioref)) (11)

where θ and ref are the current and original model
parameters. Table 7 shows the performance of DPO

Reward Acc R1 R2 Rl Meteor
SALTl 0.368 0.381 0.203 0.371 0.292

SALTl+u 0.591 0.394 0.215 0.383 0.320
DPObeta=0.1 0.484 0.379 0.210 0.369 0.301
DPObeta=0.5 0.532 0.372 0.191 0.361 0.291

Table 7: SALT and DPO results on CCUser with GPT-2

for β = {0.1, 0.5} on GPT-210 (117M parame-
ters), with Rouge, Meteor, and Reward Accuracy
(Reward Acc) on the CCUser test dataset. Reward
Accuracy used in DPO11 is the ratio of data points
for which chosen reward > rejected reward.

chosen reward = β ∗ (πθ(SE |U) − πref (SE |U)) (12)

rejected reward = β ∗ ((πθ(SAI |U) − πref (SAI |U)) (13)

We find that DPO is better than SALTl which is
just equivalent to likelihood training on SE . This is
expected since DPO also uses SAI . However, DPO
gets lower performance than SALTl+u. When we
change hyper-parameter β to get higher Reward
Accuracy, others (ROUGE, and Meteor) degrade,
and vice versa. We think this is because, DPO
penalizes the entire rejected summary, which is not
suitable for human edit feedback, because most
words in SAI and SE are the same. DPO does not
explicitly consider such cases, and hence, it might
be difficult for DPO to learn an implicit reward
through SAI and SE without using the fine-grained
relationship between their tokens. It is interesting
to see that Reward Accuracy is higher for SALT
than DPO, even though the SALT loss function
does not explicitly maximize chosen and rejected
log probability like DPO.

It should be noted that DPO was developed for
using comparisons and not human edit feedback.
For human edits feedback, a straightforward way to
improve DPO could be to modify the loss function
to use only the “negative tokens” in the rejected
summary, which aligns with our SALT ideas.

8 Conclusion

In this work, we explore improving language
models with Human Edits feedback, which can
be collected scalably than others. Specifically, we
propose the SALT training objective based on se-
quence alignment and unlikelihood training and
show how to design Imitation Edits to reduce the
need for expensive HF. We further show on human
edits data, SALT performs better than a straightfor-
ward RLHF (DPO) approach.

10We used GPT because, at the time of this paper, DPO is
only implemented on decoder-only models in Hugging Face

11https://huggingface.co/docs/trl/main/en/dpo trainer

2612

https://huggingface.co/docs/trl/main/en/dpo_trainer

9 Limitations

In our experiments, we find that our method im-
proves relatively smaller language models like T5.
Due to the limitation of computational resources,
we are not able to try our methods on larger lan-
guage models. So we don’t understand which HF
(human feedback or human edit data) is better on
LLMs. But like what we discussed in Section 1,
Human-Edits have many unique advantages from
an ML data point of view. Given that it’s a natural
way to collect feedback from users as they fix our
AI-generated summaries for their workflow, many
products in the industry can more easily use this
HF approach and our SALT method to improve
their text generation quality without too much ex-
tra effort. In addition, other HF methods should be
explored more in various domains and models of
various sizes so as to help the NLP community find
the most suitable HF method in various scenarios.

Another point that has not been explored in this
paper is LLM-in-the-loop. With the emergence
of GPT3.5 and ChatGPT, LLM has shown a level
close to or beyond human beings in many domains.
In this paper, we did not use LLMs to conduct ex-
periments similar to Human Edits (that is, treat the
LLM as a human to modify SAI to get SE(LLM)).
Ideally, this would provide better Imitation-Edits to
reduce HF costs. In addition to time and resource
constraints, as we discussed in Section 1, data pri-
vacy issues make it hard for many practitioners in
the industry to input their data into these third-party
APIs or service websites for related experiments.
LLM-in-the-loop is undoubtedly a worthwhile next
step in the future, and we will study how to deal
with related data privacy issues. This will also be
a problem to be solved for many other tasks in
medical and other privacy-oriented domains.

The current implementation of our methods also
has some room for improvement. Our code cur-
rently only tries one global sequence alignment
algorithm, the Needleman-Wunsch Algorithm. In
fact, there are many alternatives that can help the
model improve in different aspects. For example,
how to improve factuality during LM’s summaries
is one key topic for both NLP and BioNLP com-
munity (Tang et al., 2022; Abacha et al., 2023b;
Chang et al., 2023). Some previous work explor-
ing language models and knowledge has shown
that insufficient knowledge may lead to factual er-
rors (Petroni et al., 2019; Sung et al., 2021; Yao
et al., 2022a,b). So we can limit the scope of se-

quence alignment to the medical entities (Luo et al.,
2022) or jargon (Kwon et al., 2022) to help the
model focus more on important tokens during the
training process to reduce hallucination further.

10 Ethics Statement

The methods related to unlikelihood training are
very dependent on the quality of negative candi-
dates. In this paper, we propose a very general
framework to provide negative candidates, that
is, to calculate the sequence alignment between
SAI and Human-Edits or Imitation-Edits. There
will be some potential problems in actual deploy-
ment: First of all, for Human-Edits, we don’t know
whether the user is modifying because of some
kind of error in SAI or because of the user’s per-
sonal preference. These two behaviors need to be
distinguished in future research or actual deploy-
ment because the former data is more suitable for
improving the problems of the model itself (such as
some factual errors), and the latter data is more suit-
able for user-personalized training data. Secondly,
whether for Human-Edits or Imitation-Edits, when
a large number of complex Edits appear, the se-
quence alignment algorithm we currently use may
not be able to get the correct negative candidates,
resulting in rewards or penalties for wrong tokens.
In the experiments in this paper, we use some filters
to control the quality of the training data provided
for unlikelihood training, but the reality will be
very complicated. In addition to using similar fil-
ters in this paper, another solution is to directly
track the users’ changes as they edit the summary
on the product, and the subsequent training steps
will not change. But this will add a lot of extra
overhead to the product engineering.

Acknowledgements

We thank the Abridge AI for CC and CCUser
data, as well as the professionals who performed
the human evaluations. In addition, we also thank
UMass BioNLP Lab for producing and providing
us with a large batch of publicly available GPT
Edits data for related work 12.

References
Asma Ben Abacha, Wen-wai Yim, Yadan Fan, and

Thomas Lin. 2023a. An empirical study of clini-
cal note generation from doctor-patient encounters.
12This part of the data and code will appear on our GitHub

https://github.com/seasonyao/LearnFromHumanEdit

2613

https://github.com/seasonyao/LearnFromHumanEdit

In Proceedings of the 17th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics, pages 2283–2294.

Asma Ben Abacha, Wen-wai Yim, George Michalopou-
los, and Thomas Lin. 2023b. An investigation of
evaluation metrics for automated medical note gener-
ation. arXiv preprint arXiv:2305.17364.

Griffin Adams, Han-Chin Shing, Qing Sun, Christo-
pher Winestock, Kathleen McKeown, and Noémie
Elhadad. 2022. Learning to revise references
for faithful summarization. arXiv preprint
arXiv:2204.10290.

Griffin Adams, Jason Zucker, and Noémie Elhadad.
2023. A meta-evaluation of faithfulness metrics
for long-form hospital-course summarization. arXiv
preprint arXiv:2303.03948.

Afra Feyza Akyürek, Ekin Akyürek, Aman Madaan,
Ashwin Kalyan, Peter Clark, Derry Wijaya, and Niket
Tandon. 2023. Rl4f: Generating natural language
feedback with reinforcement learning for repairing
model outputs. arXiv preprint arXiv:2305.08844.

Asma Ben Abacha, Wen-wai Yim, Griffin Adams, Neal
Snider, and Meliha Yetisgen. 2023. Overview of the
mediqa-chat 2023 shared tasks on the summarization
and generation of doctor-patient conversations. In
ACL-ClinicalNLP 2023.

Florian Böhm, Yang Gao, Christian M Meyer, Ori
Shapira, Ido Dagan, and Iryna Gurevych. 2019.
Better rewards yield better summaries: Learning
to summarise without references. arXiv preprint
arXiv:1909.01214.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Pengshan Cai, Zonghai Yao, Fei Liu, Dakuo Wang,
Meghan Reilly, Huixue Zhou, Lingxi Li, Yi Cao,
Alok Kapoor, Adarsha Bajracharya, et al. 2023.
Paniniqa: Enhancing patient education through
interactive question answering. arXiv preprint
arXiv:2308.03253.

Shuyang Cao and Lu Wang. 2021. Cliff: Con-
trastive learning for improving faithfulness and fac-
tuality in abstractive summarization. arXiv preprint
arXiv:2109.09209.

Haw-Shiuan Chang, Zonghai Yao, Alolika Gon, Hong
Yu, and Andrew McCallum. 2023. Revisiting
the architectures like pointer networks to effi-
ciently improve the next word distribution, sum-
marization factuality, and beyond. arXiv preprint
arXiv:2305.12289.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick,
Andrew M. Dai, Thanumalayan Sankaranarayana
Pillai, Marie Pellat, Aitor Lewkowycz, Erica Mor-
eira, Rewon Child, Oleksandr Polozov, Katherine
Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta,
Mark Diaz, Orhan Firat, Michele Catasta, Jason
Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean,
Slav Petrov, and Noah Fiedel. 2022. PaLM: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Ashwin Devaraj, Iain J Marshall, Byron C Wallace, and
Junyi Jessy Li. 2021. Paragraph-level simplification
of medical texts. arXiv preprint arXiv:2104.05767.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Rui Pan,
Shizhe Diao, Jipeng Zhang, Kashun Shum, and
Tong Zhang. 2023. Raft: Reward ranked finetuning
for generative foundation model alignment. arXiv
preprint arXiv:2304.06767.

Jinlan Fu, See-Kiong Ng, Zhengbao Jiang, and Pengfei
Liu. 2023. Gptscore: Evaluate as you desire. arXiv
preprint arXiv:2302.04166.

Mingqi Gao, Jie Ruan, Renliang Sun, Xunjian Yin, Ship-
ing Yang, and Xiaojun Wan. 2023. Human-like sum-
marization evaluation with chatgpt. arXiv preprint
arXiv:2304.02554.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, et al. 2017. Over-
coming catastrophic forgetting in neural networks.
Proceedings of the national academy of sciences,
114(13):3521–3526.

Kundan Krishna, Sopan Khosla, Jeffrey P Bigham,
and Zachary C Lipton. 2020. Generating soap
notes from doctor-patient conversations using mod-
ular summarization techniques. arXiv preprint
arXiv:2005.01795.

Sunjae Kwon, Zonghai Yao, Harmon S Jordan, David A
Levy, Brian Corner, and Hong Yu. 2022. Medjex: A
medical jargon extraction model with wiki’s hyper-
link span and contextualized masked language model
score. arXiv preprint arXiv:2210.05875.

Margaret Li, Stephen Roller, Ilia Kulikov, Sean Welleck,
Y-Lan Boureau, Kyunghyun Cho, and Jason Weston.

2614

https://doi.org/10.48550/ARXIV.2204.02311
https://doi.org/10.48550/ARXIV.2204.02311

2019. Don’t say that! making inconsistent dialogue
unlikely with unlikelihood training. arXiv preprint
arXiv:1911.03860.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text summariza-
tion branches out, pages 74–81.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson,
Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V. Le,
Barret Zoph, Jason Wei, and Adam Roberts. 2023.
The flan collection: Designing data and methods for
effective instruction tuning.

Ling Luo, Po-Ting Lai, Chih-Hsuan Wei, Cecilia N
Arighi, and Zhiyong Lu. 2022. Biored: a rich
biomedical relation extraction dataset. Briefings in
Bioinformatics, 23(5):bbac282.

Francesco Moramarco, Alex Papadopoulos Korfiatis,
Mark Perera, Damir Juric, Jack Flann, Ehud Re-
iter, Anya Belz, and Aleksandar Savkov. 2022. Hu-
man evaluation and correlation with automatic met-
rics in consultation note generation. arXiv preprint
arXiv:2204.00447.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. ArXiv, abs/1808.08745.

Saul B Needleman and Christian D Wunsch. 1970. A
general method applicable to the search for simi-
larities in the amino acid sequence of two proteins.
Journal of molecular biology, 48(3):443–453.

OpenAI. 2023. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. arXiv preprint arXiv:2203.02155.

Fabio Petroni, Tim Rocktäschel, Patrick Lewis, An-
ton Bakhtin, Yuxiang Wu, Alexander H Miller, and
Sebastian Riedel. 2019. Language models as knowl-
edge bases? arXiv preprint arXiv:1909.01066.

V Podder, V Lew, and S Ghassemzadeh. 2021. Soap
notes.[updated 2021 sep 2]. StatPearls [Internet].
StatPearls Publishing. Available from: https://www.
ncbi. nlm. nih. gov/books/NBK482263.

Dragomir R Radev, Hong Qi, Harris Wu, and Weiguo
Fan. 2002. Evaluating web-based question answering
systems. In LREC. Citeseer.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano
Ermon, Christopher D Manning, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. arXiv preprint
arXiv:2305.18290.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(140):1–67.

Sanjana Ramprasad, Elisa Ferracane, and Sai P Selvaraj.
2023. Generating more faithful and consistent soap
notes using attribute-specific parameters.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg
Sperl, and Christoph H Lampert. 2017. icarl: In-
cremental classifier and representation learning. In
Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pages 2001–2010.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H.
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja,
Manan Dey, M. Saiful Bari, Canwen Xu, Urmish
Thakker, Shanya Sharma, Eliza Szczechla, Taewoon
Kim, Gunjan Chhablani, Nihal V. Nayak, Debajyoti
Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han
Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong,
Harshit Pandey, Rachel Bawden, Thomas Wang, Tr-
ishala Neeraj, Jos Rozen, Abheesht Sharma, Andrea
Santilli, Thibault Févry, Jason Alan Fries, Ryan Tee-
han, Stella Biderman, Leo Gao, Tali Bers, Thomas
Wolf, and Alexander M. Rush. 2021. Multitask
prompted training enables zero-shot task generaliza-
tion. CoRR, abs/2110.08207.

Benjamin Schloss and Sandeep Konam. 2020. Towards
an automated soap note: classifying utterances from
medical conversations. In Machine Learning for
Healthcare Conference, pages 610–631. PMLR.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. 2020. Learn-
ing to summarize with human feedback. Advances
in Neural Information Processing Systems, 33:3008–
3021.

Yixuan Su, Tian Lan, Yan Wang, Dani Yogatama, Ling-
peng Kong, and Nigel Collier. 2022. A contrastive
framework for neural text generation. arXiv preprint
arXiv:2202.06417.

Mujeen Sung, Jinhyuk Lee, Sean Yi, Minji Jeon, Sung-
dong Kim, and Jaewoo Kang. 2021. Can language
models be biomedical knowledge bases? arXiv
preprint arXiv:2109.07154.

Liyan Tang, Tanya Goyal, Alexander R Fabbri, Philippe
Laban, Jiacheng Xu, Semih Yahvuz, Wojciech
Kryściński, Justin F Rousseau, and Greg Durrett.

2615

https://doi.org/10.48550/ARXIV.2301.13688
https://doi.org/10.48550/ARXIV.2301.13688
https://doi.org/10.48550/ARXIV.2203.02155
https://doi.org/10.48550/ARXIV.2203.02155
https://arxiv.org/abs/2110.08207
https://arxiv.org/abs/2110.08207
https://arxiv.org/abs/2110.08207
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099

2022. Understanding factual errors in summariza-
tion: Errors, summarizers, datasets, error detectors.
arXiv preprint arXiv:2205.12854.

Junda Wang, Zonghai Yao, Avijit Mitra, Samuel
Osebe, Zhichao Yang, and Hong Yu. 2023.
UMASS BioNLP at MEDIQA-chat 2023: Can
LLMs generate high-quality synthetic note-oriented
doctor-patient conversations? In Proceedings of the
5th Clinical Natural Language Processing Workshop,
pages 460–471, Toronto, Canada. Association for
Computational Linguistics.

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Di-
nan, Kyunghyun Cho, and Jason Weston. 2019. Neu-
ral text generation with unlikelihood training. arXiv
preprint arXiv:1908.04319.

Zonghai Yao, Yi Cao, Zhichao Yang, Vijeta Deshpande,
and Hong Yu. 2022a. Extracting biomedical fac-
tual knowledge using pretrained language model
and electronic health record context. arXiv preprint
arXiv:2209.07859.

Zonghai Yao, Yi Cao, Zhichao Yang, and Hong Yu.
2022b. Context variance evaluation of pretrained lan-
guage models for prompt-based biomedical knowl-
edge probing. arXiv preprint arXiv:2211.10265.

Wen-wai Yim, Yujuan Fu, Asma Ben Abacha, Neal
Snider, Thomas Lin, and Meliha Yetisgen. 2023. Aci-
bench: a novel ambient clinical intelligence dataset
for benchmarking automatic visit note generation.
Submitted to Nature Scientific Data.

Zheng Yuan, Hongyi Yuan, Chuanqi Tan, Wei Wang,
Songfang Huang, and Fei Huang. 2023. Rrhf:
Rank responses to align language models with
human feedback without tears. arXiv preprint
arXiv:2304.05302.

Yao Zhao, Rishabh Joshi, Tianqi Liu, Misha Khalman,
Mohammad Saleh, and Peter J Liu. 2023. Slic-hf: Se-
quence likelihood calibration with human feedback.
arXiv preprint arXiv:2305.10425.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B
Brown, Alec Radford, Dario Amodei, Paul Chris-
tiano, and Geoffrey Irving. 2019. Fine-tuning lan-
guage models from human preferences. arXiv
preprint arXiv:1909.08593.

A Appendix

A.1 SOAP Structure
The SOAP (Subjective, Objective, Assessment,

and Plan) structure is commonly used by providers
(Podder et al., 2021).

∗ The Chief Complaint section is a brief descrip-
tion of a patient’s conditions and the reasons
for the visit.

∗ The Subjective section is a detailed report
of the patient’s current conditions, such as
source, onset, and duration of symptoms,
mainly based on the patient’s self-report. This
section usually includes a history of present
illness and symptoms, current medications,
and allergies.

∗ The Objective section documents the results of
physical exam findings, laboratory data, vital
signs, and descriptions of imaging results.

∗ The Assessment section typically contains
medical diagnoses and reasons that lead to
medical diagnoses. The assessment is typi-
cally based on the content of the chief com-
plaint and the subjective and objective sec-
tions.

∗ The Plan section addresses treatment plans
based on the assessment.

A.2 Implementation Details
Due to data privacy issues, we cannot disclose

our CC and CCUser datasets. But for the repro-
duction of our methods, in the Appendix, we also
use two general domain summarization datasets,
CNN/Daily Mail (CNN) (See et al., 2017) and
Extreme Summarization (XSum) (Narayan et al.,
2018) to test the imitation-edit experiments.

The summarization model used in this paper is
based on the publicly available T5-small model13

and T5-large14. Note that the experimental results
of our t5-large-based model are not real human edit
feedback for the summaries it generates, because
of some deployment and privacy issues, we can
only collect the CCUser data (Human Edits) for t5-
samll-based-model-generated summaries via our
mobile app. Therefore, we put t5-large-related re-
sults only in the appendix. All the results in Section
6.1 are for our t5-small-based model. But overall,
the patterns and findings are consistent on both
t5-small and t5-large.

13https://huggingface.co/t5-small
14https://huggingface.co/t5-large

2616

https://aclanthology.org/2023.clinicalnlp-1.49
https://aclanthology.org/2023.clinicalnlp-1.49
https://aclanthology.org/2023.clinicalnlp-1.49

Section Subsection Definition

Subjective

Chief Complaint Patient’s primary motivation for the visit and type of visit

Review of Systems Patient’s report of system-related health and symptoms

Past Medical History Patient’s reported diagnoses/conditions (when and what,
excluding laboratory and imaging results and surgeries)

Past Surgical History Patient’s reported prior surgeries (what, when, where)

Family Medical History Conditions affecting patient’s close genetic relatives

Social History Patient’s alcohol, tobacco, and drug-related behaviors

Medications Patient’s list of medications (not prescribed during visit)

Allergies Patient’s list of allergies (primarily medicinal)

Miscellaneous Patient’s clinically relevant social and other circumstances

Objective

Immunizations Vaccination record (not frequently discussed)

Laboratory and Imaging Results Clinician’s discussion of laboratory/imaging results

Assessment

Assessment Synthesis of the reason for the visit and pertinent diagnosis

Plan

Diagnostics & Appointments Plan for future tests, appointments, or surgeries

Prescriptions & Therapeutics Plan for medications and therapeutics

Table 8: Details of the SOAP structure used in our CC and CCUser datasets.

In this paper, we used ‘-1’ for wAI−C
15 and 1 for

wAI−NC in Equations 1, 2, 5. We trained MCC on
the annotated Clinician Conversations (CC) dataset
for 10000 steps and MCNN on CNN data with
100000 steps (batch size of 8). We then initialized
the CCUser models SALTx with M and trained
them on 70 human-edit notes for 1000 steps (batch
size of 8)16.

In Section 6.2.1 and A.3.2, we ran M on both
CC and CNN datasets’ training data (See et al.,
2017) to get the AI generated summaries SAI , and
we use the ground truth data as Imitation Edits
on the seen data SI . We then initialized SALTx

from MCC and MCNN separately and trained on
corresponding Imitation Edits with 1000 steps. We
used CC-eval and CNN-eval to evaluate the models’
performance.

In Section 6.2.2 and A.3.3, we sampled 3000 CC
test data summaries (11812 data in total), 3000
CNN test data (11490 data in total), and 3000
XSum test data (11334 data in total) as Imitation
Edits on the unseen data since we don’t have the
unseen training data in these datasets. Similarly,
we initialized SALTx from M and trained on Imi-

15For wAI−C , we used -1.2 for SALTli and -0.5 for
SALTld , and all other SALTx and RSALTx use -1.

16We did all the experiments with 1 NVIDIA Tesla
P100 GPU - 16 GB memory, with Adam optimizer – be-
tas=(0.9,0.999), epsilon=1e-08, learning rate=5e-05.

tation Edits with 1000 steps. We took the remain-
ing test data of CC-test, CNN-test, and XSum-
test (Narayan et al., 2018) respectively as Imitation
Edits evaluation data, and then used CC-eval and
CNN-eval to evaluate the performance of the model
in the original data.

In all our evaluations, we used a beam size of
4, no-repeat-ngram-size=2, and minimum length
and maximum length of sentences were set as (10,
100). We used five different random seeds to sam-
ple training data for all our experiments, and the
scores reported in the tables are the average of these
random seeds.

A.3 Imitation Edits Experiments

A.3.1 Imitation Edits smoothing function

Although both come from humans, SE and SI

are fundamentally different in their relationship
with SAI . The former is modified from SAI while
humans generate the latter from scratch. There-
fore, SE is directly dependent on SAI , but SI is
not. Consequently, even though SE and SI are de-
pendent on the same data as input, the differences
between SAI and SI are likely to be larger than
between SAI and SE . We can see this difference in
the average percentage of changed tokens – 1E−C

and 1I−C is 1, the former (6.17%) is much lower
than the latter (45.59%). Hence, after we do se-

2617

CCUsereval CCeval

R1 U-f R1 U-f
SALTl 57.77(±0.28) 61.02(±1.06) 34.27(±0.21) 46.45(±0.52)
SALTld 57.70(±0.25) 61.06(±0.86) 34.46(±0.31) 46.58(±0.33)
SALTli 57.84(±0.36) 60.81(±0.79) 34.68(±0.25) 46.77(±0.71)
SALTu 57.57(±0.66) 61.09(±1.33) 34.47(±0.44) 46.64(±0.51)

SALTl+u 58.39(±0.57) 62.13(±1.03) 34.79(±0.30) 47.06(±0.47)
SALTl+RSALTl 59.57(±0.47) 62.52(±0.98) 35.55(±0.32) 48.25(±0.60)

SALTl+u+RSALTl 59.60(±0.52) 62.57(±1.34) 35.43(±0.23) 48.20(±0.68)
SALTl+RSALTl+u 59.88(±0.43) 62.60(±0.85) 36.24(±0.36) 48.42(±0.41)

SALTl+u+RSALTl+u 60.43(±0.61) 63.44(±0.92) 36.26(±0.40) 48.69(±0.59)

Table 9: 95% Confidence interval results for Table 3

CCUsereval CCeval

R1 U-f R1 U-f

M 40.48 42.22 37.21 47.12

SALTl 64.28 64.90 36.67 48.51

SALTl+u 63.47 64.95 37.10 48.66

SALTl+RSALTl 62.49 62.86 37.58 49.87

SALTl+u+RSALTl+u 64.71 64.53 37.87 50.02

Table 10: T5-large results on CCUser dataset. T5-large
is also first fine-tuned on the CC dataset and then fine-
tuned on the CCUser dataset. Note that CCUser data
is collected only for T5-small, so it’s not a real Human
Edits dataset for T5-large.

quence alignment between SI and SAI , we perform
a two-step post-processing operation to ensure the
training stability, First, we only penalize consecu-
tive tokens (> 1) in SAI that are not aligned with
SI , for eg., the 1AI−NC (t) = [1, 0, 1, 1, 0, 0, 1],
becomes [1, 1, 1, 1, 0, 0, 1], and the corresponding
change is made to 1AI−C (t). This smoothing is to
reduce the impact of less important negative tokens,
for e.g., punctuation and word plural, as they are
more frequently present in such single negative to-
kens. On the contrary, consecutive negative tokens
are more likely to represent important errors (e.g.,
hallucination and missing information). Second,
we discard data with more than 60% of the tokens
being 0 in the indicator function 1AI−NC , which
helps us to reduce the percentage of changed to-
kens from 45.59% to 19.07% with an acceptable
amount of data lost (21.38%).

A.3.2 Imitation Edits using seen data

We use the training data from two datasets, CC
and CNN, to experiment with the effects of SALT
and Imitation Edits on seen data. First, for the CC
dataset, the results in Table 5 show that continu-

ing to use likelihood loss on the training dataset to
train the already convergent M does not improve
the performance and leads to overfitting. However,
when we use SI as imitation-edit data and do SALT
training on it with SAI , we can see an improvement.
Second, we see similar results for the CNN dataset.
Even though there is no performance degradation
arising from overfitting for SALTl, doing SALT
training with SI and SAI can improve the perfor-
mance more than using just the likelihood training.
These results show that we can get additional im-
provement on the model by continuing to train it
with SALT on the seen dataset even if the model
is already converged (on the seen/original training
data). Third, different from previous human-edit
results, SALTu of CC is better than SALTl+u. We
think this is because M has started to overfit on CC
data, so continuing to add likelihood to the original
training data reduces the scores.

A.3.3 Imitation Edits using unseen data
We use a part of the test dataset (not used in

evaluation) from CC, CNN and XSum to experi-
ment with the effects of SALT and Imitation Edits
on unseen data. In Table 6, we show three exper-
imental results. In the first experiment, we take
M (trained on CC-train) and train it with a part of
the CC-test as the imitation-edit data with SALT.
In the second experiment, we take M (trained on
CNN-train) and train it with a part of the CNN-test
as imitation-edit data. In the third experiment, we
take M (trained on CNN-train) and train it with
a part of the XSum-test as imitation-edit data. In
the three experiments, we took the remaining test
data of the CC-test, CNN-test, and XSum-test, re-
spectively, to evaluate the model performance in
new imitation-edit data and then used CC-eval and
CNN-eval to evaluate the model performance in

2618

(CC-test) <CC-train> (CNN-test) <CNN-train> (XSum-test) <CNN-train>

CCtest−r CCeval CNNtest−r CNNeval XSumtest−r CNNeval

R1 U-f R1 U-f R1 R2 R1 R2 R1 R2 R1 R2

M 36.01 58.15 36.07 48.97 36.44 15.28 36.99 15.49 17.40 2.36 36.24 15.35

SALTl 36.09 57.55 36.14 48.50 36.97 15.39 37.29 15.29 26.56 7.22 26.02 8.79

SALTl+u 36.57 58.12 36.28 48.84 37.59 16.04 38.17 16.35 27.03 7.27 28.64 9.27

SALTl+RSALTl+u 36.73 57.48 36.61 48.61 37.57 16.02 38.39 16.65 25.56 7.07 36.97 15.57

SALTl+u+RSALTl+u 36.74 58.48 36.65 48.77 37.73 16.10 38.42 16.65 26.10 6.94 37.71 16.02

Table 11: Imitation Edits experiments: Here the imitation-edit data comes from a subset of the corresponding test
dataset (we don’t use them in the table for metrics) which M has never seen before. () and <> show the training
data used by SALT and RSALT respectively.

the original data.
In imitation-edit evaluation results (CCtest−r,

CNNtest−r, XSumtest−r) of Table 6, SALTl+u

has better performance than the baseline method
SALTl in all three experiments, which is con-
sistent with our results using human-edit data in
Table 3. In the original data evaluation results
(CCeval, CNNeval) of Table 6, although there was
no forgetting problem in the first two experiments,
SALTl+u still has a higher score than the baseline
model SALTl. In the third experiment, we success-
fully imitated the forgetting problem similar to CC
and CCUser by using the distribution difference
between CNN and XSum. Similar to the results
in Table 3, SALTl+u can alleviate the forgetting
problem to a certain extent while improving the
performance on the new dataset.

A.4 More Discussion
Why does SALT work? First, SALT makes good
use of the SAI data. From the perspective of data
augmentation, SE provides a new ground truth
summary from the user, and the users also ver-
ify the remaining tokens in SAI . SALT helps the
model to use all the tokens in both SE and SAI ,
which greatly improves the utilization of human-
edit data. Second, SALT gives the model more
objectives. Using SAI in SALT makes the model
not just “be close to the correct distribution” as in
the likelihood training, but also “be far away from
a negative distribution”. Thus, we can teach the
model to avoid making the same mistakes again,
which has a special meaning for the user (Assump-
tion 1).

Human Edits and Imitation Edits Even though
SALT can be used with human-edit data or
imitation-edit data to improve the summarization
models, our experiments are not enough to con-
clude that Imitation Edits can completely replace

In this task, we ask for your expertise in annotating the
quality of system-generated SOAP notes by machine
learning models. Mainly we provide a conversation snippet
and a human-written reference SOAP note for the respective
snippet, along with system-generated summaries, and ask
for your preference.

Output your ranking for system-generated summaries. Use
the following format, and do not add any other text.

Some examples:
a > b > c > d
d > c > b > a

Conversation snippet:
[conversation]

Human written reference SOAP note for the respec-
tive snippet:
[reference]

System-generated summaries:
1. [summary1]
2. [summary2]
3. [summary3]
4. [summary4]

Now, output your ranking:

Table 12: GPT4 Prompt for preference ranking.

Human Edits. Using Imitation Edits is essentially a
kind of data augmentation method during training.
But, when we have edits to our model’s original
output from our real users, we have the unique
opportunity to improve model output according
to their individual expectations. SALT can model
such information during the training and help the
model have more appropriate behaviors to serve
the users better in a more data-efficient way.

SALT and RLHF We discuss SALT and DPO in
the Section 7. Regarding the relationship between
SALT and other RLHFs, we have some preliminary
discussions here, and they need follow-up work to
demonstrate. It seems that SALT keeps most of
the advantages and disadvantages of DPO against

2619

PPO. Often, no reinforcement learning means more
stable and easy training (and hyper-tuning). Our
human eval also shows that SALT can make mod-
els more aligned with human preference without
explicit reward models, which is the same with
DPO. Also, it’s questionable whether a good ex-
plicit reward model can be learned from SAI and
SE since it’s not as easy as positive or negative
movie reviews to distinguish. For limitation, How
does the SALT model generalize out of distribu-
tion, compared with PPO with an explicit reward
function? For example, standard RLHF methods
can leverage additional unlabeled prompts by label-
ing LM generations with the learned reward model.
Can training with self-labeling from the SALT sim-
ilarly make effective use of unlabeled prompts?
Other papers like RAFT and RRHF use explicit
reward models to filter high-score data points for
SFT. Whether we can train a good reward model
as a good filter is also a big question here. Another
difference is that we will make full use of all data
points (SAI + SE) during the training, but they
will only use high-quality ones (SE) and discard
the rest (SAI). So theoretically, we use data more
efficiently and model more information from SAI .

2620

