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Abstract

Retrieval-Augmented Machine Translation
(RAMT) is attracting growing attention. This
is because RAMT not only improves transla-
tion metrics, but is also assumed to implement
some form of domain adaptation. In this contri-
bution, we study another salient trait of RAMT,
its ability to make translation decisions more
transparent by allowing users to go back to ex-
amples that contributed to these decisions. For
this, we propose a novel architecture aiming to
increase this transparency. This model adapts a
retrieval-augmented version of the Levenshtein
Transformer and makes it amenable to simulta-
neously edit multiple fuzzy matches found in
memory. We discuss how to perform training
and inference in this model, based on multi-
way alignment algorithms and imitation learn-
ing. Our experiments show that editing several
examples positively impacts translation scores,
notably increasing the number of target spans
that are copied from existing instances.

1 Introduction

Neural Machine Translation (NMT) has become
increasingly efficient and effective thanks to the
development of ever larger encoder-decoder archi-
tectures relying on Transformer models (Vaswani
et al., 2017). Furthermore, these architectures can
readily integrate instances retrieved from a Trans-
lation Memory (TM) (Bulte and Tezcan, 2019; Xu
et al., 2020; Hoang et al., 2022), thereby improving
the overall consistency of new translations com-
pared to past ones. In such context, the autoregres-
sive and generative nature of the decoder can make
the process (a) computationally inefficient when
the new translation has very close matches in the
TM; (b) practically ineffective, as there is no guar-
antee that the output translation, regenerated from
scratch, will resemble that of similar texts.

An alternative that is attracting growing attention
is to rely on computational models tailored to edit
existing examples and adapt them to new source

precision % units
unigram copy 87.5 64.9

gen 52.6 35.1
bigram copy-copy 81.4 55.0

copy-gen 40.1 8.9
gen-copy 39.5 10.7
gen-gen 34.2 25.4

Table 1: Modified precision of copy vs. generated
unigrams and bigrams for TM-LevT. For bigrams, we
consider four cases: bigrams made of two copy tokens,
two generated tokens, and one token of each type.

sentences, such as the Levenshtein Transformer
(LevT) model of Gu et al. (2019). This model
can effectively handle fuzzy matches retrieved from
memories, performing minimal edits wherever nec-
essary. As decoding in this model occurs is non-
autoregressive, it is likely to be computationally
more efficient. More important for this work, the
reuse of large portions of existing translation ex-
amples is expected to yield translations that (a) are
more correct; (b) can be transparently traced back
to the original instance(s), enabling the user to in-
spect the edit operations that were performed. To
evaluate claim (a) we translate our test data (details
in Section 5.1) using a basic implementation of a
retrieval-augmented LevT with TM (TM-LevT). We
separately compute the modified unigram and bi-
gram precisions (Papineni et al., 2002) for tokens
that are copied from the fuzzy match and tokens
that are generated by the model.1 We observe that
copies account for the largest share of output units
and have better precision (see Table 1).

Based on this observation, our primary goal is to
optimize further the number of tokens copied from
the TM. To do so, we propose simultaneously edit-
ing multiple fuzzy matches retrieved from memory,
using a computational architecture – Multi-LevT,

1Copies and generations are directly infered from the se-
quence of edit operations used to compute the output sentence.
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or TMN-LevT for short – which extends TM-LevT
to handle several initial translations. The benefit is
twofold: (a) an increase in translation accuracy; (b)
more transparency in the translation process. Ex-
tending TM-LevT to TMN-LevT however requires
solving multiple algorithmic and computational
challenges related to the need to compute Multiple
String Alignments (MSAs) between the matches
and the reference translation, which is a notori-
ously difficult problem; and designing appropriate
training procedures for this alignment module.

Our main contributions are the following:

1. a new variant of the LevT model that explicitly
maximizes target coverage (§4.2);

2. a new training regime to handle an extended
set of editing operations (§3.3);

3. two novel multiway alignment (§4.2) and re-
alignment (§6.2) algorithms;

4. experiments in 11 domains where we observe
an increase of BLEU scores, COMET scores,
and the proportion of copied tokens (§6).

Our code and experimental configurations are
available on github.2

2 Preliminaries / Background

2.1 TM-based machine translation
Translation Memories, storing examples of past
translations, is a primary component of profes-
sional Computer Assisted Translation (CAT) en-
vironments (Bowker, 2002). Given a translation
request for source sentence x, TM-based transla-
tion is a two-step process: (a) retrieval of one or
several instances (x̃, ỹ) whose source side resem-
bles x, (b) adaptation of retrieved example(s) to
produce a translation. In this work, we mainly fo-
cus on step (b), and assume that the retrieval part is
based on a fixed similarity measure ∆ between x
and stored examples. In our experiments, we use:

∆(x, x̃) = 1− ED(x, x̃)

max(|x|, |x̃|) , (1)

with ED(x, x̃) the edit distance between x and x̃
and |x| the length of x. We only consider TM
matches for which ∆ exceeds a predefined thresh-
old τ and filter out the remaining ones. The next
step, adaptation, is performed by humans with CAT

2https://github.com/Maxwell1447/fairseq/

tools. Here, we instead explore ways to perform
this step automatically, as in Example-Based MT
(Nagao, 1984; Somers, 1999; Carl et al., 2004).

2.2 Adapting fuzzy matches with LevT

The Levenshtein transformer of Gu et al. (2019) is
an encoder-decoder model which, given a source
sentence, predicts edits that are applied to an ini-
tial translation in order to generate a revised out-
put (Figure 1). The initial translation can either
be empty or correspond to a match from a TM.
Two editing operations – insertion and deletion –
are considered. The former is composed of two
steps: first, placeholder insertion, which predicts
the position and number of new tokens; second, the
predictions of tokens to fill these positions. Edit-
ing operations are applied iteratively in rounds of
refinement steps until a final translation is obtained.

In LevT, these predictions rely on a joint encod-
ing of the source and the current target and apply in
parallel for all positions, which makes LevT a rep-
resentative of non-autoregressive translation (NAT)
models. As editing operations are not observed in
the training data, LevT resorts to Imitation Learn-
ing, based on the generation of decoding configu-
rations for which the optimal prediction is easy to
compute. Details are in (Gu et al., 2019), see also
(Xu and Carpuat, 2021), which extends it with a
repositioning operation and uses it to decode with
terminology constraints, as well as the studies of
Niwa et al. (2022) and Xu et al. (2023) who also
explore the use of LevT in conjunction with TMs.

deletion

placehoder insertion

token prediction

TM-LevT 0 0 1 2 0

sits the mat

The cat on .

The cat sleeps on a bed .

The cat sits on the mat .

0 0 01 1 1 0

The cat _ on  _      _    .

Le chat est  

sur le tapis .

Figure 1: First decoding pass of TM-LevT, a variant of
LevT augmented with Translation Memories.

2.3 Processing multiple fuzzy matches

One of the core differences between TMN-LevT and
LevT is its ability to handle multiple matches. This
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Figure 2: A high-level overview of TMN-LevT’s archi-
tecture. Additions w.r.t. TM-LevT are in a dashed box.

implies adapting the edit steps (in inference) and
the roll-in policy (in imitation learning).

Inference in TMN-LevT Decoding follows the
same key ideas as for LevT (see Figure 1) but en-
ables co-editing an arbitrary number N of sen-
tences. Our implementation (1) applies deletion,
then placeholder insertion simultaneously on each
retrieved example; (2) combines position-wise all
examples into one single candidate sentence; (3)
performs additional steps as in LevT: this includes
first completing token prediction, then performing
Iterative Refinement operations that edit the sen-
tence to correct mistakes and improve it (§3.2).

Training in TMN-LevT TMN-LevT is trained
with imitation learning and needs to learn the edit
steps described above for both the first pass (1–2)
and the iterative refinement steps (3). This means
that we teach the model to perform the sequence of
correct edit operations needed to iteratively gener-
ate the reference output, based on the step-by-step
reproduction of what an expert ’teacher’ would do.
For this, we need to compute the optimal operation
associated with each configuration (or state) (§4).
The roll-in and roll-out policies specify how the
model is trained (§3.3).

3 Multi-Levenshtein Transformer

3.1 Global architecture

TMN-LevT has two modes of operations: (a) the
combination of multiple TM matches into one sin-
gle sequence through alignment, (b) the iterative
refinement of the resulting sequence. In step (a),
we use the Transformer encoder-decoder architec-

ture, extended with additional embedding and lin-
ear layers (see Figure 2) to accommodate multi-
ple matches. In each of the N retrieved instances
y = (y1, · · · ,yN ), yn,i (the ith token in the ith

instance) is encoded as Eyn,i + Pi + Sn, where
E ∈ R|V|×dmodel , P ∈ RLmax×dmodel and S ∈
R(N+1)×dmodel are respectively the token, position
and sequence embeddings. The sequence embed-
ding identifies TM matches, and the positional en-
codings are reset for each yn. The extra row in S is
used to identify the results of the combination and
will yield a different representation for these sin-
gle sequences.3 Once embedded, TM matches are
concatenated and passed through multiple Trans-
former blocks, until reaching the last layer, which
outputs (h1, · · · , h|y|) for a single input match or
(h1,1, · · · , h1,|y1|, · · · , hN,1, · · · , hN,|yN |) in the
case of multiple ones. The learned policy πθ com-
putes its decisions from these hidden states. We
use four classifiers, one for each sub-policy:

1. deletion: predicts keep or delete for each token
ydel
n,i with a projection matrix A ∈ R2×dmodel :

πdel
θ (d|n, i,ydel

1 , · · · ,ydel
N ;x)

= softmax
Ä
hn,iA

T
ä

2. insertion: predicts the number of placeholder
insertions between yplh

n,i and yplh
n,i+1 with a pro-

jection matrix B ∈ R(Kmax+1)×2dmodel :

πplh
θ (p|n,i,yplh

1 , · · · ,yplh
N ;x)

= softmax
Ä
[hn,i, hn,i+1]B

T
ä
,

with Kmax the max number of insertions.

3. combination: predicts if token ycmb
n,i in se-

quence n must be kept in the combination,
with a projection matrix C ∈ R2×dmodel :

πcmb
θ (c|n, i,ycmb

1 , · · · ,ycmb
N ;x)

= softmax
Ä
hn,iC

T
ä
.

4. prediction: predicts a token in vocabulary V
at each placeholder position, with a projection
matrix D ∈ R|V|×dmodel :

πtok
θ (t|n, i,ytok;x) = softmax

Ä
hjD

T
ä

Except for step 3, these classifiers are similar to
those used in the original LevT.
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0 0 1 0 1
0 2 0 0 0 0

The cat +1 on a +1 
The +2 on the mat !

The cat sleeps on a bed 
The dog is on the green mat ! 

The cat sits on the mat .

The cat sits on the mat .

0 0 1 0 0 1 
0 1 1 0 0 1 0 0 

0 0 1 0 1 1 0
The cat _  on  a   _  _ 
The  _  _  on the mat ! 

_ _ sits _ _ _ .

deletion

insertion

combination

token prediciton

Figure 3: The first decoding pass in TMN-LevT.

3.2 Decoding
Decoding is an iterative process: in a first pass,
the N fuzzy matches are combined to compute
a candidate translation; then, as in LevT, an ad-
ditional series of iterative refinement rounds (Gu
et al., 2019) is applied until convergence or time-
out. Figure 3 illustrates the first pass, where N = 2
matches are first edited in parallel, then combined
into one output.

To predict deletions (resp. insertions and token
predictions), we apply the argmax operator to πdel

θ

(resp. πplh
θ , πtok

θ ). For combinations, we need to
aggregate separate decisions πcmb

θ (one per token
and match) into one sequence. For this, at each
position, we pick the most likely token.

During iterative refinement, we bias the model
towards generating longer sentences since LevT
outputs tend to be too short (Gu et al., 2019). As
in LevT, we add a penalty to the probability of
inserting 0 placeholder in πplh

θ (Stern et al., 2019).
This only applies in the refinement steps to avoid
creating more misalignments (see §6.2).

3.3 Imitation learning
We train TMN-LevT with Imitation Learning
(Daumé et al., 2009; Ross et al., 2011), teaching the
system to perform the right edit operation for each
decoding state. As these operations are unobserved
in the training data, the standard approach is to sim-
ulate decoding states via a roll-in policy; for each
of these, the optimal decision is computed via an
expert policy π∗, composed of intermediate experts
πdel
∗ , πplh

∗ , πcmb
∗ , πtok

∗ . The notion of optimality is
discussed in §4. Samples of pairs (state, decision)
are then used to train the system policy πθ.

3yop denotes an intermediary sequence before applying
edit operation op. yop

n ∈ NL is encoded with Sn; yop ∈ NL

with SN .

First, from the initial set of sentences
yinit, the unrolling of π∗ produces intermedi-
ate states (ydel, del∗), (yplh, plh∗), (ycmb, cmb∗),
(ytok, tok∗) (see top left in Figure 4). Moreover,
in this framework, it is critical to mitigate the ex-
posure bias and generate states that result from
non-optimal past decisions (Zheng et al., 2023).
For each training sample (x,y1, · · · ,yN ,y∗), we
simulate multiple additional states as follows (see
Figure 4 for the full picture). We begin with the
operations involved in the first decoding pass:4

1. Additional triplets♯: πrnd·del·N turns y∗ into
N random substrings, which simulates the
edition of N artificial examples.

2. Token selection♯ (uses πsel): our expert pol-
icy never aligns two distinct tokens at a given
position (§4.3). We simulate such cases that
may occur at inference, as follows: with prob-
ability γ, each <PLH> is replaced with a ran-
dom token from fuzzy matches (Figure 5).

The expert always completes its translation in one
decoding pass. Policies used in iterative refinement
are thus trained with the following simulated states,
based on roll-in and roll-out policies used in LevT
and its variants (Gu et al., 2019; Xu et al., 2023;
Zheng et al., 2023):

3. Add missing words (uses πrnd·del·1): with
probability α, ypost·plh=y∗. With probability
1− α, generate a subsequence ypost·plh with
length sampled uniformly in [0, |y∗|].

4. Correct mistakes (uses πtok
θ ): using the out-

put of token prediction ypost·del, teach the
model to erase the wrongly predicted tokens.

5. Remove extra tokens♯ (uses πins
θ , πtok

θ ): in-
sert placeholders in ypost·tok and predict to-
kens, yielding ypost·del·extra, which trains the
model to delete wrong tokens. These se-
quences differ from case (4) in the way <PLH>
are inserted.

6. Predict token♯ (uses πrnd·msk): each token
in y∗ is replaced by <PLH> with probability ε.
As token prediction applies for both decoding
steps, these states also improve the first pass.

The expert decisions (e.g. inserting deleted to-
kens like in state (3) ; or deleting wrongly predicted

4Families of (state, decision) pairs that are novel with
respect to TM-LevT are marked with ♯.
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apply

apply

apply

Figure 4: Roll-in policies used in training. Blue cells contain sets of target sentences (e.g. ydel), optionally
associated with the expert prediction (e.g. del∗). Model’s predictions are in Thistle and circumflexed (e.g. d̂el). Pairs
of model / expert predictions are summed in the loss: (d̂el, del∗), (p̂lh, plh∗), (ĉmb, cmb∗), ( ̂post · del, post · del∗),
( ̂post · plh, post ·plh∗), ( ̂post · del · extra, post ·plh · extra∗). "post" denotes policies applied in refinement steps.

The cat sits on a bed . 
A dog is on the floor The cat bed  _  on  _    The . 

floor  _    _    is on the mat  .

Figure 5: Noising ycmb with πsel using tokens from
yinit = (y1, · · · ,yN ).

tokens in state (4)) associated with most states are
obvious, except for the initial state and state (5),
which require an optimal alignment computation.

4 Optimal Alignment

Training the combination operation introduced
above requires specifying the expert decision for
each state. While LevT derives its expert policy π∗
from the computation of edit distances, we intro-
duce another formulation based on the computation
of maximal covers. For N=1, these formulations
can be made equivalent5 (Gusfield, 1997).

4.1 N-way alignments

We formulate the problem of optimal editing as an
N-way alignment problem (see figure 6) that we de-
fine as follows. Given N examples (y1, · · · ,yN )
and the target sentence y∗, a N-way alignment of
(y1, · · · ,yN ) w.r.t. y∗ is represented as a bipartite
graph (V, V∗, E), where V is further partitioned
into N mutually disjoint subsets V1 . . . VN . Ver-
tices in each Vn (resp. V∗) correspond to tokens in
yn (resp. y∗). Edges (n, i, j) ∈ E connect node i

5When the cost of replace is higher than insertion +
deletion. This is the case in the original LevT code.

in Vn to node j in V∗. An N-way alignment satisfies
properties (i)-(ii):

(i) Edges connect identical (matching) tokens:
(n, i, j) ∈ E ⇒ yn,i = y∗,j .

(ii) Edges that are incident to the same subset Vn

do not cross:
(n, i, j), (n, i′, j′) ∈ E ⇒ (i′−i)(j′−j) > 0.

An optimal N-way alignment E∗ maximizes the
coverage of tokens in y∗, then the total number
of edges, where y∗,j is covered if there exists at
least one edge (n, i, j) ∈ E. Denoting E the set of
alignments maximizing target coverage:

E = argmax
E

|{y∗,j : ∃(n, i), (n, i, j) ∈ E}|.

E∗ = argmax
E∈E

|E|.

4.2 Solving optimal alignment

Computing the optimal N-way alignment is NP-
hard (see Appendix D). This problem can be solved
using Dynamic Programming (DP) techniques
similar to Multiple Sequence Alignment (MSA)
(Carrillo and Lipman, 1988) with a complexity
O(N |y∗|

∏
n |yn|). We instead implemented the

following two-step heuristic approach:

1. separately compute alignment graphs between
each yn and y∗, then extract k-best 1-way
alignments {En,1 . . . En,k}. This requires
time O(k|yn||y∗|) using DP (Gusfield, 1997);
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the cat sits on the mat

the cat sits on it it's on the mat where the cat sits on

(a) Combination of the optimal 1-way alignments.

the cat sits on the mat

the cat sits on it it's on the mat where the cat sits on

(b) Optimal 2-way alignment.

Figure 6: Illustration of the optimal N-way alignment which maximizes a global coverage criterion (6b), while
independent alignments do not guarantee optimal usage of information present in TM examples (6a).

2. search for the optimal recombination of
these graphs, selecting 1-way alignments
(E1,k1 . . . EN,kN ) to form E∗ =

⋃
nEn,kn .

Assuming N and k are small, we perform
an exhaustive search in O(kN ).

4.3 From alignments to edits
From an alignment (V, V∗, E), we derive the opti-
mal edits needed to compute y∗, and the associated
intermediary sequences. Edges in E indicate the
tokens that are preserved throughout this process:

1. deletion: ∀n,∀i,yn,i is kept only if (n, i, j) ∈
E for some j; otherwise it is deleted. The
resulting sequences are {yplh

n }n=1...N .

2. insertion: Placeholders are inserted between
successive tokens in all yplh

n , resulting in the
set {ycmb

n }n=1...N , under the constraints that
(a) all ycmb

n have the same length as y∗ and
(b) non-placeholder tokens ycmb

n,i are equal to
the reference token y∗,i.

3. combination: Sequences {ycmb
n }n=1...N are

combined into ytok such that for each position
i, ycmb

n,i ̸= <PLH> ⇒ ytok
i = ycmb

n,i .
If ∀n,ycmb

n,i = <PLH>, then ytok
i = <PLH>.

4. prediction: The remaining <PLH> symbols in
ytok are replaced by the corresponding target
token in y∗ at the same position.

The expert policy π∗ edits examples y1, · · · ,yN

into y∗ based on the optimal alignment (V, V∗, E∗).
It comprises πdel

∗ , πplh
∗ , πcmb

∗ , and πtok
∗ , correspond-

ing to the four steps listed above.

5 Experiments

5.1 Data and metrics
We focus on translation from English to French
and consider multiple domains. This allows us to
consider a wide range of scenarios, with a varying
density of matching examples: our datasets include

ECB, EMEA, Europarl, GNOME, JRC-Acquis,
KDE4, PHP, Ubuntu, where high-quality matches
are often available, but also News-Commentary,
TED2013, and Wikipedia, where matches are more
scarce (see Table 6, §B).

For each training sample (x,y), we retrieve up
to 3 in-domain matches. We filter matches xn to
keep only those with ∆(x,xn) > 0.4. We then
manually split each of the 11 datasets into train,
valid, test-0.4, test-0.6, where the valid and test sets
contain 1,000 lines each. test-0.4 (resp. test-0.6)
contains samples whose best match is in the range
[0.4, 0.6[ (resp. [0.6, 1[). As these two test sets are
only defined based on the best match score, it may
happen that some test instances will only retrieve 1
or 2 close matches (statistics are in Table 6).

For the pre-training experiments (§6.2), we use a
subsample of 2M random sentences from WMT’14.
For all data, we use Moses tokenizer and 32k BPEs
trained on WMT’14 with SentencePiece (Kudo,
2018). We report BLEU scores (Papineni et al.,
2002) and ChrF scores (Popović, 2015) as com-
puted by SacreBLEU (Post, 2018) and COMET
scores (Rei et al., 2020).

5.2 Architecture and settings

Our code6 extends Fairseq7 implementation of
LevT in many ways. It uses Transformer models
(Vaswani et al., 2017) (parameters in Appendix A).
Roll-in policy parameters (§3.3) are empirically set
as: α=0.3, β=0.2, γ=0.2, δ=0.2, ε=0.4. The AR
baseline uses OpenNMT (Klein et al., 2017) and
uses the same data as TM-LevT (Appendix A).

6 Results

6.1 The benefits of multiple matches

We compare two models in Table 2: one trained
with one TM match, the other with three. Each

6https://github.com/Maxwell1447/fairseq
7https://github.com/facebookresearch/fairseq
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Model \N 1 2 3 all
size 4,719 2,369 14,912 22,000

TM1-LevT
45.8/63.6 48.7/65.0 55.0/68.4 52.0/66.8

19.6 26.2 41.5 35.0

TM3-LevT
46.6/64.1 50.0/65.8 56.0/69.3 53.0/67.5

14.0 16.0 38.2 30.8

Table 2: BLEU/ChrF and COMET scores on the full
test set. All BLEU/ChrF differences are significant
(p = 0.05).

model is evaluated with, at most, the same num-
ber of matches seen in training. This means that
TM1-LevT only uses the 1-best match, even when
more examples are found. In this table, test sets
test-0.4 and test-0.6 are concatenated, then parti-
tioned between samples for which exactly 1, 2, and
3 matches are retrieved. We observe that TM3-LevT,
trained with 3 examples, consistently achieves bet-
ter BLEU and ChrF scores than TM1-LevT, even
in the case N=1, where we only edit the closest
match.8 These better BLEU scores are associated
with a larger number of copies from the retrieved
instances, which was our main goal (Table 3). Sim-
ilar results for the other direction are reported in
the appendix § E (Table 7).

TM-LevT TM1-LevT TM3-LevT

unigram copy 64.9 64.5 68.8
gen 35.1 35.5 31.2

bigram copy-copy 55.0 54.5 58.0
copy-gen 8.9 9.0 10.1
gen-copy 10.7 10.8 11.0
gen-gen 25.4 25.7 20.9

Table 3: Proportion of unigrams and bigram from a
given origin (copy vs. generation) for various models.

We report the performance of systems trained
using N=1, 2, 3 for each domain and test set in Ta-
ble 4 (BLEU) and 12 (COMET). We see compara-
ble average BLEU scores for N=1 and N=3, with
large variations across domains, from which we
conclude that: (a) using 3 examples has a smaller
return when the best match is poor, meaning that
bad matches are less likely to help (test-0.4 vs. test-
0.6); (b) using 3 examples seems advantageous for
narrow domains, where training actually exploits
several close matches (see also Appendix F). We
finally note that COMET scores9 for TM3-LevT are

8This is because the former model has been fed with more
examples during training, which may help regularization.

9Those numbers are harder to interpret, given the wide
range of COMET scores across domains (from ≈ -40 to +86).

always slightly lower than for TM1-LevT, which
prompted us to develop several extensions.

6.2 Improving TMN-LevT

The cat _ _ on the mat , _ _ .

The _ _ on the _ , it seems .

The cat _ on the mat , _ _ .

The _ _ on the _ , it seems .

The cat _ on the the , it seems . .

The cat _ on the mat , it seems .

Realigner Module

Figure 7: Fixing misalignments with realignment

Realignment In preliminary experiments, we ob-
served that small placeholder prediction errors in
the first decoding pass could turn into catastrophic
misalignments (Figure 7). To mitigate such cases,
we introduce an additional realignment step during
inference, where some predicted placeholders are
added/removed if this improves the global align-
ment. Realignment is formulated as an optimiza-
tion problem aimed to perform a tradeoff between
the score − log πplh

θ of placeholder insertion and
an alignment cost (see Appendix C).

We assess realignment for N=3 (Tables 4 and
12) and observe small, yet consistent average gains
(+0.2 BLEU, +1.5 COMET) for both test sets.

Pre-training Another improvement uses pre-
training with synthetic data. For each source/target
pair (x,y) in the pre-training corpus, we simu-
late N fuzzy matches by extracting from y N sub-
strings yn of length ≈ |y| · r, with r ∈ [0, 1]. Each
yn is then augmented as follows:

1. We randomly insert placeholders to increase
the length by a random factor between 1 and
1 + f , f = 0.5 in our experiments.

2. We use the CamemBERT language model
(Martin et al., 2020) to fill the masked tokens.

These artificial instances simulate diverse fuzzy
matches and are used to pre-train a model, using
the same architecture and setup as in §5.2. Pre-
training yields markedly higher scores than the
baseline (+1.3 BLEU, +6.4 COMET for test-0.4
and +0.9 BLEU, +4.6 COMET for test-0.6). Train-
ing curves also suggest that pre-trained models are
faster to converge. Combining with realignment
yields additional gains for TM3-LevT, which outper-
forms TM1-LevT in all domains and both metrics.
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ECB EME Epp GNO JRC KDE News PHP TED Ubu Wiki all
test-0.4 AR 63.0 63.6 43.6 69.3 75.1 62.8 28.8 41.2 42.2 59.1 42.2 55.8

TM-LevT 50.5 50.7 31.3 54.3 62.4 47.9 18.0 30.1 24.2 43.3 29.8 42.8
TM1-LevT 53.1 53.7 35.5 60.3 65.6 51.8 22.2 31.7 30.2 48.8 32.0 46.2
TM2-LevT 54.0 54.3 34.0 60.5 66.0 53.2 20.7 33.7 28.9 48.0 32.6 46.5
TM3-LevT 53.9 55.6 34.2 60.8 66.0 53.5 20.4 33.1 28.6 47.5 32.9 46.5

+pre-train 54.9 55.9 34.4 62.7 67.4 54.1 21.1 34.7 30.1 49.3 33.5 47.5
+realign 54.4 55.9 34.4 61.2 66.2 53.2 20.4 33.3 28.4 47.9 33.1 46.7
+both 55.0 56.0 34.9 62.8 67.5 54.0 21.4 34.8 30.8 49.6 33.9 47.8

test-0.6 AR 69.7 70.4 57.4 80.6 82.4 68.2 26.1 46.4 62.5 68.5 68.7 66.6
TM-LevT 59.0 64.0 45.8 66.9 73.5 53.4 18.8 34.7 49.1 53.2 58.9 55.8
TM1-LevT 60.5 64.6 48.9 69.7 75.7 57.2 21.0 36.2 55.0 58.3 62.2 58.2
TM2-LevT 62.7 67.0 50.0 71.7 76.2 60.2 21.7 38.6 54.2 59.8 62.8 59.7
TM3-LevT 63.8 67.4 50.0 71.1 76.4 60.0 21.5 39.2 54.3 59.6 62.3 60.0

+pre-train 64.9 68.3 50.3 72.7 77.3 62.3 21.8 40.7 54.6 61.3 65.0 61.1
+realign 64.0 68.0 50.2 71.5 76.5 59.9 21.6 39.0 54.7 60.0 63.1 60.2
+both 65.0 68.3 50.8 73.7 77.4 62.3 22.0 40.6 54.7 61.4 65.3 61.3

Table 4: Per domain BLEU scores for TM-LevT, TMN-LevT and variants. Bold (resp. italic) for scores significantly
higher (resp. lower) than TM1-LevT (p = 0.05). p-values from SacreBLEU paired bootstrap resampling (n = 1000).
The Autoregressive (AR) system is our implementation of (Bulte and Tezcan, 2019).

Knowledge distillation Knowledge Distillation
(KD) (Kim and Rush, 2016) is used to mitigate
the effect of multimodality of NAT models (Zhou
et al., 2020) and to ease the learning process. We
trained a TMN-LevT model with distilled samples
(x, ỹ1, · · · , ỹN , ỹ), where automatic translations
ỹi and ỹ are derived from their respective source
xi and x with an auto-regressive teacher trained
with a concatenation of all the training data.

We observe that KD is beneficial (+0.3 BLEU)
for low-scoring matches (test-0.4) but hurts perfor-
mance (-1.7 BLEU) for the better ones in test-0.6.
This may be because the teacher model, with a
BLEU score of 56.7 on the test-0.6, fails to provide
the excellent starting translations the model can
access when using non-distilled data.

6.3 Ablation study

We evaluate the impact of the various elements in
the mixture roll-in policy via an ablation study (Ta-
ble 13). Except for πsel, every new element in the
roll-in policy increases performance. As for πsel,
our system seems to be slightly better with than
without. An explanation is that, in case of mis-
alignment, the model is biased towards selecting
the first, most similar example sentence. As an ab-
lation, instead of aligning by globally maximizing
coverage (§ 4.2), we also compute alignments that
maximize coverage independently as in figure 6a.

A complete run of TMN-LevT is in Appendix F.

test-0.4 test-0.6
TM3-LevT 46.5 60.1

-sel 46.2 60.0
-delx 44.8 58.6
-rnd-del 38.6 51.9
-rnd-mask 46.0 59.0
-dum-plh 41.0 50.9
-indep-align 42.6 56.4

Table 5: Ablation study. We build models with variable
roll-in policies: -sel: no random selection noise (γ=0);
-delx: no extra deletion;-rd-del: no random deletion
(β=0); -mask: no random mask (δ=0); -dum-plh: never
start with ypost·del=y∗ (α=0); -indep-align: align-
ments are independent. Full results in Appendix F.

7 Related Work

As for other Machine Learning applications, such
as text generation (Guu et al., 2018), efforts to in-
tegrate a retrieval component in neural-based MT
have intensified in recent years. One motivation
is to increase the transparency of ML models by
providing users with tangible traces of their inter-
nal computations in the form of retrieved examples
(Rudin, 2019). For MT, this is achieved by inte-
grating fuzzy matches retrieved from memory as
an additional conditioning context. This can be
performed simply by concatenating the retrieved
target instance to the source text (Bulte and Tezcan,
2019), an approach that straightforwardly accom-
modates several TM matches (Xu et al., 2020), or
the simultaneous exploitation of their source and
target sides (Pham et al., 2020). More complex
schemes to combine retrieved examples with the
source sentence are in (Gu et al., 2018; Xia et al.,
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2019; He et al., 2021b). The recent work of Cheng
et al. (2022) handles multiple complementary TM
examples retrieved in a contrastive manner that
aims to enhance source coverage. Cai et al. (2021)
also handle multiple matches and introduce two
novelties: (a) retrieval is performed in the target
language and (b) similarity scores are trainable,
which allows to evaluate retrieved instances based
on their usefulness in translation. Most of these
attempts rely on an auto-regressive (AR) decoder,
meaning that the impact of TM match(es) on the
final output is only indirect.

The use of TM memory match with a NAT de-
coder is studied in (Niwa et al., 2022; Xu et al.,
2023; Zheng et al., 2023), which adapt LevT for
this specific setting, using one single retrieved in-
stance to initialize the edit-based decoder. Other
evolutions of LevT, notably in the context of con-
straint decoding, are in (Susanto et al., 2020; Xu
and Carpuat, 2021), while a more general account
of NAT systems is in (Xiao et al., 2023).

Zhang et al. (2018) explore a different set of tech-
niques to improve translation using retrieved seg-
ments instead of full sentences. Extending KNN-
based language models (He et al., 2021a) to the con-
ditional case, Khandelwal et al. (2021) proposes k-
nearest neighbor MT by searching for target tokens
that have similar contextualized representations at
each decoding step, an approach further elaborated
by Zheng et al. (2021); Meng et al. (2022) and
extended to chunks by Martins et al. (2022).

8 Conclusion and Outlook

In this work, we have extended the Levenshtein
Transformer with a new combination operation,
making it able to simultaneously edit multiple
fuzzy matches and merge them into an initial trans-
lation that is then refined. Owing to multiple
algorithmic contributions and improved training
schemes, we have been able to (a) increase the num-
ber of output tokens that are copied from retrieved
examples; (b) obtain performance improvements
compared to using one single match. We have also
argued that retrieval-based NMT was a simple way
to make the process more transparent for end users.

Next, we would like to work on the retrieval side
of the model: first, to increase the diversity of fuzzy
matches e.g. thanks to contrastive retrieval, but
also to study ways to train the retrieval mechanism
and extend this approach to search monolingual
(target side) corpora. Another line of work will

combine our techniques with other approaches to
TM-based NMT, such as keeping track of the initial
translation(s) on the encoder side.

9 Limitations

As this work was primarily designed a feasibil-
ity study, we have left aside several issues related
to performance, which may explain the remain-
ing gap with published results on similar datasets.
First, we have restricted the encoder to only encode
the source sentence, even though enriching the in-
put side with the initial target(s) has often been
found to increase performance (Bulte and Tezcan,
2019), also for NAT systems (Xu et al., 2023). It
is also likely that increasing the number of train-
ing epochs would yield higher absolute scores (see
Appendix F).

These choices were made for the sake of effi-
ciency, as our training already had to fare with the
extra computing costs incurred by the alignment
procedure required to learn the expert policy. Note
that in comparison, the extra cost of the realign-
ment procedure is much smaller, as it is only paid
during inference and can be parallelized on GPUs.

We would also like to outline that our systems
do not match the performance of an equivalent AR
decoder, a gap that remains for many NAT sys-
tems (Xiao et al., 2023). Finally, we have only
reported here results for one language pair – favor-
ing here domain diversity over language diversity –
and would need to confirm the observed improve-
ments on other language pairs and conditions.
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Chunting Zhou, Jiatao Gu, and Graham Neubig.
2020. Understanding knowledge distillation in non-
autoregressive machine translation. In Proceedings
of the International Conference on Learning Repre-
sentations.

A Model Configuration

We use a Transformer architecture with embed-
dings of dimension 512; feed-forward layers of size
2048; number of heads 8; number of encoder and
decoder layers: 6; batch size: 3000 tokens; shared-
embeddings; dropout: 0.3; number of GPUs: 6.
The maximal number of additional placeholders is
Kmax = 64.

During training, we use Adam optimizer with
(β1, β2)=(0.9, 0.98); inverse sqrt scheduler; learn-
ing rate: 5e−4; label smoothing: 0.1; warmup up-
dates: 10,000; float precision: 16. We fixed the
number of iterations at 60k. For decoding, we
use iterative refinement with an empty placeholder
penalty of 3, and a max number of iterations of 10
(Gu et al., 2019).

For the n-way alignment (§4.1), we use k=10.
The hyper-parameters of the realigner (§C) were

tuned on a subset of 1k samples extracted from the
ECB training set.

Metrics are used with default settings: Sacre-
BLEU signature is nrefs:1|case:mixed|eff:no
|tok:13a|smooth:exp|version:2.1.0; the
ChrF signature is nrefs:1|case:mixed|eff:yes
|nc:6|nw:0|space:no|version:2.1.0; as for
COMET we use the default model of version 1.1.3:
Unbabel/wmt22-comet-da.

B Data Analysis

Table 6 contains statistics about all 11 domains.
They notably highlight the relationship between
the average number of retrieved sentences during
training and the ability of TM3-LevT to perform
better than TM1-LevT in Table 4. The domains with
retrieval rates lesser than 1 (Epp, News, TED, Ubu)
have quite a broad content, meaning that training
instances have fewer close matches, which also
means that for these domains, TM3-LevT hardly
sees two or three examples that it needs to use in
inference.

C Realignment

The realignment process is an extra inference step
aiming to improve the result of the placeholder in-
sertion stage. To motivate our approach, let us con-

sider the following sentences before placeholder
insertion:

yplh
0 : < A B C > ×

yplh
1 : < B C > × ×

yplh
2 : < A D C D >,

where letters represent tokens, × denotes padding,
< and > respectively stand for <BOS> and <EOS>.

The output of this stage is a prediction for all
pairs of consecutive tokens. This prediction takes
the form of a tensor log πplh

θ of dimensions N ×
(L−1)×(Kmax+1), corresponding respectively to
the number of retrieved sentences N , the maximum
sentence length L, and the maximum number of
additional placeholders Kmax.

Let P (a N×(L−1) tensor) denote the argmax,

e.g. P =
0 0 0 2 0
0 0 1 0 0
0 1 0 0 0

Inserting the prescribed number of placehold-
ers (figured by _) then yields the following ycmb:
ycmb
0 : < A B C _ _ >

ycmb
1 : < B C _ > × ×

ycmb
2 : < A _ D C D >

This result is far from perfect, as it fails to align
the repeated occurrences of C. For instance, a
preferable alignment requiring 3 changes (1 change
consists in a modification of ±1 in P ) could be:

ycmb
0

′: < A B C _ > ×
ycmb
1

′: < _ B C _ > ×
ycmb
2

′: < A D C D > ×
The general goal of realignment is to improve

such alignments by performing a small number
of changes in P . We formalize this problem as
a search for a good tradeoff between (a) the indi-
vidual placeholder prediction scores, aggregated
in LL (likelihood loss) and (b) LA an alignment
loss. Under its simplest form, this problem is again
an optimal multisequence alignment problem, for
which exact dynamic programming solutions are
computationally intractable in our setting.

We instead develop a continuous relaxation that
can be solved effectively with SGD and is also
easy to parallelize on GPUs. We, therefore, relax
the integer condition for P and assume that Pi,j

can take continuous real values in [0,Kmax], then
solve the continuous optimization problem before
turning Pi,j values back into integers.

The likelihood loss aims to keep the Pi,j values
close to the model predictions. Denoting (µ, σ)
respectively the mean and variance of the model
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domain ECB EME Epp GNO JRC KDE News PHP TED Ubu Wiki all
size 195k 373k 2.0M 55k 503k 180k 151k 16k 159k 9k 803k 4.4M
retrieval rate 1.66 2.12 0.91 1.18 1.71 1.10 0.24 1.20 0.96 0.62 1.22 1.18
mean length 29.2 16.7 26.6 9.4 28.8 10.5 26.4 14.5 17.7 5.2 19.6 18.6

Table 6: Number of samples, average number of retrieved sentences and average length of sentences after tokeniza-
tion for all 11 domains.

predictions, our initial version of this loss is

LL(P ) =
∑

i,j

(Pi,j − µi,j)
2

2σ2
.

In practice, we found that using a weighted average
µ̂ and clamping the variance σ̂2 both yield better
realignments, yielding:

LL(P ) =
∑

i,j

(Pi,j − µ̂i,j)
2

2σ̂2

To define the alignment loss, we introduce a po-
sition matrix X of dimension N ×L in R+, where
Xn,i corresponds to the (continuous)position of
token yn,i after inserting a real number of place-
holders. X is defined as:

Xn,i(P ) = i+
∑

j<i

Pn,j

with i the number of tokens occuring before Xn,i

and
∑

j<i Pn,j the cumulated sum of placeholders.
Using X , we derive the distance tensor D of di-
mension N × L×N × L in R+ as:

Dn,i,m,j(P ) = |Xn,i −Xm,j |

Finally, let G be an N × L×N × L alignment
graph tensor, where Gn,i,m,j = 1 if and only if
yn,i = ym,j and n ̸= m and Dn,i,m,j < Dmax.
G connects identical tokens in different sentences
when their distance after placeholder insertion is
at most Dmax. This last condition avoids perturba-
tions from remote tokens that coincidentally appear
to be identical.

Each token yn,i is associated with an individual
loss:

dn,i(P ) =





min
m,j

{Dn,i,m,j(P ) : Gn,i,m,j = 1}
if ∃(m, j) s.t. Gn,i,m,j = 1

0 otherwise.

The alignment loss aggregates these values over
sentences and positions as:

LA(P ) =

N−1∑

n=0

L−1∑

i=0

dn,i(P )

A final ingredient in our realignment model is
related to the final discretization step. To avoid
rounding errors, we further constrain the optimiza-
tion process to deliver near-integer solutions. For
this, we also include a integer constraint loss de-
fined as :

Lint(P ) = µt

∑

i,j

sin2(πPi,j)

where µt controls the scale of Lint(P ). As x →
sin2(πx) reaches its minimum 0 for integer values,
minimizing Lint(P ) has the effect of enforcing a
near-integer constraint to our solutions. Overall,
we minimize in P :

L = LL(P ) + LA(P ) + Lint(P ),

slowly increasing the scale of µt according to the
following schedule

µt =





0 if t < t0
µT if t > T

µT
(t−t0)2

(T−t0)2
otherwise

,

with t0, T the timestamps for respectively the ac-
tivation of the integer constraint loss, and the ac-
tivation of the clamping. This optimization is per-
formed with gradient descent directly on GPUs,
with a small additional cost to the inference proce-
dure.

D NP-hardness of Coverage
Maximization in N-way Alignment

Given the set of possible N-way alignments, the
problem of finding the one that maximizes the tar-
get coverage is NP-hard. To prove it, we can reduce
the NP-hard set cover problem (Garey and Johnson,
1979) to the N-way alignment coverage maximiza-
tion problem.
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• Cover set decision problem (A):

Let X = {x1, · · · , xN} and C0 ⊂ 2X . Is
there c∗ = (c1, · · · , cK) ∈ CK

0 s.t. | ∪k c
∗
k| =

|X|?

• N-way alignment coverage maximization de-
cision problem (B):

Let X = {x1, · · · , xN}
and C = (C1, · · · , CK) ⊂ (2X)K . For p ∈
N, is there c ∈ ∏K

k=1Ck s.t. | ∪k ck| ≥ p?

A solution of (B) can be certified in polynomial
time: we simply compute the cardinal of a union.
Any instance of (A) can be transformed in polyno-
mial time and space into a special instance of (B)
where all Ck = C0 and p = |X|.

E Results for fr-en

Table ?? reports the BLEU scores for the reverse
direction (fr→en), using exactly the same config-
uration as in Table 2. Note that since we used the
same data split (retrieving examples based on the
similarity in English), and since the retrieval proce-
dure is asymmetrical, 4,749 test samples happen to
have no match. That would correspond to an extra
column labeled "0", which is not represented here.

Model \N 1 2 3 all
size 2,753 1,675 12,823 17,251
TM1-LevT 57.2 57.6 61.5 60.2
TM3-LevT
+pt +ra

58.2 59.4 64.0 62.4

Table 7: BLEU scores on the full test set. TM3-LevT is
improved with pre-training and realignment. All BLEU
differences are significant (p = 0.05). p-values from
SacreBLEU paired bootstrap resampling (n = 1000).

The reverse direction follows a similar pattern,
providing further evidence of the method’s effec-
tiveness.

F Complementary Analyses

Diversity and difficulty Results in Table 4 show
that some datasets do not seem to benefit from
multiple examples. This is notably the case for Eu-
roparl, News-Commentary, TED2013, and Ubuntu.
We claim that this was due to the lack of retrieved
examples at training (as stated in §B), of diversity,
and the noise in fuzzy matches. To further inves-
tigate this issue, we report two scores in Table 8.
The first is the increase of bag-of-word coverage

of the target gained by using N=3 instead of N=1;
the second is the increase of noise in the examples,
computed as the proportion of tokens in the exam-
ples that do not occur in the target. We observe
that, in fact, low diversity is often associated with
poor scores for TM3-LevT, and higher diversity with
better performance.

cover noise
test-0.4 test-0.6 test-0.4 test-0.6

ECB +8.2 +8.9 +3.7 +4.4
EME +8.9 +8.5 +4.0 +5.0
Epp +10.5 +13.7 +2.2 +4.0
GNO +7.1 +6.2 +7.6 +9.3
JRC +7.2 +6.8 +4.8 +5.2
KDE +8.0 +7.5 +6.9 +7.8
News +7.2 +12.5 +2.3 +5.0
PHP +7.2 +7.6 +4.2 +5.4
TED +9.4 +11.4 +2.9 +4.6
Ubu +5.5 +6.0 +6.7 +8.6
Wiki +8.0 +8.0 +2.5 +3.6
all +8.1 +8.9 +4.4 +5.7

Table 8: Coverage and noise scores increase. "Diffi-
culty" is highlighted in bold (< 8.0 for cover; > 6.0 for
noise).

Long run All results in the main text were ob-
tained with models trained for 60k iterations, which
was enough to compare the various models while
saving computation resources. For completeness,
we also performed one longer training for 300k it-
erations for TM3-LevT (see Table 9), which resulted
in an improvement of around +2 BLEU for each
test set. This is without realignment nor pretrain-
ing.

model test-0.4 test-0.6
TM3-LevT 46.5 60.0

+ realign 46.7 60.2
TM3-LevT long 48.7 61.9

+ realign 48.9 62.0

Table 9: BLEU score of TM3-LevT: 60k iterations; and
TM3-LevT long: 300k iterations.

The Benefits of realignment Table 10 shows that
realignment also decreases the average number of
refinement steps to converge. These results suggest
that the edition is made easier with realignment.

In Table 11, we present detailed results of the
unigram modified precision of LevT, TM3-LevT and
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model test-0.4 test-0.6
TM3-LevT 3.55 2.07

+realign 3.37 1.93

Table 10: Average number of extra refinement rounds.

TM3-LevT+realign. Using more examples indeed
increases copy (+4.4), even though it diminishes
copy precision (-1.7). Again we observe the posi-
tive effect of realignment, which amplifies the ten-
dency of our model to copy input tokens.

model precision % units
TM-LevT copy 87.5 64.9

gen 52.6 35.1
TM3-LevT copy 85.4 68.8

gen 54.9 31.2
+realign copy 85.8 69.3

gen 54.7 30.7

Table 11: Modified precision of copy vs. generated
unigrams of LevT vs. TM3-LevT.

COMET scores We compute COMET scores
(Rei et al., 2020) separately for each domain with
default wmt20-comet-da similarly to Table 4 (see
Table 12). We observe that the basic version of
TM3-LevTunderperforms TM1-LevT; we also see a
great variation in the scores. A possible explana-
tion can be a fluency decline when using multiple
examples, which is not represented by the precision
scores computed by BLEU. The improved version,
using realignment and pre-training, confirms that
adding more matches is overall beneficial for MT
quality.

Per-domain ablation study Table 13 details the
results of our ablation study separately for each
domain.

Illustration A full inference run is in Table 14,
illustrating the benefits of considering multiple ex-
amples and realignment. Even though the realign-
ment does not change here the final output, it re-
duces the number of atomic edits needed to gener-
ate it, making the inference more robust.
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ECB EME Epp GNO JRC KDE News PHP TED Ubu Wiki all
test-0.4 TM1-LevT 33.0 43.1 39.9 56.3 70.7 37.4 -2.0 -39.6 -0.8 41.6 -9.9 24.5

TM2-LevT 27.2 42.0 31.1 48.0 64.4 32.6 -10.8 -42.7 -8.7 35.3 -15.7 18.4
TM3-LevT 27.3 42.1 26.8 51.5 64.2 33.5 -10.1 -39.9 -14.8 38.6 -16.3 18.4

+pre-train 30.6 44.7 38.7 57.9 67.8 37.9 -6.2 -35.3 2.7 41.5 -5.0 25.0
+realign 31.0 45.1 32.0 53.2 66.4 34.9 -10.9 -39.0 -11.9 41.1 -10.8 21.0
+both 33.7 46.4 42.4 59.9 69.9 40.1 -1.0 -33.0 5.1 43.5 -3.7 27.5

test-0.6 TM1-LevT 51.7 53.9 56.9 65.3 85.4 37.0 -3.0 -17.0 48.5 57.6 64.5 45.5
TM2-LevT 51.2 54.2 56.3 64.2 82.5 34.6 -9.0 -15.9 46.1 55.5 61.6 43.7
TM3-LevT 50.9 55.8 54.1 65.1 81.1 33.6 -9.8 -16.2 41.1 57.4 61.7 43.1

+pre-train 54.6 56.5 58.0 68.2 84.7 41.5 -4.3 -11.8 48.9 62.7 65.6 47.7
+realign 53.0 56.4 56.3 65.4 83.6 34.3 -7.2 -16.1 42.8 58.3 63.7 44.6
+both 55.7 57.4 58.8 70.5 85.8 43.2 -4.4 -10.6 49.4 62.3 67.7 48.7

Table 12: Per domain COMET scores (x 100) for TMn-LevT and variants. Bold for scores better than TM1-LevT.

ECB EME Epp GNO JRC KDE News PHP TED Ubu Wiki all
test-0.4
TM3-LevT 53.9 55.6 34.2 60.7 66.0 53.5 20.4 33.0 28.6 47.5 32.8 46.5
-sel 54.5 55.6 32.7 61.2 65.9 52.2 19.5 33.3 27.7 48.1 31.3 46.2
-delx 52.2 53.4 , 31.8 58.7 64.0 52.0 19.6 31.2 27.5 46.8 31.5 44.8
-rd-del 49.7 47.6 22.2 48.2 56.7 38.8 13.2 29.5 16.9 32.2 21.4 38.6
-mask 53.4 54.7 33.7 58.9 65.3 52.4 20.3 33.1 27.5 47.1 32.2 46.0
-dum-plh 50.8 43.3 32.7 45.6 61.2 42.4 21.0 30.9 24.3 35.6 28.2 41.0
-indep-align 51.5 52.4 29.7 53.8 60.7 47.2 16.9 30.4 21.8 39.0 28.4 42.6
test-0.6
TM3-LevT 64.2 68.0 49.4 73.0 76.4 60.1 21.2 39.6 52.2 60.1 61.6 60.1
-sel 63.8 67.5 50.0 71.2 76.3 60.0 21.5 39.1 54.2 59.7 62.2 60.0
-delx 62.1 66.7 47.7 70.6 75.0 58.8 20.1 37.9 53.5 58.4 60.9 58.6
-rd-del 58.4 59.6 39.7 59.0 67.6 47.7 16.9 35.0 39.8 44.1 47.4 51.9
-mask 63.1 65.3 49.1 69.4 74.2 58.2 21.8 38.6 50.9 58.7 59.7 59.0
-dum-plh 57.3 55.5 44.9 51.8 68.5 44.5 20.2 35.7 42.6 38.7 50.7 50.9
-indep-align 60.6 64.0 46.6 64.3 71.9 55.5 18.6 35.6 44.6 51.6 56.0 56.4

Table 13: Ablation study. We report BLEU scores for various settings. -sel: no random selection noise (γ=0);
-delx: no extra deletion loss;-rd-del: no random deletion (β=0); -mask: no random mask (δ=0); -dum-plh: null
probability to start with ypost·del=y∗ (α = 0); -indep-align: the alignments are performed independently.
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src: The swf _ setfont ( ) sets the current font to the value given by the fontid parameter .
tgt: swf _ setfont ( ) remplace la police courante par la police repérée par l ’ identifiant fontid .

LevT
ydel: sw• f _ fon• t• size ( ) remplace la taille de la police par la taille size .
yplh: sw• f _+2 ( ) remplace la+1 de police+1 par la+5 .
ytok: sw• f _ set• police ( ) remplace la police de police courante par la valeur de paramètre ti• d .
ydel: sw• f _ set• police ( ) remplace la police de police courante par la valeur de paramètre ti• d .
yplh: +1 sw• f _ set• police ( ) remplace la police de police courante+1 par la valeur de paramètre+1 ti• d .
ytok: Le sw• f _ set• police ( ) remplace la police de police courante donnée par la valeur de paramètre fon• ti• d .
hyp: Le swf _ setpolice ( ) remplace la police de police courante donnée par la valeur de paramètre fontid .

TM2-LevT

ydel: sw• f _ fon• t• size ( ) remplace la taille de la police par la taille size .
sw• f _ defin• e• font ( ) définit la police fon• t• name et lui affecte l ’ identi• fiant fon• ti• d .

yplh: sw• f _+2 ( ) remplace la police+6 par+4 .
sw• f _+1 font ( ) définit la police+9 fon• ti• d .

ycmb: sw• f _ ( ) remplace la police par .
sw• f _ font ( ) définit la police fon• ti• d .

ytok: sw• f _ set• font ( ) remplace la police actuelle à à la valeur donnée par le paramètre fon• ti• d .
ydel: sw• f _ set• font ( ) remplace la police actuelle à à la valeur donnée par le paramètre fon• ti• d .
yplh: sw• f _ set• font ( ) remplace la police actuelle+1 la valeur donnée par le paramètre fon• ti• d .
ytok: sw• f _ set• font ( ) remplace la police actuelle à la valeur donnée par le paramètre fon• ti• d .
hyp: swf _ setfont ( ) remplace la police actuelle à la valeur donnée par le paramètre fontid .

TM3-LevT

ydel: sw• f _ fon• t• size ( ) remp• place la taille de la police par la taille size .
sw• f _ defin• e• font ( ) définit la police fon• t• name et lui affecte l ’ identi• fiant fon• ti• d .
sw• f• text - set• font ( ) remplace la police courante par font .

yplh: sw• f _+2 ( ) remplace la police+4 par+5 .
sw• f _+1 font ( ) définit la police+7 ti• d .
sw•+2 set• font ( ) remplace la police courante+4 par+5 .

ycmb: sw• f _ ( ) remplace la police par .
sw• f _ font ( ) définit la police ti• d .
sw• set• font ( ) remplace la police courante par .

ytok: sw• f _ set• font ( ) remplace la police courante au valeur donnée par le fon• ti• d . . .
ydel: sw• f _ set• font ( ) remplace la police courante au valeur donnée par le fon• ti• d . . .
yplh: +1 sw• f _ set• font ( ) remplace la police courante+2 valeur+1 par le+1 fon• ti• d .
ytok: Le sw• f _ set• font ( ) remplace la police courante à la valeur donnée par le paramètre fon• ti• d .
hyp: Le swf _ setfont ( ) remplace la police courante à la valeur donnée par le paramètre fontid .

TM3-LevT + realign
ydel: sw• f _ fon• t• size ( ) remp• place la taille de la police par la taille size .

sw• f _ defin• e• font ( ) définit la police fon• t• name et lui affecte l ’ identi• fiant fon• ti• d .
sw• f• text - set• font ( ) remplace la police courante par font .

yplh: sw• f _+2 ( ) remplace la police+4 par+5 .
sw• f _+1 font ( ) définit la police+8 ti• d .
sw•+2 set• font ( ) remplace la police courante+3 par+5 .

ycmb: sw• f _ ( ) remplace la police par .
sw• f _ font ( ) définit la police ti• d .
sw• set• font ( ) remplace la police courante par .

ytok: sw• f _ set• font ( ) remplace la police courante au valeur donnée par le paramètre fon• ti• d .
ydel: sw• f _ set• font ( ) remplace la police courante au valeur donnée par le paramètre fon• ti• d .
yplh: +1 sw• f _ set• font ( ) remplace la police courante+2 valeur donnée par le paramètre fon• ti• d .
ytok: Le sw• f _ set• font ( ) remplace la police courante à la valeur donnée par le paramètre fon• ti• d .
hyp: Le swf _ setfont ( ) remplace la police courante à la valeur donnée par le paramètre fontid .

Table 14: Examples of full inference of several models on a test sample from test-0.4-PHP (sample n°571). Copied
parts are in red.
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