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Abstract

Math word problems (MWP) involving ad-
vanced operators such as linear equation solver
cannot be easily tackled by earlier MWP meth-
ods, because the existing generation methods
suffer from repeated sub-expression generation
and deductive methods are restricted to deal-
ing with binary operations. This paper pro-
pose a new multivariate directed acyclic graph
(mDAG) as an alternative to the generation
methods’ binary expression tree or the deduc-
tive methods’ binary directed acyclic graph.
Then to produce the topological ordering of
mDAG, we propose a generation-based deduc-
tive (GeDe) model, which equips a generation
model with a re-encoder to keep the deduc-
tive property but avoid the expensive enumer-
ation of the deductive methods. GeDe per-
forms well on math problems with many oper-
ators on the widely used benchmarks as well
as solving multivariate operators on our own
CMWPA benchmark. Our code is available at
https://github.com/hyx1999/GeDe

1 Introduction

Solving Math Word Problems (MWPs) is the
task of answering natural language problems that
require mathematical reasoning ability (Bobrow,
1964). To achieve such a skill, researchers have
proposed a variety of MWP solvers, each of which
seeks to produce a specific logic form that can be
used to calculate the answer to the problem.

Deductive methods and generation-based meth-
ods are typically the two main approaches used
to solve MWPs. Inspired by advances in ma-
chine translation, some generation-based methods
directly adopt a sequence-to-sequence (seq2seq)
model to generate the sequence of the math ex-
pression according to the problem (Wang et al.,
2017). To further capture the structure of the math
expression, some sequence-to-tree (seq2tree) meth-
ods (Xie and Sun, 2019) adopt a tree decoder to
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generate the binary expression tree, where each
node denotes an operator or a quantity. These
generation-based methods, however, suffer from a
fatal flaw in that they require repeated generation
of the same sub-expression (or sub-tree), which
makes them inefficient. For example, in Figure 1
(a), the sub-expression (94− 35× 2)÷ (4− 2) is
generated four times. Humans, on the other hand,
can represent repeated sub-expressions with an in-
termediate quantity that can be naturally reused in
the following computation process.

Deductive approaches (Cao et al., 2021; Jie et al.,
2022) are suggested to address the aforementioned
reuse issue. Specifically, deductive methods con-
vert the math expression into a binary Directed
Acyclic Graph (bDAG), where each node repre-
sents an operation that consists of a binary operator
and two input quantities. The calculation result of
an operation is represented by a new intermediate
quantity. Then, these methods need to generate a
topological ordering, i.e., an operation sequence,
of the bDAG. By doing this, subsequent operations
can easily reuse the previously generated intermedi-
ate quantities. As shown in Figure 1 (b), quantity q3
represents the sub-expression (94−2×35)÷(4−2),
which is then reused by two subsequent operations
denoted by quantity q4 and q8. When the operation
sequence is inferred, these operations are computed
consecutively to produce the final answer. Beyond
the ability to reuse the intermediate quantity, de-
ductive methods are more interpretable because the
step-by-step generation of operations helps people
understand how the reasoning works. To generate
the operation at each reasoning step, existing deduc-
tive methods follow an “enumerate-then-classify”
procedure. To be more precise, they create a collec-
tion of candidate operations by listing every pos-
sible combination of the quantities and operators,
and then they use a classifier to choose the opera-
tion that has the highest probability, which can be
viewed as a greedy search strategy.
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There are several chickens and rabbits in a cage. Inside, we observe 94 feet and 35 heads. A chicken has 1 head and 2 feet. A rabbit has 1
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Figure 1: Illustration of a MWP example with a natural language input problem and a corresponding mathematical
expression output that can be used to calculate the answer. The repeated sub-expression is underlined in red. In
order to get the answer, three methods are presented: (a) a seq2seq or seq2tree generation method to generate an
expression sequence or a binary expression tree; (b) a deductive method to reason out a topological ordering of the
bDAG; and (c) the proposed generation-based deductive method to generate a topological ordering of the mDAG.

One obvious limitation of the aforementioned ap-
proaches is that they only take into account the ba-
sic binary operators such as +,−,×,÷. Although
binary operators are the most fundamental in math-
ematics, there are some templated problems, such
as solving linear equations, finding the extreme val-
ues of quadratic equations, and even integrating a
function, that can be solved by existing advanced
operators. Thus, we can abstract an advanced op-
erator to tackle each templated problem. With
these advanced operators, we can inject prior math-
ematical knowledge to reduce the difficulty of solv-
ing MWPs. However, problems requiring advanced
operators are difficult to tackle using earlier MWP
methods: generation-based methods inherently suf-
fer from the reuse issue; deductive methods are
limited by the assumption of binary operations.

To address this issue, we first define a multi-
variate Directed Acyclic Graph (mDAG) with each
node involving a multivariate operation that con-
sists of a basic or advanced operator and multiple
input quantities. Compared to basic binary opera-
tors, advanced operators can receive multiple quan-
tities and return multiple output quantities. For
example, in Figure 1 (c), a linear equation solver
requires 6 quantities (1, 1, 4, 2, 35, 94) and returns
2 intermediate quantities (q0, q1). Then, similar to
the bDAG, we use the topological ordering of the
mDAG to obtain a sequence of multivariate opera-
tions. To generate such a sequence, we propose
GeDe, a Generation-based Deductive approach.

Compared to generation-based techniques, GeDe
has the deductive property that enables the reuse
of intermediate quantities. Compared to deduc-
tive methods, GeDe employs a generation model to
generate each multivariate operation, which avoids
the need to enumerate a large number of possible
multivariate operations.

In order to achieve this generative-based deduc-
tive capacity, we equip a generation model with a
re-encoding strategy that jointly encodes the prob-
lem and intermediate quantities at each step of
reasoning, yielding embeddings of the intermedi-
ate quantities that could be reused in the subse-
quent steps. In addition, we switch from the tradi-
tional greedy or beam search to a hierarchical beam
search strategy, which is well suited to the equation
generation requirement.

Contributions. (1) By extending bDAG to mDAG,
we can directly address complex mathematical
problems using pre-defined advanced operators.
(2) We propose GeDe, a generation-based deduc-
tive model that keeps the deductive property while
avoiding the high cost of enumeration. GeDe
equips a generation model with the re-encoding
and hierarchical beam search strategies to achieve
the objective. (3) We automatically create a dataset
named CMWPA for solving complicated MWPs
that require both the basic binary operators and
the advanced operators. It has been shown that
GeDe not only effectively adapts advanced opera-
tors but also performs better on three existing MWP
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datasets when more operations are involved.

2 Related Work

2.1 Math Word Problem

Early efforts to solve MWPs use rule-based ap-
proaches, which are only able to address a limited
number of MWP scenarios (Kushman et al., 2014;
Liguda and Pfeiffer, 2012; Roy and Roth, 2018).
Deep learning models, on the other hand, are better
capable of addressing a wider range of MWPs. The
first seq2seq model for MWPs is proposed by Wang
et al. (2017). This model employs RNN to encode
the problem and produce mathematical expressions.
To enhance the seq2seq model, additional tech-
niques have been developed, including reinforce-
ment learning (Huang et al., 2018), template-based
methods (Wang et al., 2019), and group attention
mechanisms (Li et al., 2019). Seq2tree, a tree
structure decoder, is developed by Xie and Sun
(2019). It replaces the original sequence decoder
and greatly outperforms seq2seq models in terms of
performance. KA-S2T (Wu et al., 2020) and MWP-
BERT (Liang et al., 2022) inject commonsense
knowledge and quantities’ properties to improve
model performance. In order to encode the relation-
ships between quantities in MWPs, Graph2tree (Li
et al., 2020; Zhang et al., 2020) encodes the input
problem using graph neural networks.

In addition to the generation models with
seq2seq, seq2tree, or graph2tree structures, other
efforts use deductive methods to solve MWPs step
by step rather than directly generating the entire ex-
pression. Cao et al. (2021) represent the calculation
process by bDAG and extract the bDAG structure
by aggregating quantities and sub-expressions iter-
atively. Jie et al. (2022) view the task as a complex
relation extraction problem and predict the rela-
tion of two quantities gradually. Compared with
generation methods, deductive methods can easily
employ the intermediate values to avoid repetitive
generation. We expand the deductive methods to
handle more complex advanced operators.

2.2 Large-scale Pre-trained Language Model

In-context few-shot learning or even zero-shot
learning based on large-scale pre-trained language
models, such as GPT-3 (Brown et al., 2020),
PaLM (Chowdhery et al., 2022), and OPT (Zhang
et al., 2022), has been thoroughly studied for mul-
tiple tasks, including math word problem solv-
ing (Cobbe et al., 2021; Wang et al., 2022; Wei

et al., 2022). This tuning-free methods have
achieved promising performance, and their success
mainly relies on the reasoning power of large-scale
PLMs. However, the reasoning power is extremely
expensive due to the large number of parameters,
massive pre-training data, carefully designed pre-
training objectives, and huge overhead of compu-
tational resources. In contrast, we investigate fine-
tuning the small models.

3 Problem Definition

The goal of MWP is to generate a specific logic
form that can be executed to answer the problem
P = {p1, p2, .., pn} which consists of n tokens
and m quantity tokens Q = {q1, q2, ..., qm}. Some
commonsense constants, such as π and e, may not
explicitly appear in the problem; thus, we addition-
ally add them to the quantity set Q.

In this paper, we define the multivariate1 directed
acyclic graph (mDAG) as our target logic form,
which describes the process of solving MWPs. The
nodes of mDAG denote operations that consist
of an operator and multiple quantities, and the
edges represent the dependency between nodes.
Our goal is to generate a operation sequence O =
(o1, o2, ..., o|O|) which can be obtained from the
topological ordering of mDAG. |O| is the number
of operations. The t-th operation is a sequence of
tokens ot = (at1, a

t
2, ..., a

t
|ot|) with each token rep-

resenting an operator or a quantity. Each operator
is selected from the operator set V , which is pre-
defined by the provided dataset. Each quantity is
choosen from Q, which is initialized with the m
quantity tokens in P and can gradually grow as the
steps of reasoning progress. |ot| is the number of
tokens of the t-th operation.

4 Approach

4.1 Overview
In general, the proposed GeDe method consists
of two main components: the re-encoder and de-
coder. The former aims to jointly encode the prob-
lem and quantities, which can support the reuse
of intermediate quantities. The latter is designed
to generate an operation according to the output
of the re-encoder. Since our target is an operation
sequence, we need to perform multiple reasoning
steps, with each step generating an operation. We
illustrate the reasoning process in Figure 2. At each

1The term "multivariate" means that the operator can re-
ceive multiple quantities and output multiple quantities.
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Figure 2: Illustration of iteratively generating the operation sequence by the proposed GeDe. At each reasoning
step, GeDe re-encodes the input by adding new intermediate quantities and then generates a new operation.

reasoning step, we update the input sequence by
adding new intermediate quantities generated in the
previous step. The updated input sequence is fed
into the re-encoder and the decoder to generate an
operation. The generation process is equipped with
a hierarchical beam search strategy to enable both
token-level beam search within an operation and
operation-level beam search in the whole operation
sequence.

4.2 Re-Encoder

This section delves into the re-encoder by explain-
ing the input and the encoder respectively.

Since we are only interested in the semantics of
the quantities rather than their precise values, we
first substitute each quantity in the original prob-
lem P with a general special token, [QTTi]. This
leaves Pr devoid of any specific quantities. In order
to obtain the encoder’s input sequence, P t

in, we con-
catenate Pr with all intermediate quantities, where
each quantity signifies its corresponding operation.

We take the example in Figure 2 to explain the
input. The given math problem contains six quan-
tities, which are replaced by [QTT0] to [QTT5].
At reasoning step t, we have already generated the
following operation:

[LES]

[
[QTT2] [QTT4]
[QTT3] [QTT5]

] [
[QTT0]
[QTT1]

]
(1)

= [LES][QTT2][QTT4][QTT3][QTT5][QTT0][QTT1]

where LES stands for a multivariant operator of lin-
ear equation solver given the operands of a matrix
made up of [QTT2], [QTT3], [QTT4], [QTT5]
and a vector made up of [QTT0] and [QTT1]. In
practice, the operation is represented by a sequence
that expands the matrix and vector by row. Then
we denote the outputs of this operation by two new

quantities [QTT6] and [QTT7] and concatenate
the sequence

[QTT6][QTT7][=][LES][QTT2][QTT4] · · · [QTT1] (2)

with the original input Pr to obtain P t
in.

We instantiate the re-encoder ME by a PLM
(e.g., BERT or GPT) to represent the input se-
quence and obtain the reasoning state, i.e.,

Rt = ME(P
t
in), (3)

where Rt ∈ RN×H represents the reasoning state
at step t. N denotes the length of the input se-
quence and H denotes the hidden size.

For the subsequent generation module, we ex-
tract the representation of each quantity from Rt

according to their positions in P t
in:

Qt = {Rt[i] | i ∈ Iq}, (4)

where Qt ∈ RM×H , M denotes the number of
quantities, Iq saves the indexes of all the quantities
in P t

in, and Rt[i] denotes the i-th row of Rt.
In summary, the original input is re-encoded with

the previously generated intermediate quantities at
each reasoning step to update the reasoning state
and record all intermediate quantities, which may
be reused in the subsequent generation process.

4.3 Decoder
We adopt a Gated Recurrent Unit (GRU) network
(Chung et al., 2014) combined with the attention
mechanism (Vaswani et al., 2017) as the decoder
MD. Following the majority of the earlier works
(Liang et al., 2022; Tan et al., 2021; Xie and Sun,
2019), we choose GRU instead of transformer for a
fair comparison. Although some works choose pre-
trained transformer (Shen et al., 2021), their per-
formance might not be improved due to the larger
parameters but limited labeled data.
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Operation Generation. The decoder aims to pro-
vide an operation ot = (at1, a

t
2, ..., a

t
|ot|) at each

reasoning step t. To enable the auto-regressive
generation, we insert a special beginning token
([BOS]) before the first token at1 and add a special
ending token ([EOS] or [EOO]) after the last to-
ken at|ot| to re-create ot = (at0, a

t
1, a

t
2, ..., a

t
|ot|+1).

While [EOS] only signifies the termination of the
current operation, [EOO] stands for the final to-
ken of the complete operation sequence. The hid-
den state ht

i of each token ati can be obtained by
ht
i = GRU(ht

i−1,a
t
i) where ht

i−1 ∈ R1×H rep-
resents the hidden state of the previous step, ht

0

is initialized from the hidden state of the [CLS]
token produced by the encoder, and ati ∈ R1×H

is the representation of the token ati. Next, us-
ing ht

i as the query to attend to current reasoning
state Rt, we obtain the attention-enhanced state
At

i = MHA(ht
i,R

t), where MHA denotes multi-
head attention (Vaswani et al., 2017). Finally, we
determine the likelihood of the output token by
determining how well At

i resembles the represen-
tation of quantities and operators, i.e.,

p(ati|o<t, at<i, P ) = softmax(At
i([V | Qt])T ), (5)

where o<t represents o1, o2, ..., ot−1 before reason-
ing step t, at<i represents at0, a

t
1, · · · , ati−1 before

the i-th token of step t, | is the matrix concatena-
tion operator, V ∈ R|V |×H and Qt ∈ RM×H de-
note the representations of operators and t-th step’s
quantities respectively. When obtaining a new op-
eration ot, we can determine the number of new
quantities by the operator in ot and record these
new intermediate quantities for the subsequent rea-
soning steps. When [EOS] has the highest proba-
bility, the decoding process of the current operation
ends but a new operation generation starts instead.
When [EOO] has the highest probability, the entire
decoding process is complete.

Training Objective. Given a problem P and its
ground truth operation sequence O, we maximize
the probability of generating O by P , i.e.,

p(O|P ) =

|O|∏

t=1

|ot|+1∏

i=1

p(ati|o<t, at<i, P ). (6)

4.4 Hierarchical Beam Search

To enhance the generation quality during inference,
beam search is used in many generation tasks as

a refined version of greedy search (Tillmann and
Ney, 2003). However, using beam search in the
deductive methods is difficult because the search
space of the operation sequence is nested. In other
words, we need to generate each operation based on
tokens and generate the entire operation sequence
based on operations. Therefore, previous deduc-
tive methods (Cao et al., 2021; Jie et al., 2022)
only adopt the greedy search and leave the imple-
mentation of the beam search as further work. To
address this challenge, we propose a hierarchical
beam search strategy. Compared with the tradi-
tional beam search, the hierarchical beam search
can control the generation process at two levels.

Specifically, the hierarchical beam search con-
sists an inner beam search and an outer beam
search. The former is a standard beam search which
seeks a series of tokens to form a candidate oper-
ation. The latter is designed to search a complete
operation sequence. The beam score of the inner
beam search purely relies on the probabilities of
tokens predicted by the decoder. Suppose the t-th
step generates l tokens, the inner beam score ibst

is calculated as:

ibst = log

l∏

i=1

p(ati)
1
l =

1

l

l∑

i=1

log p(ati), (7)

where p(ati) is computed by Eq (5). We use the
inner beam scores of generated operations to ap-
proximate the distribution of operations to support
the outer beam search. The probability of the t-th
operation ot can be calculated as the softmax score
of its inner beam score, i.e.,

p(ot) = softmax(exp(ibst)). (8)

Suppose the entire operation sequence contains
T operations, the outer beam score is computed as:

obs = log(
T∏

t=1

p(ot))
1
T =

1

T

T∑

t=1

log p(ot). (9)

Algorithm 1 presents the hierarchical beam
search algorithm. Each outer beam is denoted by
the symbol beam, which keeps track of both the
current operation sequence and the beam score.
The empty operation sequence and score of zero
are used to construct the initial outer beam ini-
tially (line 1). Then, we iteratively expand outer
beams until they are all finished, i.e., all the outer
beams are terminated with [EOO] (line 4-14). For
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Algorithm 1 Hierarchical Beam Search

Input: Math World Problem P , Beam size K
Output: beams with Top-K operation sequences
1: beams← [InitialBeam];
2: while not all beams are over do
3: beamsn ← [];
4: for beam in beams do
5: if beam is over then
6: beamsn.append(beam);
7: else
8: ops← InnerBeamSearch(P, beam,K);
9: for op in ops do

10: beamnew ← Extend(beam, op);
11: beamsn.append(beamnew);
12: end for
13: end if
14: end for
15: beams← GetTopK(beamsn,K);
16: end while

each extensible outer beam, we search candidate
operations ops using the inner beam search (line
8). The inner and the outer beam search share the
same beam size K. Next, we extend outer beams
with these candidate operations (line 9-12). At
the end of each step, we only maintain the top-K
outer beams according to their scores computed by
Eq. (9) (line 15). Finally, beams save the top-K
operation sequences. We discuss the complexity of
GeDe in Appendix A.1

4.5 Decoding Constraint

Logic forms need to obey clear grammatical rules.
In order to guarantee the validity of the output,
we provide two constraint strategies, one during
and one after the decoding process. Inspired by
PICARD (Scholak et al., 2021), an incremental
grammar checker proposed for Text-to-SQL task,
the constraint strategy during the decoding process
is to filter out illegal beams at each decoding step
in the inner beam search to prevent potential syn-
tax errors in the generated operation. For example,
when we detect that the current token generation
step needs to generate an operator, we will reject
all non-operators. Following (Jie et al., 2022), the
after decoding constraint strategy eliminates candi-
date operations that are improbable to exist in real-
world mathematical problems, such as “[QTTi] −
[QTTi]” and “[QTTi][QTTi]”.

5 Experiments

In this section, we establish a dataset for multivari-
ant advanced operators and show that the proposed
GeDe is capable of doing these types of operations
successfully. We also conduct experiments on four

widely-adopted MWP datasets to show the effec-
tiveness of our model on binary operations.

5.1 Experimental Setup

Datasets. We consider four MWP datasets in-
cluding our created CMWPA and three widely-
used existing MWP datasets: MAWPS (Koncel-
Kedziorski et al., 2016), Math23k (Wang et al.,
2017), MathQA (Amini et al., 2019), and SVAMP
(Patel et al., 2021). We use CMWPA to verify the
validity of multivariate operations. Following (Tan
et al., 2021), we perform pre-processing to filter out
unsolvable problems. In all the datasets, we take
into account the basic binary operators addition
(+), subtraction (−), multiplication (×), division
(÷), and exponentiation (ˆ). For advanced opera-
tors used in the CMWPA dataset, we consider the
linear equation solver, the quadratic function ex-
tremum solver, and the quadratic function integral
solver. Appendix A.2 presents the statistics for
each dataset.

Evaluation Metric. Following previous work (Jie
et al., 2022), we compare the predicted and the gold
answer to calculate the accuracy as the evaluation
metric. We parse out the operator and operands
from the model predicted expression sequence and
then use the corresponding operator executor to
calculate the answers. We explain the details of the
parsing and execution in Appendix A.3.

Implementation Details. We adopt RoBERTa-
base2 (Liu et al., 2019) as our re-encoder for En-
glish datasets, and Chinese-RoBERTa-base3 (Cui
et al., 2020) for Chinese datasets. The purpose of
using the Roberta model is to make a more fair
comparison with previous work. We can also use
unidirectional attention models (e.g., GPT). We
use AdmaW to optimize the loss function with a
learning rate of 2e-5, a weight decay of 1e-2, and
a batch size of 8. During inference, the beam size
K is set to 4 by default. For CMWPA, Math23K,
MathQA, and SVAMP we report accuracy on their
test set. For MAWPS and Math23k, we follow pre-
vious works and also report 5-fold cross-validation
performance. We conduct all experiments with a
RTX 3090 (24G) GPU.

2https://huggingface.co/roberta-base
3https://huggingface.co/hfl/chinese-roberta-wwm-ext
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Model MAWPS 5-fold Math23k Test Set Math23k 5-fold MathQA Test Set SVAMP Test Set

S2S

GroupAttn (Li et al., 2019) 76.1 69.5 66.9 - 21.5
mBERT+LSTM (Tan et al., 2021) - 75.1 - 77.1 -
RoBERTaGen (Lan et al., 2022) 88.4 - 76.9 76.6 30.3

Generate&Rank (Shen et al., 2021) 84.0 85.4 84.3 - -
GTS (Xie and Sun, 2019) 82.6 75.6 74.3 - 41.0

S2T/G2T

Graph2Tree (Zhang et al., 2020) 85.6 77.4 75.5 69.5 43.8
HMS (Lin et al., 2021) 80.3 76.1 - - -

MultiE&D (Shen and Jin, 2020) - 78.4 76.9 - -
BERT-CL (Li et al., 2022) - 82.4 - 73.8 -

MWP-RoBERTa (Liang et al., 2022) - 84.5 82.0 76.6 -

DR
RoBERTa-DR (Jie et al., 2022) 92.0 85.1 83.0 78.6 47.3

GeDe 92.3 85.4 84.2 81.5 45.7

Table 1: Accuracy on three existing MWP datasets (%).

5.2 Experiment on CMWPA

The existing MWP datasets only use basic binary
operators as target logic form. Rewriting these
logic forms to support advanced operators is ex-
pensive. Therefore, based on handcraft templates,
we create a synthetic dataset named CMWPA
(Complex Math Word Problems with Advanced
operators).

To create the CMWPA dataset, we first define
needed operators which include five binary oper-
ators (addition (+), subtraction (−), multiplica-
tion (×), division (÷), and exponentiation (ˆ)), as
well as three advanced operators, which can be
used to solve linear equations (the [linear equa-
tion solver] operator), find the maximum value
of quadratic functions (the [quadratic function ex-
tremum solver] operator), and find the definite inte-
grals of quadratic functions (the [quadratic function
integral solver] operator). For each operator, we
write one or more templates to generate a text de-
scription and its operation. We only consider the
quadratic function because the operations related
to the quadratic function can be transformed to a
series of binary operations for training the baseline
model. The templates of CMWPA is described in
Appendix A.4. In this dataset, for each problem,
we provide two types of logic forms: multivariate
operation sequence and binary operation sequence.
An example is given in Appendix Table 5.

We conduct experiments on CMWPA to demon-
strate that using advanced operators to solve com-
plex MWPs is more effective than only using basic
binary operators. Concretely, our proposed GeDe
is applied to generate multivariate operation se-
quences. Then for fair comparison, we adopt GeDe
to generate binary operation sequence.

Experiment Results. Table 2 shows the accuracy
and inference time on CMWPA, using mDAG as

Logic Form Accuracy Inference Time

BET 32.0 600 ms/per sample
mDAG 95.0 400 ms/per sample

Table 2: Accuracy (%) and time cost on CMWPA
of GeDe with different annotation (BET: Binary Ex-
pression Tree, mDAG: Multivariate Directed Acyclic
Graph).

annotation, GeDe achieves 95.0% accuracy, which
indicates that our proposed method can effectively
support advanced operators to generate the multi-
variate operation sequence. However, when using
the binary expression tree as the generation target,
GeDe only achieves 32.0% accuracy. Because the
average number of advanced operators in multi-
variate operation sequences is 2.98, which is sig-
nificantly less than the average number of binary
operators (i.e., 35.03) in binary expressions tree,
using advanced operators to solve MWPs can es-
sentially reduce the learning difficulty and lead to
improved both the accuracy and efficiency.

5.3 Experiment on Existing MWP Datasets

Baselines. The baselines can be broadly catego-
rized into four groups, sequence-to-sequence(S2S),
sequence-to-tree(S2T), graph-to-tree(G2T), and
deductive-reasoning(DR), where the first three of
these are all generation-based methods but are in-
stantiated with different encoders or decoders. We
select baselines having reported the performances
on at least one of the three datasets.

Experiment Results. We start by running tests
on MAWPS and Math23k. As shown in Table 1,
our model achieves promising performance on both
the datasets compared to previous state-of-the-art
(SOTA) methods. Given that MAWPS only has
an average of 1.41 binary operations, the proposed
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GeDe only slightly improves 0.3% accuracy on
MAWPS compared to earlier baselines. This is
not enough to demonstrate the benefits of the pro-
posed model. On Math23k, GeDe performs equally
well as the earlier SOTA method Generate&Rank.
However, Generate&Rank fine-tunes a mBART-
large (Liu et al., 2020) model with 610M parame-
ters. In contrast, GeDe only involves 126M param-
eters and thus reveals a better parameter-efficiency.
We further evaluate our method on MathQA, the
most challenging MWP dataset with an average of
4.25 binary operations, and show results in Table 1.
Our model greatly beats all baselines (+2.9%),
which demonstrates the model’s efficacy in hand-
ing complex MWPs. In summary, on three existing
MWP datasets, the performances of GeDe are on
par or better than those of the closest competitors.
SVAMP is also a challenging dataset that is manu-
ally created to evaluate a model’s robustness. On
this dataset, GeDe achieves an accuracy of 45.7%,
which can outperform the vast majority of baselines
except the DR model.

In addition, we conduct experiments based on
Roberta-large on the Math23k dataset. The model
achieves an accuracy of 86.7% on the Math23K test
set. Using Roberta-large improves the accuracy by
1.3% over using Roberta-base. This shows that
using a larger PLM improves the performance of
our method and outperforms the baseline Generate
& Rank model on the Math23K test set.

To further highlight the advantages of the pro-
posed GeDe, following (Jie et al., 2022), we pro-
vide a fine-grained analysis on MathQA based on
various numbers of operations. To be more specific,
we compare our model with the most powerful
baseline RoBERTa-DR (Jie et al., 2022) and dis-
play the analysis results in Table 3. We observe that
GeDe performs better on samples with 1, 3, and 4
operations, particularly on samples with at least 5
operations. This comparison indicates our model is
more robust to problems requiring more reasoning
steps, because the designed re-encoder can capture
adequate interactions between the newly produced
quantities and the original problem.

5.4 Ablation Study

In this section, we take a thorough ablation study
on MathQA dataset to verify the effectiveness of
the re-encode and the hierarchical beam search
strategies in the proposed GeDe.

Effect of Re-encoder. The proposed re-encoder

# Operations RoBERTa-DR GeDe
1 77.4 78.0
2 83.5 81.8
3 83.4 85.1
4 81.7 84.0
≥5 71.4 77.5

Overall 78.6 81.5

Table 3: Fine-grained accuracy on MathQA (%).

Model variant Accuracy
GeDe 81.5

- w/o dynamic quantity embeddings 80.3
- w/o re-encoder 75.8
- w/o hierarchical beam search 81.0

Table 4: Ablation study on MathQA (%).

in Section 4.2 can update both new quantities and
reasoning state at each reasoning step. We investi-
gate the two functions respectively.

Instead of using dynamic quantity embeddings,
we develop a variant model with static quantity em-
beddings. In other words, instead of having distinct
embeddings updated based on various contexts in
various math problems, [QTTi] in various math
problems is assigned a unified embedding that is
updated globally. Note we keep re-encoding the
original problem with the newly produced quan-
tities at each step t, but only the updated reason-
ing state Rt is leveraged. The comparison results
in Table 4 show that without the dynamic quan-
tity embeddings, the performance drops 1.2% on
MathQA’s test set. Since different MWPs’ quanti-
ties reflect different semantics, it is preferable for
them to be dynamically updated with their contexts.

Then we completely remove the re-encoder and
only allow the encoder to encode the original prob-
lem. Instead, we directly use the hidden state in the
decoder’s GRU network to represent the reasoning
state. Table 4 shows that without the re-encoder,
the performance drops 5.7%. In this variant model,
although the quantities are dynamically updated
according to various problems, the interactions be-
tween the quantities and the input problem are not
fully exploited as the re-encoder does.

Effect of Hierarchical Beam Search. Previous de-
ductive methods (Cao et al., 2021; Jie et al., 2022)
generate the operation sequence based on hierarchi-
cal greedy search, and regard the implementation
of beam search as a future challenge. We imple-
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ment hierarchical beam search in our GeDe to im-
prove greedy search. We compare them, where
the beam size is set to 1 to create a greedy search.
As shown in Table 4, when the hierarchical beam
search is disabled (beam size = 4) and replaced
with the hierarchical greedy search (beam size =
1), the performance drops 0.5%. By observing
the inner and outer beam scores in the generation
process, for most of the samples, we find that the
score of the first beam is significantly greater than
that of the remaining beams, resulting in a rela-
tively small gap between greedy and beam search.
This problem, also referred to as neural networks’
“over-confidence”, has been studied by some works
(Miao et al., 2021; Wang et al., 2021). Such im-
provement is left in the further.

6 Conclusion and Future Work

This paper proposes a multivariant direct acyclic
graph (mDAG) to describe a math expression in
order to handle the advanced multivariant opera-
tors. Then to generate the topological ordering of
mDAG, we propose a generation model equipped
with a re-encode strategy to keep the deductive
property but avoid the expensive enumeration of
existing deductive methods. A hierarchical beam
search algorithm is implemented to enable the in-
ner token and outer operation searches. Extensive
experiments on three standard datasets and one
automatically created dataset demonstrate the pro-
posed model’s advantage in solving math problems
with binary operators and advanced operators.

7 Limitations

From the time complexity analysis in Ap-
pendix A.1, we can see that our model will face
the efficiency issue when it needs to generate a
long operation sequence. At the same time, the re-
encode module needs to concatenate the problem
description with generated operations, which may
reach the input length limit of PLM. Therefore, our
future work will study how to compress the input
sequence during the generation process to address
above issues.

8 Ethics Statement

For many years, public opinion has debated the
pros and cons associated with artificial intelligence
technology. One consensus is that advances in
technology may be used in a variety of scenarios,

leading to different influences. To provide an eth-
ical analysis of this work and others on the same
line, we will address three aspects: the possible
positive or negative effects of our work, the impact
of harmful information in datasets, and the equality
and differences between different languages.

First, the point of studying MWP is to explore
the mathematical reasoning capabilities of artifi-
cial intelligence (Wei et al., 2022). However, the
developed models may still be applied to harmful
aspects, such as cheating in math exams.

On the other hand, the presence of harmful in-
formation in the training data may lead the model
to learn some implicit biases (Liang et al., 2021;
Steed et al., 2022). In our experiments, for the
three existing datasets, we exactly follow the ex-
perimental setup of previous works to pre-process
and remove the potential harmful information. For
our manually created dataset CMWPA, our tem-
plates also do not contain any harmful information.
However, in the inference phase, our model cannot
reject answers when the user provides malicious in-
put. Therefore, we need to employ extra efforts to
avoid this issue when the model is deployed online.

Finally, we use both English and Chinese
datasets in our experiments to respect linguistic
equality and better take into account language dif-
ferences. The experimental results validate the
robustness of our model across languages. Nev-
ertheless, English and Chinese are the two most
popular languages, and we should make greater
efforts to concentrate on and preserve the devel-
opment of minor languages in the field of natural
language processing (Zhang et al., 2021).
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A Appendix

A.1 Complexity Analysis

Consider a math problem that has n words in the
problem description and |O| operations in the solv-
ing process. A total of κ words are needed to
describe the |O| operations, i.e., κ =

∑|O|
t=1 |ot|.

GeDe needs to perform |O| operation re-encode
steps and κ token generation steps. For the τ -th
re-encode step, its computational complexity is
O((n +

∑τ−1
t=1 |ot|)2). For generating the tokens

in oτ , its computational complexity is O(|oτ | ∗
(n +

∑τ−1
t=1 |ot|)). Therefore, the overall time

complexity is
∑|O|

τ=1(n +
∑τ−1

t=1 |ot|)2) + |oτ | ∗
(n +

∑τ−1
t=1 |ot|) < O(|O| ∗ n2 + κ ∗ (n + κ)).

If we use the unidirectional attention model as
re-encoder, the complexity can be lowered to
O(n2+κ∗ (n+κ)), which is the same as what the
current seq2seq generation methods achieve. The
additional time complexity is acceptable because
|O| is typically not very large.

A.2 Datasets Statistics

The statistics of datasets are presented in Table 6.
CMWPA is a synthetic English dataset with 1000
training samples and 100 test and validation sam-
ples. MAWPS and MathQA are public English
MWP datasets that contain 1.9K math problems
and 20K math problems, respectively. Math23K is
a public Chinese MWP dataset that contains 23K
math problems. We use the average number of oper-
ations to assess the difficulty of a MWP dataset. As
we can see, MAWPS is the simplest dataset because
almost all problems require only one or two oper-
ations. MathQA is the most challenging dataset,
requiring more operations and, hence, more steps in
the reasoning process to obtain the answer. SVAMP
is also a challenging dataset that is manually cre-
ated to evaluate a model’s robustness. They apply
variations to the instances sampled from MAWPS.
Such variations could include adding extra quanti-
ties, swapping the positions between noun phrases,
etc.

A.3 Parsing and Execution

Due to the existence of higher-order operators, the
way we calculate the answer is different from pre-
vious works. We implement the corresponding
solving function using Python for each pre-defined
operator, which is also included in our published
code. During inference, for the generated operation
sequence, we sequentially calculate the returned
quantities for each operation. Naturally, the re-
turned quantities of the last operation denote the
answer to the problem. For a generated operation,
we first parse out its operator and several operands.
Then, we call the solving function corresponding
to the operator to obtain the returned quantities.

A.4 CMWPA Templates

We show the templates corresponding to the ad-
vanced operators as follows.

Two templates for the [linear equation solver]
operator:

• Text description: [q0] * [o0] + [q1] * [o1] = [q4]; [q2] *

[o0] + [q3] * [o1] = [q5].

Operation: [linear equation solver] [q0] [q1] [q2] [q3]

[q4] [q5]

• Text description: Determine [o0], [o1] as the result of

inverse of matrix [ [ [q0] , [q1] ] , [ [q2] , [q3] ] ] times

vector [ [q4] , [q5] ].
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Operation: [linear equation solver] [q0] [q1] [q2] [q3]

[q4] [q5]

One template for the [quadratic function integral
solver] operator:

• Text description: Determine [o0] as the definite inte-

gral of quadratic function [q0] * xˆ2 + [q1] * x + [q2]

between the intervals [q3] and [q4].

Operation: [quadratic function integral solver] [q3] [q4]

[q0] [q1] [q2]

One template for the [quadratic function ex-
tremum solver] operator:

• Text description: Determine [o0] as the the extremum

value of quadratic function [q0] * xˆ2 + [q1] * x + [q2].

Operation: [quadratic function extremum solver] [q0]

[q1] [q2]

Based on the templates, we generate a sample
as follows. First, we randomly initialize a candi-
date set of quantities. Then, we randomly select
a template and fill in slots by randomly selecting
quantities from the quantity candidate set. We re-
input the returned quantities of the operation into
the candidate set and repeat the above process sev-
eral times. In this way, a problem description and
its operation sequence are generated. We also con-
vert the operation sequence into a pre-order binary
expression as another type of annotation for train-
ing the seq2seq baseline.

A.5 CMWPA Example
We provide a sample of CMWPA in Table 5.
This sample is initialized with 6 quantities and
involves four types of operators: the subtraction
operator, the [linear equation solver] operator, the
[quadratic function integral solver] operator, and
the [quadratic function extremum solver] opera-
tor. Two types of annotations are provided: the
multivariant operation sequence and the pre-order
binary expression (pre-order binary expression can
be transformed into a binary operation sequence
(bDAG) or a binary expression tree). For each op-
eration in the multivariant operation sequence, we
provide the operation, the input quantities, and the
returned output quantities.
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Problem:
Given [q0] = 0.23 . [q1] = 0.43 . [q2] = 0.18 . [q3] = 0.26 . [q4] = 0.71 . [q5] = 0.85 . Determine [q6] as the
[q4] minus [q5] . Determine [q7] [q8] as the result of inverse of matrix [ [ [q4] , [q3] ] , [ [q2] , [q5] ] ] times
vector [ [q0] , [q6] ] . Determine [q9] as the definite integral of quadratic function [q6] * x2 + [q7] * x + [q5]
between the intervals [q1] and [q8] . Determine [q10] as the the extremum value of quadratic function [q8] *
x2 + [q6] * x + [q9] . Output the value of [q10] .
Multivariant Operation Sequence:

1. operation1: [-, [QTT4], [QTT5]]

returned quantities of operation1: [[QTT6]]

2. operation2: [[linear equation solver], [QTT4], [QTT3] , [QTT2] , [QTT5] , [QTT0] , [QTT6]]

returned quantities of operation2: [[QTT7], [QTT8]]

3. operation3: [[quadratic function integral solver] , [QTT1] , [QTT8] , [QTT6] , [QTT7] , [QTT5]]

returned quantities of operation3: [[QTT9]]

4. operation4: [[quadratic function extremum solver] , [QTT8] , [QTT6] , [QTT9]]

returned quantities of operation4: [[QTT10]]

Pre-order binary expression:
+ , * , / , - , * , [QTT4] , [QTT0] , * , [QTT2], - , [QTT4] , [QTT5] , - , * , [QTT4] , [QTT5] , * , [QTT2] ,
[QTT3] , ˆ , * , [c3] , / , - , [QTT4] , [QTT5] , * , [c1] , / , - , * , [QTT4] , [QTT0] , * , [QTT2] , - , [QTT4] ,
[QTT5] , - , * , [QTT4] , [QTT5] , * , [QTT2] , [QTT3] , [c1] , + , * , - , [QTT4] , [QTT5] , * , [c3] , / , - ,
[QTT4] , [QTT5] , * , [c1] , / , - , * , [QTT4] , [QTT0] , * , [QTT2] , - , [QTT4] , [QTT5] , - , * , [QTT4] ,
[QTT5] , * , [QTT2] , [QTT3] , - , + , * , / , - , [QTT4] , [QTT5] , [c2] , ˆ , / , - , * , [QTT4] , [QTT0] , * ,
[QTT2] , - , [QTT4] , [QTT5] , - , * , [QTT4] , [QTT5] , * , [QTT2] , [QTT3] , [c2] , + , * , / , / , - , * , [QTT5]
, [QTT0] , * , [QTT3] , - , [QTT4] , [QTT5] , - , * , [QTT4] , [QTT5] , * , [QTT2] , [QTT3] , [c1] , ˆ , / , - , * ,
[QTT4] , [QTT0] , * , [QTT2] , - , [QTT4] , [QTT5] , - , * , [QTT4] , [QTT5] , * , [QTT2] , [QTT3] , [c1] , * ,
[QTT5] , / , - , * , [QTT4] , [QTT0] , * , [QTT2] , - , [QTT4] , [QTT5] , - , * , [QTT4] , [QTT5] , * , [QTT2]
, [QTT3] , + , * , / , - , [QTT4] , [QTT5] , [c2] , ˆ , [QTT1] , [c2] , + , * , / , / , - , * , [QTT5] , [QTT0] , * ,
[QTT3] , - , [QTT4] , [QTT5] , - , * , [QTT4] , [QTT5] , * , [QTT2] , [QTT3] , [c1] , ˆ , [QTT1] , [c1] , * ,
[QTT5] , [QTT1]

Table 5: A sample of CMWPA. [QTTi] represents the i-th quantity, [c1], [c2], and [c3] represent three constants 1,
2, and 3 respectively.

Dataset #Train #Dev #Test Avg. #Operations Avg. PDL Operation Types Language

CMWPA 1,000 100 100 2.98 329.55 Basic & Advanced English
MAWPS 1,589 199 199 1.41 299.31 Basic English
Math23k 21,162 1,000 1,000 2.27 156.28 Basic Chinese
MathQA 16,191 2,411 1,605 4.25 374.89 Basic English
SVAMP 3,138 - 1,000 1.3 159.6 Basic English

Table 6: Detailed statistics of all datasets. PDL means problem description length.
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