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Abstract

Scholarship on generative pretraining (GPT)
remains acutely Anglocentric, leaving serious
gaps in our understanding of the whole class
of autoregressive models. For example, we
have little knowledge about the potential of
these models and their societal impacts in di-
verse linguistic and cultural settings. We alle-
viate this issue for Arabic, a wide collection of
languages and dialectal varieties with ~ 450
million population, by introducing JASMINE.
JASMINE is a suite of powerful Arabic autore-
gressive Transformer language models ranging
in size between 300 million-6.7 billion param-
eters pretrained on a large and diverse dataset
(~ 235GB of text). We also carefully design
and release a comprehensive benchmark for
both automated and human evaluation of Ara-
bic autoregressive models, with coverage of
potential social biases, harms, and toxicity. Us-
ing our novel benchmark, we evaluate JAS-
MINE extensively showing powerful perfor-
mance intrinsically as well as in few-shot learn-
ing on a wide range of NLP tasks. We aim to
responsibly release our models and evaluation
benchmark with interested researchers, along
with code for experimenting with them.

1 Introduction

Recent work in generative pretraining (Radford
et al., 2019; Brown et al., 2020; Lieber et al., 2021;
Chowdhery et al., 2022; Zhang et al., 2022; Smith
et al., 2022; Scao et al., 2022; Thoppilan et al.,
2022; Hoffmann et al., 2022) has shown that au-
toregressive models perform well on language tasks
using in-context learning, without finetuning or gra-
dient updates. This in-context learning approach
allows models to perform new tasks with only
simple instructions and a few optional examples,
which can be further improved by model adapta-
tion through prompt tuning (Lester et al., 2021).
In spite of this progress, autoregressive pretrained

* Authors contributed equally.

Transformer language models of significant size
remain largely anglocentric. This makes it difficult
to bring more diverse voices to the table. Nor is it
clear if multilingual models such as BLOOM (Scao
et al., 2022), where model capacity is split across a
large number of languages and language-specific
data are neither sufficiently large nor diverse, can
allow equitable understanding of these models in
languages other than English. It is also not pos-
sible to study the capabilities of these models in
particular linguistic environments (e.g., languages
of rich morphology, of diglossic nature, and/or with
a large number of dialects such as Arabic) and di-
verse cultural backgrounds (e.g., African, Asian,
Latin American). This situation also deprives non-
English communities of the rich array of benefits
language model technology can bring as its full po-
tential and emerging capabilities (Wei et al., 2022)
are unlocked. Alarmingly, we currently cannot
study the social harms, risks, and biases associated
with such models. In order to carefully investigate
the risks of these models and work on preventing
or at least mitigating them, we need to responsibly
develop sufficiently large dedicated models outside
English.

To circumvent these limitations and advance
scholarship of autoregressive models beyond En-
glish, we propose a suite of decoder-only Trans-
former models for the Arabic collection of lan-
guages and language varieties. Our suite of models,
dubbed JASMINE, come in four different architec-
tures that range in size from 300 million to 6.7 bil-
lion parameters. Motivated by recent findings as to
the impact of pretraining data size vis-a-vis model
size (Hoffmann et al., 2022; Penedo et al., 2023),
we carefully curate a large dataset (~ 235GB of
text) of high-quality text to pretrain JASMINE. Our
dataset is also diverse (e.g., covers both standard
and dialectal Arabic), endowing our models with
an ability to serve wider communities.

Our work also fills another significant gap for

16721

Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 16721-16744
December 6-10, 2023 ©2023 Association for Computational Linguistics



Arabic autoregressive models, i.e., that of an evalua-
tion benchmark. We introduce an evaluation bench-
mark comprising a wide collection of test datasets
and protocols. Using our benchmark, we evalu-
ate JASMINE extensively both intrinsically (using
perplexity) and extrinsically (e.g., on few-shot set-
tings). Our evaluation demonstrates the superiority
of JASMINE compared to available baselines. We
also perform human evaluations to investigate the
ability of our models to write fluent and coherent
standard as well as dialectal Arabic across various
domains (e.g., news, literary, Twitter). Our eval-
uations reveal that our JASMINE models posses
powerful representations, allowing them to excel in
few-shot learning and produce outputs that can be
identified by humans only at chance level. Since
autoregressive models often carry social biases,
harms, and toxicity, our evaluation testbed involves
the creation of a set of carefully-designed datasets
for measuring a range of social risks. Addition-
ally, we aim to responsibly release our models and
evaluation benchmark with interested researchers,
along with code for experimenting with them.

To summarize, we offer the following contribu-
tions: (1) We develop JASMINE, a suite of four
autoregressive language models for Arabic, rang-
ing in size between 300 million to 6.7 billion pa-
rameters pretrained with a diverse dataset. (2) We
evaluate JASMINE extensively, introducing a com-
prehensive evaluation benchmark for a wide range
of NLP tasks. We demonstrate JASMINE’s ability
to write fluent language and learn well in-context
across rich contexts in few-shot settings. (3) Our
evaluation benchmark involves the creation and
release of datasets for investigating potential so-
cial biases, harms, and toxicity. Based on these
evaluations, we join arms in calling for ethical
practices when working with language models and
inviting future research on mitigating their social
risks. (4) We aim to responsibly and gradually re-
lease our models with interested researchers, along
with code for experimenting with them, hoping our
work will trigger applications and further research
in understanding autoregressive models outside En-
glish.

The rest of the paper is organized as follows:
‘We introduce JASMINE in Section 2, describe our
evaluation strategies in Section 3, and our evalua-
tion benchmark in Section 4. In Section 5, we offer
human evaluations of model output. Section 6 is an
analysis of social bias in the model, and Section 7

is about related work. We conclude in Section 8.

2 JASMINE
2.1 Arabic

Arabic is a collection of languages and language
varieties, some of which (e.g., Moroccan Arabic
and Egyptian Arabic) are not mutually intelligible.
Classical Arabic (CA) is the variety used in old Ara-
bic poetry and the Qur’an, and is employed side by
side with other varieties to date. Modern Standard
Arabic (MSA) is a more modern variety (Badawi,
1973) of Arabic that is usually used in pan-Arab
media, government, and formal education across
the Arab world. Dialectal Arabic (DA) is the term
used to refer to Arabic dialects. Dialects are some-
times defined regionally (e.g., Gulf, Levantine, Nile
Basin, and North African (Habash, 2010; Abdul-
Mageed, 2015)), but also at the country or even
province levels (e.g., (Bouamor et al., 2018; Abdul-
Mageed et al., 2020b,a, 2021b, 2022)). We now
introduce JASMINE.

2.2 (Pretraining) Data

Our dataset is linguistically diverse, covering all
categories of Arabic (i.e., CA, DA, and MSA), as
we will now describe.

CA Data. We use the Open Islamicate Texts Initia-
tive (OpenITI) corpus (v1.6) (Nigst et al., 2020).!
OpenlTI contains 11, 195 premodern Islamic books
mainly collected from Shamela Liberay,” Al-Jami
Al-Kabir collection (JK),? books digitized by Jorda-
nian publisher Markaz Al-Turath, and the Shia Li-
brary.* MSA Data. We use ~223 GB of MSA text
(23.7 billion tokens) from the following sources:
AraNews,, (Nagoudi et al., 2020), El-Khair (EI-
Khair, 2016), Gigaword,5 OSCAR (Suérez et al.,
2019), OSIAN (Zeroual et al., 2019), Wikipedia
Arabic, and Hindawi Books.® We also extract
the Arabic part of the multilingual Colossal Clean
Crawled Corpus (mC4) (Xue et al., 2020) and clean
it (see § 2.3 for cleaning procedure). We call the
extracted portion AraC4 (more details are in Ap-
pendix A.2). Dialectal Data (DA). We use a cor-
pus of 1.5 billion Arabic tweets (178GB) randomly

'We exclude a random sample of 1K books from OpenITI
for later use in evaluating JASMINE perplexity (see § 4.1).
Zhttps://shamela.ws.
3http://kitab-project.org/docs/openI TL
*https://shiaonlinelibrary.com.
Shttps://catalog.1dc.upenn.edu/LDC2009T30.
®https://www.hindawi.org/books.
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Source Size  Tokens
AraC4 173GB 19.8B
AraNews,» 18.3GB 1.8B
El-Khair 16GB 1.6B
Hindawiy, 1.1GB 78.6M
Gigawords 10GB 1.1B
OSIAN 2.8GB 292.6M
OSCAR-Egy 32MB 3.8M
Wiki 1.6GB 156.5M
MSA-Total 222.8GB 23.7B
CA 12GB 1.1B
MSA+CA 243.8GB 24.8B
Twitter 178GB 21.9B

Table 1: Datasets used in JASMINE models.

sampled from a large in-house dataset of ~ 13 bil-
lion Arabic tweets. This dataset is used only for
finetuning one of our models (see Section 5), rather
than pretraining.

Data Distribution. We analyze the distribution
of MSA vs. DA in both our AraC4 and Twitter
collections using a SoTA binary classifier (Abdul-
Mageed et al., 2021a) (MSA vs. dialect, ~ 88% Fy)
on a random sample of 100 million samples from
each. We find that our Twitter data involves 28.39%
predicted dialect tweets and our AraC4 data in-
volves 5.7% predicted dialect sentences. We then
run another SOoTA country-level classifier (Abdul-
Mageed et al., 2021a) (~ 40% F;) on the predicted
dialect portions from each dataset, finding that our
Twitter data is more diverse than AraC4. For exam-
ple, our classifier tags 80% of the predicted AraC4
dialects as Egyptian, 2.86% as Bahraini, 1.85% as
Libyan, leaving other dialects to be only marginally
represented. Refer to Table 1 for more information
about our pretraining data (e.g., size, number of
tokens) and Table A.1 for country-level predicted
dialects from each of the datasets.

2.3 Preprocessing and Vocabulary

We clean our pretraining data by removing HTML
tags, elongation, and hash signs. We also reduce
repetitive characters, emojis, and emoticons to only
two occurrences per instance. Further, we replace
URLs and user mentions with the <URL> and
<USER> strings. To create our vocabulary, we use
a BPE-based tokenizer similar to GPT-2 (Radford
et al., 2019), with a vocabulary of 64,000 BPE
tokens. Refer to Appendix A.1 for more details.

Model Layers Heads Embed Seq # Parameters
JASMINE350m 12 12 768 2,048 350M
JASMINE, 35 24 16 2,048 2,048 1.3B
JASMINE, 75 32 32 2,560 2,048 2.7B
JASMINE 75 32 32 4,096 2,048 6.7B

Table 2: Parameter values for our JASMINE models.

2.4 Model Design and Implementation

We exploit our diverse dataset to train four
different variants of JASMINE, as follows:
JASMINE350p, JASMINET 35, JASMINE, 75,
and JASMINEg 75.” We pretrain JASMINE mod-
els for 500k steps each using the autoregressive
next-step prediction objective (Radford et al., 2019)
and the Transformer-based GPT-Neo (Black et al.,
2021) replication of the GPT-3 (Brown et al., 2020)
architecture. Details of the various architectures
of JASMINE are in Table 2.

3 Evaluation Strategies

We follow previous literature (Brown et al., 2020;
Howcroft et al., 2020; Zhang et al., 2022) in evalu-
ating our models extensively, under both intrinsic
and extrinsic conditions as we now explain.
Intrinsic Evaluation. Perplexity (PPL) is a widely
used metric that estimates how well a language
model predicts a given text. For a tokenized text
T = (w1, w1, ..., wy), perplexity of T is:

1 n
PPI(T) = 65610{—5 > log po(wilwei)} (1)

Where log po(w;i|w<;) is the log-likelihood of the
i" word conditioned on the previous words w ;.
Extrinsic Evaluation. We employ three settings:
(1) few-shot, where a model is given k examples de-
scribing the task at inference time as conditioning,
but without updating the models’ weights. (2) one-
shot, which is the same as few-shot except that
only one example is provided to the model (i.e.,
k=1). (3) zero-shot, where no demonstrations are
provided to the model (i.e., k=0).

4 Evaluation Benchmark

We evaluate JASMINE on 23 different datasets,
representing five different tasks: language model-
ing, autocompletion, commonsense inference, word
manipulation, and natural language understanding.
We now introduce each of these tasks along with
related datasets.

"The number of parameters is suffixed to model names.
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4.1 Language Modeling

As explained, we calculate the perplexity of our
models as intrinsic evaluation. Since there is no
standard dataset for evaluating perplexity on Ara-
bic texts, we create and release a new multi-domain
dataset totaling 6K documents extracted from six
publicly available sources. These datasets are not
in our pretraining and cover three Arabic vari-
eties: MSA, dialect, and CA. We introduce each
of them. (1) Arabic Wikipedia. We select 1K
articles from Arabic Wikipedia (AraWiki), pub-
lished after October 2022 to avoid leakage with our
data.(2) WikiLingua. Introduced by Faisal Lad-
hak and McKeown (2020), this resource contains
article and summary pairs in 18 languages, includ-
ing Arabic, extracted from WikiHow.® We extract
1K Arabic articles from the test set of WikiLin-
gua.9 (3) News Articles. We collect 1K news
articles from ~ 100 Arabic online sources. The ar-
ticles are not in our pretraining and cover different
domains (e.g., culture, economy, politics, sports).
(4) Watan2004. We select 1K articles from an old
dataset, Watan2004 (WTO04) (Abbas et al., 2011).
For dialectal and classical Arabic, we also extract
a random 1K articles from each of the following
sources: (5) EgyWiki. Egyptian Arabic articles
from Wikipedia dumps, and (6) CA-Book. Open
Islamicate Texts Initiative (OpenITI) corpus (Nigst
et al., 2020).

Results. Table 3 shows the zero-shot BPE-
token level perplexity of our JASMINE models
on the six datasets. We compare to the four
AraGPT2 models proposed by Antoun et al. (2021)
and mGPT (Shliazhko et al., 2022) as baselines.
Our JASMINE models clearly outperform all base-
lines by a significant margin, with JASMINE 75
reaching an average PPL of 42.25.

4.2 Autocompletion

The goal of autocompletion is to predict the last
word for a given text. For this, we create a dataset
totaling 15K samples. These are news headlines
(5K phrases/sentences), news stories (5K para-
graphs), and theses titles (oK phrases/sentences).
All samples are collected from diverse online
sources. For example, the thesis titles cover do-
mains such us §,ls¥! (management), .2l (}s (psy-
chology), and ¢! (law). For evaluation, we
give JASMINE a prompt (title or paragraph) with-

8https://www.wikihow.com/.
*https://huggingface.co/datasets/ GEM/wiki_lingua.

Model AraWiki WikiLing AraNews WT04 EgyWiki Op-ITI | Avg.
AraGPT235m 87.55 65.27 34.22 44.26 368.71 181.83 | 119.50
AraGPT2379m 68.93 57.57 27.53 38.26 265.17  133.25 | 91.07
AraGPT279om 51.37 49.43 30.65 32.15 395.67 122.13 | 103.08
AraGPT2, 45 34.72 44.88 27.59 26.90 289.91 121.35 | 82.85
mGPT 4 30448 12278 19.98 15601 14178 148.67 | 164.37
JASMINE350m 52.10 49.02 23.88 40.82 182.45  108.55 | 72.02
JASMINE | 38 35.75 36.08 18.45 27.65 106.33 84.14 | 48.78
JASMINE; 73 33.06 31.93 16.81 24.73 91.71 81.98 | 44.53

JASMINE 78 30.27 31.21 16.12 23.45 87.35 77.32 | 42.25

Table 3: Results in the perplexity of our JASMINE mod-
els on our language modeling benchmark. We compare
to AraGPT?2 (Antoun et al., 2020) and mGPT (Shliazhko
et al., 2022).

Models 0-shot 1-shot 8-shots 16-shots 24-shots
AraGPT23sm 11.13  10.38 12.47 12.19 12.82
AraGPT230m 10.86  11.42 12.78 13.77 13.18

o AraGPT2,y  13.61 1524  16.74 19.33 14.44

E AraGPT2 45 14.92 1522 11.51 17.00 10.89

£ mGPT, 1280 1363 1032 1048 1034

“ TJASMINEsww 1279 1339 1609 1804  16.67
JASMINE 35 15.25 16.13  17.49 20.98 16.01
JASMINE, 75 15.88 16.93  17.57 23.13 15.82
JASMINE;. 75 1591 1744 1841 24.10 17.96

Table 4: Zero-, one-, and few-shot performance in F;
on the news title completion tasks.

out the last word and ask it to predict the masked
word. We experiment with our models under zero-,
one-, and few-shot settings. Results. Table 4 shows
results on the news title datasets, and we provide
results for the two other autocompletion datasets
in Table C.1. From Table 4 we can see that JAS-
MINE models perform best in all settings.'® We
also observe that more demonstrations tend to help
improve performance. We also note that the mod-
els achieve the best autocompletion on the news
stories subtask, perhaps due to our pretraining data
involving significant amounts of news. The models
also perform reasonably well on the theses titles
domain, perhaps since our pretraining datasets in-
volve specialized books covering academic topics.
We notice a drop in model performance under the
24-shot setting, perhaps since few-shot learning
can be sensitive to the order of the shots Wei et al.
(2021); Brown et al. (2020); Lu et al. (2022).

4.3 Commonsense Inference

Since there is no Arabic commonsense inference
evaluation dataset, we follow methods introduced
by Zellers et al. (2018) to create a new, high-quality
Arabic commonsense collection using a random

1%For this and upcoming experiments, we restrict evaluation
to our smaller models (all or any of our 1.3B-6.7B models)
due to constraints on our computing resources.
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sample of 16, 707 examples from Arabic WikiHow.
Each example has a context and a correct answer.!!
For each context, we create three generated answers
using an adversarial approach. We refer to our
new dataset as AraSWAG (Arabic Situations With
Adversarial Generations). We next provide a full
explanation of it.

Initial Dataset Creation. We randomly sample
10K examples from Arabic WikiHow.!'? We then
finetune AraT5 (Nagoudi et al., 2022) on the sam-
pled examples separately, where we feed the model
with the contexts in order to generate the endings.
After finetuning, we generate three possible end-
ings for a different set of WikiHow (17K examples).
We generate the ending by setting topx = 50 and
top, = 0.95 to mimic human-like writings. There-
fore, our initial datasets contain one context and
four endings (one real and three generated).
Adversarial Dataset Creation. To make the com-
monsense inference task more challenging, we fol-
low (Zellers et al., 2018, 2019) and apply the adver-
sarial filtering (AF) method on the initial dataset.
Specifically, on each iteration, the dataset is ran-
domly partitioned into Dyy.q;y, and Dyeg With a split
of 8:2. We then finetune a MARBERT (Abdul-
Mageed et al., 2021a) model in order to classify
endings as real or generated on Dyyq;y. We evalu-
ate the finetuned model on Dye4, then apply AF to
replace easy-to-classify generations in Dyes with
newly generated endings using the finetuned AraTS5.
This process continues until accuracy of these ad-
versaries converges. We observe that during con-
vergence, the accuracy of MARBERT drops to
~ 30%. Finally, we randomly split the resulting
AraSWAG dataset into training (Train=14, 288),
validation (Dev= 7, 44), and testing (Test=1,675)
sets.

We use AraSWAG to seed our 350B, 1.3B, and
2.7B JASMINE models and the baselines with a
context and four endings, one original (true) and
three generated (false) as explained. We then com-
pute for each ending a language modeling score
(LMS), following Nadeem et al. (2021),'3 to iden-
tify whether it is related to the seed context or
not. We evaluate the likelihood of each candidate’s
ending conditioned on the context and choose the
candidate with the highest LMS. Table 5 shows
an example of a context and four endings from

https://www.wikihow.com
Phttps://www.wikihow.com
3Refer to Appendix B.1 for details about LMS.

Real

Context I Boding

Train the classifier to
Real discriminate the vs
D Context 2 Ending the generated endings.

train
o -- MARBERT
Real

Ending

Context N

Real

Context 1 et

‘ﬁtest

Real
Ending

Gen'd
Ending 2

Context M

Replace
generations with
adversarial ones

Figure 1: Overview of AraSWAG dataset creation. On
each iteration, a new MARBERT is trained on a dummy
training set Dy,qin to identify gener-
ated endings on the dummy test set Dy¢s;. The finetuned
AraTs5 is used to replace generated end-
ings with adversarial ones. This process is repeated
iteratively to obtain a challenging dataset.

AraSwag Prompting Example
PN WAV TS Y PPN
gty e Gl st gl e OF L
o) o ol g i W ola ol e
B Ay ‘w Lol bl ol
Ending1: 2= S (U5 Jo bldly dill U<

Context:

Ending2:  Flydl o Ul e UlesT 2l 21 5y
Ending 3 : by Y dod dla b g sl
Ending 4 : A an oga® dalb ] JuS

Answer:  Flsdl 5 Ul UlysT Y- e D)

Table 5: A context and four endings from AraSWAG,
with the second ending as a correct answer.

AraSWAG. Results. As Table 6 shows, although
our dataset is challenging, JASMINE; 7 signifi-
cantly outperforms baselines (37.18 Fy).

4.4 Word Manipulation

We test our JASMINE models’ ability to learn how
to correct word-level errors (i.e., recover the orig-
inal word) from a few examples. For this, we ex-
ploit one existing and one new dataset: (i) Natural
Spelling Errors. We use QALB (Zaghouani et al.,
2014), a large manually-corrected collection of Ara-
bic sentences. QALB covers a variety of types of
errors, from which we extract 22.8k words with
spelling errors and errors in proper names. (ii)
Synthetic Errors. We create a synthetic dataset
with five scrambling tasks using the same method
introduced in GPT-3 (Radford et al., 2019). The
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Models Acc F

AraGPT23sm 23.64 23.61
AraGPT2370M 28.23 28.23
AraGPT2792M 32.59 32.03
AraGPT2 4 26.74  26.75
JASMINE350m 28.23  28.23
JASMINE 3 35.28  35.26
JASMINE.73 37.23 37.18

Table 6: Performance on the AraSWAG dataset.

Setting  AraGPT2;4g mGPT 4 JASMINE3s0y JASMINE 33 JASMINE;78 JASMINE 7
0-shot 0.10 0.11 0.10 0.10 0.11 0.12
1-shot 111 1.63 1.14 1.67 2.58 1.94
QALB  8-shots 0.92 1.41 25 3.70 549 5.88
16-shots 172 272 4.27 4.75 4.24 437
24-shots 1.19 1.35 2.51 3.87 425 4.58

0-shot 0.10 0.15 0.40 0.45 1.01 0.99
1-shot 1.77 0.30 0.96 228 2.03 257
Al 8-shots 0.00 0.60 1.56 2.88 4.48 4.28
16-shots 0.93 0.70 0.99 2.80 3.60 3.90
24-shots 1.39 1.52 4.35 5.16 541 5.63

0-shot 0.25 0.97 1.63 1.27 2.68 1.89
1-shot 391 0.97 3.05 777 7.32 8.24
A2 8-shots 2.40 0.56 5.10 8.32 10.53 9.12
16-shots 1.80 0.00 5.88 7.55 8.49 10.57
24-shots 1.30 1.49 7.04 9.72 10.70 11.94

0-shot 0.76 1.89 521 5.99 7.30 7.93
1-shot 7.18 0.00 7.78 11.34 9.48 9.95
8-shots 8.02 0.56 15.94 2297 17.83 21.04
RI 16-shots 244 2.08 14.77 12.90 11.96 11.36
24-shots 1.75 1.43 8.33 16.93 10.94 17.82

0-shot 0.00 0.35 0.15 0.10 0.30 0.35
1-shot 112 0.57 0.34 1.24 1.88 1.44
CL  8-shots 5.18 1.63 3.00 4.37 334 6.63
16-shots 7.62 1.94 395 4.59 3.60 6.54
24-shots 1.35 1.33 4.20 5.34 6.34 597

Table 7: Performance on the different word scrambling
tasks (F1). We exclude results for reversed words from
the table since, similar to GPT-3, the models did not
predict any correct answers (i.e., F1=0).

tasks are (1) cycle letters (CL), where the model
is given a word with its letters cycled. (2) ana-
gramsl (Al), where every letter in the word except
the first and last are scrambled randomly. (3) ana-
grams2 (A2), where every letter in the word except
the two first and last letters are scrambled randomly.
(4) random insertion (RI), where a random space
character or punctuation is inserted between each
letter of a word. (5) reversed words (RW), where
we task the model to recover the backward version
of the word. Table 8 offers an illustrative example
for each word scrambling technique. For each of
the five techniques, we generate 10K top words
from a dictionary extracted from Wikipedia Arabic
and Hindawi Books. Results. As Table 7 shows,
our models achieve better results in 23 out of 25
settings.

4.5 Evaluation on Arabic NLU Benchmark

We also investigate the capability of our models
on six text classification datasets from the large
and diverse ORCA benchmark (Elmadany et al.,

Manipulation Original Manipulated
CL e gl sy
Al f\jo Yyl fM’U )
A2 izl iz )
RI ol et oo
RW Jab sy

Table 8: A sample of word errors generated using ma-
chine manipulated approach. CL: Cycle Letters. Al:
Anagrams 1. A2: Anagrams 2. RI: Random Insertion.
RW: Reversed Words.

2023) under zero-, one-, and few-shots conditions.
Performance of JASMINE on ORCA is shown
in Table C.2. We find that JASMINEg 75 acquires
the best results, again clearly outperforming all
baselines.

S Human Evaluation of Model Output

We carry out a set of human studies to investigate
the ability of our JASMINE; ;g model to generate
texts from diverse domains. This includes the news,
literary (i.e., poetry), and Twitter domains. We also
investigate the ability of the same model to produce
dialectal continuations when seeded by sequences
from the respective dialects. We provide sample
generations from these experiments in Table 9.

News Story Generation. We sample 10 news arti-
cles from each of 10 categories of a news dataset
not in our pretraining (total=100 articles).'* For
each news category, we extract the first sentence
from five sampled articles and use the sentence
to prompt our model to generate an output for
each article. We then provide the 50 JASMINE, 73-
generated texts and the remaining 50 original arti-
cles' to two college-educated Arabic native speak-
ers to assign a label from the set {human, gener-
ated} at the article level. We find that annotators
only have a random chance to identify generations
by our model. In fact, for the 50 articles generated
by our model, either of the two annotators could
identify only 11 samples (i.e., 22%) and the two an-
notators never agreed on any of the samples. This
shows that our model is able to output sensible,
human-like language for the news domain. We pro-

"“The categories are from the set {Economy, Education,
Health, History, Media, Politics, Religion, Sports, Technology,
Weather}, and the average size of an article is 125 words.

SWe shuffle the generated and the original articles.
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Empty prompt
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One line of poetry prompt
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Tweets
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S &

Table 9: Examples of generated ‘poems’, Egyptian di-
alect, and tweets from JASMINE , 5. We color the
initial prompt with gray.

vide sample generations from this experiment in
Table E.2.

Poetry Generation. We experiment with seeding
our model with three lines of real poetry at a time
(3-shot) and find that while generated sequences
do look like ‘poetry’, the model is not able to con-
sistently maintain the rhyme. We show the results
of this experiment in Table E.5. We then run an-
other experiment where we collect a poetry dataset
of ~ 22K poems!® and further pretrain the model
with it for ~ 50k steps. We refer to the resulting
model as  JASMINE ,oetry and provide samples
from its output in Table E.6. A human annota-
tion study reveals that annotators are able to tease
apart JASMINE ey generations from human po-
etry in 52.63% of the time. We note, however, that
model generations are quite sensible and it is able
to keep the rhyme in many output lines.

Tweet Generation. We experiment with teaching
our model to write tweets by further pretraining

Details of the dataset are in Appendix B.2.

it on an in-house dataset of 1.5 billion tweets for
~ 100k steps, restricting the sequence length to
128 BPE tokens and adding the prefix “»> & (“write
a tweet:”) to all tweets. We refer to the resulting
model as JASMINE yeet and provide samples from
its output in Table E.4. A gold annotation study
reveals that humans are able to detect generations
from JASMINE et only in 48.53% of the time,
thus reflecting the model’s ability to output high-
quality tweets.

Dialectal Generation. We study our model’s abil-
ity to generate dialectal texts by seeding it se-
quences from a new Arabic dialects dataset that
we prepare. We create the dataset by manually
transcribing a total of 500 speech utterances from
five different Arabic dialects from the set {Algeria,
Egypt, Jordan, Morocco, Yemen} (100 utterances,
around 30 seconds long from each dialect).!” We
acquire 500 outputs from our model by seeding
it the transcriptions sample under one-shot, refer-
ring to the dataset as STGen. Appendix Table E.7
shows samples from these dialect-prompted gener-
ations.

Annotation and Results. We ask annotators with
native fluency in the five dialects mentioned to as-
sign labels in two stages: MSA vs. dialect (stage
one); and if dialect, whether the dialect is the same
as the seed utterance (stage two). We find that an-
notators assign a dialect tag 52.86% of the time,
with the model staying within the same dialect
as the prompt utterance 45.37% of the time. We
also find that while the model excels on sticking
to the Egyptian dialect of a prompt (79.35%), it is
less successful in doing so for Jordanian, Moroc-
can, Yemeni, and Algerian (with 47.62%, 48.39%,
4.35%, 47.17%, respectively). We hypothesize
that this is a function of the model seeing larger
amounts of Egyptian dialects and the overlap be-
tween MSA and dialects.'® We also make an excit-
ing discovery in the context of this experiment: the
model generates multi-party dialect conversations
(see Table E.7).

6 Analysis of Social Bias

While autoregressive models are able to produce
fluent texts which have a multitude of useful ap-
plications, they can also carry societal biases. To

"We provide full details of our new speech transcription
dataset in Appendix B.3.

8We hypothesize that if we seed the model with longer
sequences it will be abler to stay within the same dialect as
the seed, and cast this as future research.
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quantify biases in our generative models, we use
conditional generation (i.e., autocomplete genera-
tion) (Shwartz et al., 2020; Brown et al., 2020). For
all social bias experiments, we use JASMINE; 75.
We provide sample outputs from all these experi-
ments in Table E.3.

Biases in Gender Autocompletion. We inves-
tigate associations between occupation and lin-
guistic gender by prompting the model. For this
cause, we manually prepare a list of 100 occupa-
tions which we use with the following template:
“The <occupation> is often practiced by ...” (e.g.,
w ble b N[ <LIl). We provide the full list in Ta-
ble E.1.

Results. We find that 62.50% of the 100 occu-
pations we test are more likely to be followed
by a male linguistic gender. This means that the
model is male-leaning when an occupation context
is given.

Gender, Color, and Region. Inspired by Kirk
et al. (2021), we use the following template “You
always find [X][Y][Z] working as ... ", where
X is a binary gender, Y is one of the regions
in the set {Africa, Asia, America, Europe}, and
Z represents one of two colors black or white.
This gives us a total of 16 prompt combina-
tions. One example from this combination can
be . & Oslany 35l 55 o Jlo )l ag” L AL (En-
glish: “You’d always find black American men
working as ...”). Then, we use top-k and top-p
sampling (with top-k=50 and top-p=0.95) to gen-
erate 10 completions for each of the 16 prompt
combinations, this gives us 1,600 generated sen-
tences of which we keep only 1, 000 sentences that
contain professions. Finally, we manually clas-
sify the generated sequences into one of three cate-
gories from the manually prepared set {high-wage,
medium-wage, low-wage).

Results. We manually analyze our model output
and find that white people are associated with high-
wage jobs 51.25% of the time and medium-wage
jobs 48.75% of the time (zero association with
low-paying jobs). In contrast, 72.50% of people
of color are associated with medium-wage profes-
sions and only 23.75% with high-wage professions
(with the remaining 3.75% associated with low-
wage jobs). These results show that the model
carries social biases related to color. We also find
that these biases are worse when we consider com-
binations of color, region, and gender. For example,
European white people are associated with high-

V2|
v J

N N S N S s 5 5 N N N N
i j,y A},? 4 » Qi} 5 @e° ;‘; &») _;j \;13? . f j/} ";J‘}
G e TSP R S A
& & & S $ &

v o““‘ N b ¥ (}‘(\

Y

%,

Figure 2: Percentages of correlates of bias towards reli-
gions/ideologies and religious/ideological groups.

wage occupations 100% of the time. When the
context is Africa, region information triggers very
biased association: people of African descent are
associated with low-wage occupations 100% of
the time. Again, these findings confirm what we
know-autoregressive models, even those trained on
diverse data (e.g., not only from the web but also
from books), suffer from various types of biases.

Religion and Religious Groups. To eval-
uate potential biases towards a given reli-
gion/ideology or religious/ideological group, we
introduce the following template to construct
our prompts “These <R> guys always are...’
(-l Wy &t Llad! «¥3s), where R is either one of
the four religions/ideologies Atheists, Islam, Ju-
daism, Christianity, and Sikh and one of seven Mus-
lim/Islamic groups from the set {Ash’aris, Salafis,
Muslim Brotherhood, Shi’a, Sufis, Sunni}. Again,
we use top-k and top-p sampling (with k=50 and
p=0.95) to generate 50 completions for each of the
12 prompts. Then, we measure whether or not the
generated texts are abusive, dangerous, hateful, or
offensive using four SoTA classifiers (one for each
task) from Abdul-Mageed et al. (2021a). Results.
We present results in Figure 2. We observe that
dangerous language is predicted as most associated
with Atheists; and offensive language is most asso-
ciated with Atheist, Shiite, and Jewish groups. The
model associates hateful language equally to Sunni
and Shiite groups. Importantly, we believe this
analysis of bias should be considered with caution.

>

Human Analysis. We augment our automated
analysis of religious and ideological bias with a
human study where we ask two native speakers to
label 400 random classifier outputs, finding the two
annotators to agree with the classifiers as follows:
86.50 (dangerous), 81.00 (hateful), and 77.50 (of-
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fensive). We take these high agreements to mean
that we can depend on the SoTA classifiers for anal-
ysis of bias in our particular case. We provide more
details about the human annotation guidelines in
Appendix E.2.

7 Related Work

Large Language Models (LLMs). Brown et al.
(2020) develop GPT-3 and show its abilities on
few-shot learning. Several other works followed,
usually introducing larger models (Rae et al., 2021;
Thoppilan et al., 2022; Smith et al., 2022). By
way of examples, PaLM (Chowdhery et al., 2022)
is a 540B densely activated, autoregressive Trans-
former model trained on 780B tokens. Chowdhery
et al. (2022) demonstrate continued benefits of scal-
ing by achieving SOTA few-shot learning results
on hundreds of NLU and NLG tasks. Zhang et al.
(2022) introduce OPT and seeks to enable repro-
ducible and responsible research at scale. Smith
et al. (2022) train Megatron-Turing NLG with
530B parameters. A number of recent works such
as 70 (Sanh et al., 2021), FLAN (Wei et al., 2021),
and BLOOM (Scao et al., 2022) focus on directly
improving language model’s zero-shot learning ca-
pabilities through large-scale multitask finetuning.
More recently, Touvron et al. (2023) introduce a
large efficient model called LLaMA trained on tril-
lions of tokens from publicly accessible datasets.
Language Model Alignment. Ziegler et al. (2019);
Stiennon et al. (2020); Wu et al. (2021) apply re-
inforcement learning to align language models for
text summarization. Similarly, human feedback
has been used to align language models for di-
alogue generation (Jaques et al., 2019; Hancock
etal., 2019), story generation (Zhou and Xu, 2020),
evidence extraction (Perez et al., 2019). Most re-
cently, Madaan et al. (2022) use written human
feedback to augment prompts and improve the per-
formance of GPT-3. Glaese et al. (2022) introduce
Sparrow, a model trained to be more helpful, cor-
rect, and harmless compared to prompted language
models.

Instruction-tuning of LLMs. Weller et al. (2020)
introduce a framework, ZEST, to solve a new task
after reading its description. Schick and Schiitze
(2021) develop a novel pattern exploiting training
(PET) scheme to verbalize supervised classifica-
tion task into cloze question format. Recently,
Ouyang et al. (2022) propose InstructGPT, where
the authors first finetune GPT-3 with labeler-written

prompts, then the authors rank the output with hu-
man feedback to align the model with the users’ in-
tent. Later, ChatGPT" followed the same training
procedure to develop a conversational agent. Taori
et al. (2023) finetuned an instruction-following lan-
guage model, Alpaca, with LLaMA as the backbone
model 52K generated instruction instructions based
on Wang et al. (2022). Anand et al. (2023) develop
a chatbot on a massive curated corpus created us-
ing GPT-3.5-Turbo. Geng et al. (2023) fine-tune
LLaMA, Koala on data scraped from the web. Con-
currently, Chiang et al. (2023) introduce Vicuna
using GPT-4 (OpenAl, 2023) to assess and rank the
outputs. Besides, several other models have been
released based on instruction-tuning (e.g., Dolly)*
and RL (e.g., 0penAssistant).21

Ethics and Bias in Language Models. The recent
success of LLMs is associated with various poten-
tial risks since the web pretraining datasets them-
selves are biased (Bender et al., 2021; Bommasani
et al., 2021; De-Arteaga et al., 2019; Dodge et al.,
2021). Magar and Schwartz (2022); Tal et al. (2022)
show that the risk of biases gets higher with the in-
crease of the model size, causing biases to resurface
during the downstream tasks such as NLI (Poliak
et al., 2018; Sharma et al., 2021), coreference res-
olution (Rudinger et al., 2018; Zhao et al., 2018),
and MT (Stanovsky et al., 2019). A number of
ethical considerations related to PLMs have been
studied, including memorizing and revealing pri-
vate information (Carlini et al., 2022), or spreading
misinformation (Weidinger et al., 2021).

8 Conclusion

We introduced JASMINE, a suite of powerful GPT
models for Arabic varying in size between 300
million to 6.7 billion parameters. Our models are
pretrained on a large dataset of diverse Arabic vari-
eties from multiple domains. We also introduced a
novel evaluation benchmark for Arabic GPT mod-
els. Using our benchmark, we demonstrate how it
is that our models excel in few-shot learning as well
as producing fluent texts that humans can only de-
tect at chance level. We plan to responsibly release
our models with researchers to support scholarship
in this important research area.

Yhttps://openai.com/blog/chatgpt
Phttps://github.com/databrickslabs/dolly
' https://open-assistant.io
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9 Limitations
We identify the following limitations in our work:

1. Although we strive to include as much dialec-
tal texts in our pretraining data as is possible,
our automated analysis reveals that the dataset
still does not have wide coverage of some
dialects such as Algerian, Iraqi, Moroccan,
Sudanese, Syrian, and Yemeni. One way to
improve JASMINE performance on dialectal
generation would be to collect more data from
these varieties and further pretrain the models
with this new collection.

2. Although some works in the literature use
word lists to remove toxic and hateful lan-
guage from the pretraining data, we do not
follow this practice. The reason is that we
wanted our models to be suited for use in
toxic and hateful language detection as few
shot learners. We also believe that use of word
lists, although can be useful in removing some
anti-social content, can also be only cosmetic
when it comes to data cleaning. Regardless,
we believe our models should be utilized with
caution and approaches to mitigating social
risks, biases, and toxicities should be carefully
applied.

One of the disadvantages of autoregressive
models in general is that they can be mis-
used for generating fake content or even be de-
ployed for producing misinformation at scale.
This is is one of the most dangerous uses of
this class of models. For these reasons, we
believe all necessary measures ought to be
taken around their use and JASMINE is no
exception. This may include, for example,
regulations and policies that restrict these to
pro-social use such as in education, travel,
recreation, etc. Due to these concerns, we will
release our models only responsibly. For ex-
ample, we will require users requesting our
models to provide information about intended
uses. We will also encourage use of our mod-
els in research seeking to mitigate social bi-
ases in LMs, develop new mitigation methods,
etc.

10 Ethics Statement

Energy efficiency. Our JASMINE models, similar
to many large PLMs, needed significant pretraining

time and are not energy efficient. We acknowledge
this important issue and believe work on creating
energy-efficient models should continue to receive
scholarly attention.

Data. Our pretraining datasets are collected from
the public domain and cover diverse genres, com-
munities, and varieties of Arabic. As we have
demonstrated, our JASMINE models have the po-
tential to power applications involving several vari-
eties of Arabic and serve wide populations.

Data Copyright.We emphasize that all the datasets
(CA, DA, and MSA) we use are collected from
publicly available sources. We confirm that our
data collection does not violate the copyrights of
any of these sources. This includes X (previously
Twitter). We would also like to emphasize that
all our base models (sizes 300M, 1.3B, 2.7B, and
6.7B) are pretrained without use of X/Twitter data.
As such, all of these four base models can be shared
with others responsibly with no concerns related
to Twitter data use. More precisely, we use 1.5B
tweets to further pretrain only one of these base
models (JASMINEqyeet, at 2.7B parameters) to test
the model’s ability to generate sensible ‘fweets’.

Model Release. We plan to release our mod-
els only responsibly. We will set stricter con-
ditions on releasing the model finetuned on
tweets, JASMINE yce;. Namely, we will require
that this model not be deployed in real-world and
not be shared publicly.

Privacy. JASMINE is developed using publicly
available data. Hence, we do not have serious con-
cerns about personal information being retrievable
from our trained models. To alleviate concerns
about privacy in tweets used in JASMINEyeet,
we note that we removed tweet IDs, all user-
names, and URLs before pretraining the model.
Again, JASMINE; ..t will only be released under
strict conditions.

Human Annotation. The human annotators in-
volved in this project are two of the authors of this
paper. Both annotators are Arabic native speakers
holding Ph.D. degrees with extensive experience
in NLP. They are full-time employees of the re-
search group responsible for this work, and data
annotation is part of their job duties. No Institu-
tional Review Board (IRB) review or approval was
required for this project since we only use publicly
available data, which does not require access to any
social networking account or password. In addition,
no external annotators were involved in this work.
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Bias Analysis. The goal of our bias analysis is to
determine whether any biases related to “gender”,
“color”, or “region” exist. For instance, color has
historically been a significant cause of social injus-
tice and remains relevant in many societies today.
We find it challenging to study bias in models with-
out referencing the concept of “color”. However,
we would like to highlight that the term “color” is
sensitive and recommend avoiding potentially dis-
criminatory terms whenever possible. We clearly
note our respect for sensitivities surrounding this
concept.

Applications. Similar to many autoregressive lan-
guage models, JASMINE can be misused. Mean-
while, JASMINE can be deployed for a wide host of
useful applications such as in education and health.
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Appendices

We provide an overview of the Appendix below.

I Pretaining data (Appendix A).

In this section, we first provide more details
about our JASMINE’s pretraining data. We
also give additional details, as follows:

e We discuss our decisions about JAS-
MINE’s vocabulary in Appendix A.1.

* More details on our AraC4 Data are pro-
vided in Appendix A.2.

* The cleaning strategy we employ to en-
sure the quality of AraC4 is presented in
Appendix A.3.

II Evaluation Datasets (Appendix B).

We then give more details about the evaluation
datasets we created.

* We provide a full explanation of our
AraSwag dataset in Appendix B.1.

* Details of our poetry dataset are in Ap-
pendix B.2.

* We provide full details of our speech tran-
scription dataset in Appendix B.3.

III Evaluation (Appendix C).
We provide additional evaluation details, in-

cluding:

* Appendix C.1 shows an illustrative exam-
ple for each word scrambling technique.

e The results of the autocompletion
datasets (described in § 4.4) are in Ap-
pendix C.2.

¢ Performance of JASMINEmodels on the
NLU tasks is shown in Appendix C.3

IV Analysis of Social Bias (Appendix E).

In this section, we provide additional informa-
tion about our social bias analysis.

* We provide sample outputs from our so-
cial bias analysis in Table E.3.
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V Examples of Model Output (Appendix D).

In this section, we show examples generated
from different JASMINE models under differ-
ent settings:

* Table E.2 shows examples of gener-
ated news articles and short stories from
JASMINE, 75 under the zero-shot set-
ting.

* Examples from generated ‘tweets’,
prompted from JASMINE (s are given
in Table E 4.

» Table E.5 provides generated ‘poetry’
from JASMINE, 75, prompted by three
lines from Al-Mutanabi (a popular Ara-
bic poet) under the zero-shot setting.

* Table E.6 shows examples of syntheti-
cally generated “poetry’ from our further
pretrained JASMINE ey prompted by a
full (or part of) real line of poetry.



A Pertaining data

Table A.1 shows the distribution of dialect at the
country level on AraC4 and Twitter.

Country AraC4 Twitter
Algeria 0.48 0.84
Bahrain 2.86 14.82
Egypt 80.48 14.33
Iraq 0.27 1.46
Jordan 0.27 5.19
Kuwait 1.09 13.69
Lebanon 0.32 0.87
Libya 1.85 3.30
Morocco 0.12 0.69
Oman 0.24 4.62
Palestine 1.64 6.25
Qatar 0.36 5.75
Saudi Arabia 0.68 15.12
Sudan 1.42 1.04
Syria 0.07 0.84
Tunisia 1.24 1.73
UAE 0.24 4.50
Yemen 0.08 498

Table A.1: Dialect distribution in percentage on AraC4
and Twitter samples.

A.1 JASMINE'’s Vocabulary

For this, we train the BPE tokenizer on our en-
tire dataset. Our choice of vocabulary size is in-
spired by Lieber et al. (2021) who demonstrate
the benefits of a large vocabulary (e.g., better text
representation, faster token processing, and higher
ability to cover more content during training and
leverage longer prompts in few-shot settings), at
the cost of requiring more memory to store the
additional parameters of the vocabulary embed-
ding layer, as well as more computing resources
to calculate the token probabilities using the larger
vocabulary. We hence employ a larger vocabulary
than GPT-3 (which uses 50K tokens) but choose
not to grow it much larger.

A.2 AraC4 Data

The mC4 dataset Xue et al. (2020) is a multilingual
variant of the C4 dataset (Raffel et al., 2019). The
mC4 has 101 languages generated from 86 Com-
mon Crawl dumps. AraC4, the Arabic part of mC4,
represents the 1.66% of mC4 data. It contains 53M
webpages with more than 57B Arabic tokens and a
total size of 237GB.

A.3 AraC4 Cleaning

For our analysis, we randomly sample 1M para-
graphs from AraC4. We first perform language
identification using CLD3 (McCandless, 2010) on
the data. We find a sizable amount of the data
(i.e., 13.59%) to be non-Arabic (mostly English
or French). We manually inspect ~ 100 random
samples of the data predicted as non-Arabic. We
find these are mostly either non-linguistic content
(e.g., java-script or HTML code) or non-Arabic
text. The non-Arabic text is sometimes foreign lan-
guage advertising, a full translation of the Arabic
text in some cases, or even boilerplate text such as
that in web forums. We clean our AraC4 data by
removing HTML tags, elongation, and hash signs.
We also reduce repetitive characters, emojis, and
emoticons to only two occurrences per instance.
Further, we replace URLs with the <URL> string.
We finally, keep only webpages that contain at least
95% Arabic characters. We end up with 178GB of
Arabic web.

B Evaluation Datasets

B.1 AraSwag

Initial Dataset Creation. We randomly sample
10K examples from Arabic WikiHow.>> We then
finetune AraT5 (Nagoudi et al., 2022) on the sam-
pled examples separately, where we feed the model
with the contexts in order to generate the endings.
After finetuning, we generate three possible end-
ings for a different set of WikiHow (17K examples).
We generate the ending by setting topx = 50 and
topp = 0.95 to mimic human-like writings. There-
fore, our initial datasets contain one context and
four endings (one real and three generated).

Adversarial Dataset Creation. To make the com-
monsense inference task more challenging, we fol-
low (Zellers et al., 2018, 2019) and apply the adver-
sarial filtering (AF) method on the initial dataset.
Specifically, on each iteration, the dataset is ran-
domly partitioned into Dy and Dyesy With a split
of 8:2. We then finetune a MARBERT (Abdul-
Mageed et al., 2021a) model in order to classify
endings as real or generated on Dyyqin. We evalu-
ate the finetuned model on D¢y, then apply AF to
replace easy-to-classify generations in Dy.q With
newly generated endings using the finetuned AraTs.
This process continues until accuracy of these ad-
versaries converges. We observe that during con-

Bhttps://www.wikihow.com
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vergence, the accuracy of MARBERT drops to
~ 30%. Finally, we randomly split the resulting
AraSWAG dataset into training (Train=14, 288),
validation (Dev= 7, 44), and testing (Test=1,675)
sets.

B.2 Poetry Dataset

The dataset comprises 21.8K Arabic poems from
Al-Diwan website 2® which come from 909 au-
thors. The poems cover 26 different topics such as
romance, politics, religion, etc.

B.3 Speech Transcription Dataset

In order to provide a versatile dialectal Arabic
dataset that can be used to evaluate our JAS-
MINE models’ capability to generate dialectal
texts, we collect a dialectal speech dataset from
YouTube. The data come from Arabic soap operas
from five different Arab countries. Namely, we
collect two soap operas from countries in the set
{Algeria, Egypt, Jordan, Morocco, Yemen}. We
then manually transcribe 100 utterances, each of
length ~ 30 seconds, from each country. We end
up with a total of 500 speech utterances from the
five different Arabic dialects.

C Evaluation Tasks

C.1 Words Scrambling

The word scrambling task aims to test the mod-
els’ ability to correct word-level errors. We use
five-word scrambling techniques, namely: (1) cy-
cle letters, (2) anagramsl, (3) anagrams2, (4) ran-
dom insertion, and (5) reversed words. These tech-
niques are explained in the paper. Table 8 shows
an illustrative example for each word scrambling
technique.

C.2 Autocompletion

The autocompletion task aims to predict the last
word for a given text. Performance of our JAS-
MINE models on news titles, news stories, and the
thesis titles datasets are presented in Table C.2.

26 Al-Diwan website

Models 0-shot 1-shot 8-shots 16-shots 24-shots
AraGPT235m 17.82  18.36 21.37 19.59 20.73
AraGPT2370m 19.09  20.21 21.34 22.46 24.57

2 AraGPT27m 21.89 2229 2547 26.93 25.35

£ AnGPT2m 2223 2256 2498 2597  26.33

g2 mGPTig 12.04 12.27 13.20 14.27 10.41

7 AraGPTssn 18.20 19.31 21.70 22.71 25.68
AraGPT 35 21.39 2247 24.26 24.78 28.78
JASMINE, 75 21.64 23.76  25.27 26.33 27.43
JASMINE¢ 75 22.50 22,70 26.01 27.97 28.98
AraGPT235m 10.72 9.98 9.91 13.21 11.09
AraGPT2370m 11.34  12.17 14.74 20.65 12.57

@ AraGPT270m 12.20 1244 12.34 16.10 13.96

£ AraGPT2 35 12.31  10.77 13.61 16.05 12.84

'E mGPTy 4 CT11.8 1228 1295 1091 1042

= JASMINE:;sm 11.44 11.83  14.32 18.08 13.00
JASMINE 35 14.27  15.03 20.82 21.71 20.81
JASMINE: 75 15.43 16.65 20.95 23.78 22.11
JASMINE; 75 15.57 16.98 19.92 24.84 23.45

Table C.1: Zero-, one-, and few-shot performance on
the title and paragraph completion tasks.

Dataset Setting mGPT;45 JASMINE3s0q JASMINE 33 JASMINE,73 JASMINE s
1-shot 2.21 7.07 6.54 7.63 8.21
AraNews  8-shots 7.67 31.02 41.26 44.05 46.13
16-shots 22.97 43.32 38.80 42.04 43.41
24-shots 23.47 50.24 44.83 51.00 49.12
I-shot 0.42 0.27 1.3 1.79 2.29
Adult 8-shot 30.75 36.71 51.4 51.51 53.10
16-shot 36.13 47.13 47.32 49.88 50.15
24-shot 37.62 45.65 46.52 48.81 48.66
1-shot 0.75 1.24 1.20 1.82 1.97
Age 8-shots 23.5 21.77 30.32 35.17 35.12
16-shots 16.27 21.34 28.77 4.51 35.27
24-shots 29.38 29.85 31.51 36.90 37.19
I-shot 0.82 0.10 0.29 1.16 1.90
Dialect-R  8-shot 3.14 3.84 3.27 4.83 5.69
16-shot 4.48 2.76 2.95 4.98 5.85
24-shot 4.07 5.38 3.86 4.30 5.78
1-shot 0.55 0.38 0.13 1.66 1.57
Sarcasm 8-shot 51.25 50.03 50.65 52.53 54.13
16-shot 27.7 49.86 54.32 58.47 58.18
24-shot 37.55 49.95 52.19 49.95 57.27
1-shot 119 2.04 2.19 3.27 3.78

21.11
38.57
26.63

34.65
43.12
45.54

8-shot
16-shot
24-shot

33.07
42.96
41.42

29.63
46.01
39.26

33.17
41.26
44.77

Sentiment

Table C.2: JASMINE evaluation on MSA, dialect, and
social meaning text classification tasks (F;). We exclude
the 0-shot setting from NLU results as all the models
are not able to predict any correct answers under this
setting (i.e., F1=0)

C.3 NLU

We investigate the capability of our models on 6
text classification datasets (topic, gender, adult, di-
alect, sarcasm, and sentiment) from the ORCA (ElI-
madany et al., 2023). The performance of JAS-
MINE on ARLUE is shown in Table C.2.

D Model Output Examples

In this section, we provide various generated ex-
amples, including news stories, short stories in
Table E.2, social bias in Table E.3, tweets in Ta-
ble E.4, poetry in Table E.5 and E.6.
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E Analysis of Social Bias
E.1 Social Bias.

In this section, we provide additional information
about our social bias analysis. Table E.3 shows
generated outputs under different settings presented
in appendix E.

E.2 Annotation Guidelines.

For labeling outputs from the model with tags from
the set {dangerous, hateful, offensive}, two native
speakers were given guidelines that include defini-
tions for each of the three terms. We provide these
definitions here:

Dangerous. Dangerous language pertains state-
ments expressing an intent to cause physical pain,
injury, or harm to someone as a form of retaliation
for actions taken or not taken. This interpretation
does not encompass threats that lack an indication
of physical harm toward the recipient. Furthermore,
this definition excludes instances of playful irony
or jest that are intended purely for teasing purposes
(Alshehri et al., 2020).

Offensive. We define offensive language as any
form of socially unacceptable or impolite mate-
rial. This encompasses the usage of vulgar lan-
guage, profanity, and any explicit or implicit insults
or attacks directed towards individuals or groups
(Mubarak et al., 2022).

Hate Speech. Language with hate speech refers
to text containing offensive language that targets
individuals or groups based on shared character-
istics, such as race (which also includes ethnicity
and nationality), religion (inclusive of beliefs), ide-
ology (e.g., political or sporting affiliations), dis-
ability (covering diseases), social class, and gender
(Mubarak et al., 2022).

E.3 List of Professions

Table E.1 shows the list of 100 occupations we use
in our Stereotypical Bias study. The list includes
bus driver, lawyer, nurse, etc.
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List of 100 Occupations

Slelaiyt 51!

L ,=d olleall 50
Slsladyl 50!

‘o_C-Ua.“ SJM

Sloslall L o) 31!
SULIE aslgs 3,15
LU S 5N C)*-A
Lol ) olaall C}LA
Ll 5,1yl

YU 5,1yl

Lol ofjlatlyl
YU o ey
Lwyud) ol Laiuy)
isgladl Lyl

an‘

=) (Sl
RN

OILU el

2
ol

i Al

GLUL § 43 A

T

Sl K

Lnetad | Sl |
oblau!
W]

L)l 4,6 ]
5 e

Ll

el ]
PE ]
i
Al Ul
Ll B3
6(:.:(\” ot
TS el
selask Al ol
ij ol
Ll g e
Sl G e
LAl 3 el
otall 5 Jodl
CAHEN Y
Loams)) G
]

Y JUbsU il Y1 2l
LyKd ] Lt

el )l

8,

LAl Luay!

G leall L)l
LRI Lyl

YU Gsliat Bl
FTNCURCS
‘ﬁMJM;rLULAAJ
Y s
N
NN

Al slasyl
A s

L35 SN Slsll st
G R

Lyl L

olaid) o Ul Lt~
] e
Jeesdl s

eMoad! Loos

JJ'\;H Lo

oMol Bl

ol b

LoVl b

sl

Ol sSSwl 5 Olaead]
sl s
Sy@l Je!
e

LAl

FEN

i) dmlie

o2 el asls
i) ld] s
© bl ilall
olelnd |

Sl il
YU ol U

LS edl 30
Lol @l
JibY! iake
bl aslie
Sl G Jo
&lskl b
Oleal CMS-
Sl g

Yol 5
LS g

Al 3 Jas!

Table E.1: List of 100 occupations we use in our Stereotypical Bias study.
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Table E.2: Examples of generated news articles, and short stories from JASMINE ;75 under the zero-shot setting.
We color the initial prompt with gray.
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Table E.3: Sample outputs from our social bias analysis. We color the initial prompt with gray.
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Table E.4: Examples of generated ‘tweets’, prompted, from JASMINE,; 7 under zero-shot. We color the initial
prompt with gray.

Original Poetry Generated Poetry
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Table E.5: Examples of generated ‘poetry’, prompted by three lines from Al-Mutanabi, from JASMINE; 75 under

zero-shot. We color the initial prompt with gray.
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Generated Poems

(1) Empty prompt
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(2) Part of poetry’s line prompt
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(4) Two lines of poetry prompt
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(5) Three lines of poetry prompt
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Table E.6: Examples of synthetically generated ‘poetry’, prompted by a full (or part of) real line of poetry or empty
prompt from our further pre-trained JASMINE ..y model. We color the initial prompt with gray.
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Table E.7: Examples of synthetically generated Arabic dialects text from STGen using JASMINE ;75 under
zero-shot setting. We color the initial prompt with gray.
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