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Abstract

Post-training quantization (PTQ) of trans-
former language models faces significant
challenges due to the existence of detrimental
outliers in activations. We observe that
these outliers are concentrated in specific
channels and are asymmetric across chan-
nels. To address this issue, we propose the
Outlier Suppression+ (OS+) framework,
which contains the channel-wise shifting
for asymmetry and channel-wise scaling for
concentration. We show that these operations
can be seamlessly migrated into subsequent
modules while maintaining equivalence.
Second, we propose a fast and stable scheme to
calculate effective shifting and scaling values.
The channel-wise shifting aligns the center of
each channel for removal of outlier asymmetry.
The channel-wise scaling quantitatively
evaluates changes brought by migration and
quantization for better quantization burden
balance. We validate our OS+ under both
standard and fine-grained quantization settings
with models including BERT, OPT, BLOOM,
BLOOMZ, and LLaMA. Comprehensive
results across various tasks demonstrate
the superiority of our approach. Especially,
with standard quantization, OS+ can achieve
near-floating-point performance on both
small models and large language models
on 8-bit and 6-bit. Besides, we establish
a new state-of-the-art for 4-bit BERT with
15.5% improvement. Our code is available
at https://github.com/ModelTC/
Outlier_Suppression_Plus.

1 Introduction

Transformer language models (e.g., BERT, LLMs)
have garnered significant attention due to their re-
markable performance and scalable model size.
These models have evolved from hundreds of mil-
lions of parameters (Devlin et al., 2018; Liu et al.,

∗Corresponding author.

2019; Radford et al., 2018) to hundreds of billions
of parameters (Brown et al., 2020; Zhang et al.,
2022; Smith et al., 2022). This necessitates the
employment of compression techniques (Han et al.,
2015; Hinton et al., 2015; Zoph and Le, 2016; Le-
Cun et al., 1989) for practical deployment. Among
these techniques, quantization (Jacob et al., 2018)
has emerged as a general and primary paradigm for
reducing both memory footprint and computation
overhead.

However, quantization, particularly post-training
quantization (Choukroun et al., 2019; Banner et al.,
2018; Wu et al., 2020) under the setting of limited
data and GPU resources, has become increasingly
challenging on these models (e.g., a 12% accu-
racy drop in BERT (Bondarenko et al., 2021) and
catastrophic degradation in OPT-175B (Dettmers
et al., 2022)). This is caused by the presence of
detrimental outliers in activation (e.g., the range
of distribution can be 80 in BERT and even 140
in OPTs), which prevents discrete numbers from
accurately representing continuous ones.

To combat the bottleneck, researchers make in-
depth investigations and find that outliers mainly
concentrate on certain channels. Some works (Bon-
darenko et al., 2021; Dettmers et al., 2022) suggest
fine-grained quantization schemes and offer extra
bit levels for outlier channels. Others (Wei et al.,
2022b; Xiao et al., 2022) take the activation scal-
ing to scale outliers and migrate scaling values to
subsequent weights for FP equivalence. However,
the former might hurt the quantization accelera-
tion effect while the latter determines scaling val-
ues without the consideration of minimizing the
change introduced by migration and quantization,
which we find is sub-optimal. Meanwhile, we also
identify a new outlier characteristic that previous
works overlooked but is also responsible for the
large tensor range.

In this paper, we propose the Outlier Suppres-
sion+ framework composed of channel-wise shift-
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(a) Original distribution
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(b) Channel-wise shifting
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Figure 1: Distribution of OPT-66B. Fig. 1a shows the original distribution with asymmetric outliers consistently occurs at certain
channels, owning considerable range (-97, 43). Fig. 1b depicts the channel-wise shifting operation to decrease the tensor range
by eliminating the asymmetry. Fig. 1c further scales down the outliers to threshold 5 and finally results in a distribution ranging
from -5 to 5.

ing and scaling to effectively pursue better quanti-
zation performance while equivalently keeping the
FP output. First, we find a new feature of outliers
that they stay in asymmetric shape across chan-
nels (e.g., in Fig. 1a, one problematic channel on
OPT-66B occupies the negative axis from -97 to
-58 while another one has positive values ranging
from 5.7 to 43). This outlier asymmetric presenta-
tion could cause a significantly wide distribution of
tensor like 140 even composed of channels with rel-
atively small ranges like 39. Thus, we propose the
channel-wise shifting operation, which shifts the
activation across channels to eliminate the impact
of asymmetry. Together with channel-wise scal-
ing for concentrated outliers, a unified migration
pattern is introduced to seamlessly transfer the re-
versed effects of these operations to later modules
to maintain equivalent FP models. Second, we de-
vise deliberate schemes to determine effective shift-
ing and scaling values. The shifting vector aligns
the center of each channel, reducing the whole
tensor range to its maximum channel range. The
scaling values quantitatively minimize the interac-
tive output change of the activation and weights
induced by migration and quantization, achieving a
balanced quantization burden with a fast and stable
search procedure.

Our algorithm can be carried out efficiently and
enjoy affordability on real hardware, producing
more quantization-friendly models in minutes and
requiring no extra inference burden on LLMs. To
this end, our main contributions can be summarized
into three aspects:

1. We find a new feature of outliers that show asym-
metric shapes across channels and then propose
the channel-wise shifting operation, along with
taking channel-wise scaling for the outlier con-
centration attribute. A unified migration pattern
that migrates their reversed effects to later mod-
ules is designed to guarantee an equivalent FP
network.

2. We propose fast and stable ways to determine
effective shifting and scaling values. Shifting
values eliminate the asymmetry feature across
channels while scaling values scale down out-
lier channels towards a quantitative optimization
objective.

3. We assess the efficacy of our approach under
both standard and fine-grained quantization set-
tings. On standard one, OS+ achieves near-
floating-point performance on 8-bit and 6-bit
BERT, OPTs, BLOOM, and BLOOMZ. On fine-
grained one, OS+ can surpass others by 9.41%
on 4-bit LLaMA with per-token quantization
and obtain lossless results on 4-bit OPT with
per-group quantization.

2 Related work

Due to the space limit, we give the most relevant
papers here and put a complete related work in
the Appendix A. In the realm of PTQ, researchers
have discovered that the poor performance of trans-
former language models should be attributed to
extreme outliers in activations, which exhibit spe-
cial characteristics from both channel and token
aspects. Thus, we will introduce related works
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from the two aspects.
Channel aspect. Outliers consistently emerge
in certain channels over different inputs. Bon-
darenko et al. (2021) employs a per-embedding-
group quantization scheme that uses different quan-
tization parameters for distinct channel groups,
while Dettmers et al. (2022) suggests utilizing FP16
representations for problematic channels holding
signals over 6. Wei et al. (2022b) introduces an out-
lier suppression (OS) framework with one of com-
ponents called Gamma Migration. Observing that
outliers accumulate in certain channels, it adopts
a scaling vector to scale outliers and migrates it
to subsequent modules. Xiao et al. (2022) further
proposes calculating scaling values by equalizing
ranges between activations and weights and eval-
uates on large language models. Guo et al. (2023)
discards normal values adjacent to outliers, mak-
ing room for outliers with customized GPU sup-
port. To consider the standard quantization, we
find that Wei et al. (2022b) and Xiao et al. (2022)
still waste a large portion of quantization levels
on the extreme outlier asymmetry across channels.
Meanwhile, Wei et al. (2022b) simply views the
scaling parameter in LayerNorm (LN) as the scal-
ing vector for outliers, which might not always be
consistent with the outlier distribution. Xiao et al.
(2022) that adopts the heuristic way and obtains
equalized ranges between activation and weights
lacks quantitative evaluation of their output change
induced by migration and quantization.
Token aspect. Different tokens exhibit varying de-
grees of outliers. Dettmers et al. (2022); Yao et al.
(2022) introduce a novel scheme called per-token
quantization that dynamically computes quantiza-
tion parameters for each token. Wei et al. (2022b)
investigates the clipping impact of outliers and rec-
ommends finding an appropriate clipping range in
a token-wise manner. In this paper, we focus on the
channel aspect and might combine these techniques
when necessary.

3 Preliminary

Basic Notations. We denote matrices as upper case
letters (e.g., X) and vectors as lower case letters
(e.g., x). Operator ⊙ and ⊘ represent element-wise
multiplication and division for matrices or vectors.
We use WX as matrix-matrix multiplication. Fur-
thermore, Xt,j refers to the element of the t-th
token and the j-th channel in transformer models.
Q(·) denotes the quantization function.

Quantization. We indicate standard quantization
as per-tensor activation quantization, per-channel,
or per-tensor weight quantization here because such
schemes will not separate the integer matrix mul-
tiplication. Per-tensor means assigns quantization
parameters for each tensor and per-channel for each
output channel. Also, for some fine-grained ways,
we mainly consider per-token (Yao et al., 2022) and
per-group (Yao et al., 2023) here, which calculates
quantization parameters in each token or group.

4 Method

We first present our equivalent shifting and scal-
ing operations, then introduce ways to determine
effective values for them.

4.1 Equivalent shifting and scaling
In this section, we comprehensively investigate out-
lier features, naturally introducing the design of
shifting and scaling operations, followed by a uni-
fied migration pattern.

4.1.1 Outlier shifting and scaling
Channel-wise shifting. For transformers, espe-
cially LLMs, we find that outliers show asymmet-
ric behavior among channels. Recall that in Fig. 1a,
the 8725-th channel displays a hard negative inter-
val (-97, -58), while another channel dominates a
positive one (5.7, 43). Due to this asymmetry, even
if the range of each channel is relatively small, such
as 40 and 39 for outlier channels and minuscule
values for normal channels, the range of the entire
tensor can swell to a considerably large value (e.g.,
140, ranging from -97 to 43), which negatively af-
fects quantization performance.

To handle this issue, we propose channel-wise
shifting, which can eliminate the impact of asym-
metry by taking the following operation:

X̃ ′ = X − z, (1)

where z serves as a row vector (z ∈ Rn) and shifts
the activation for each channel. In this way, with
a carefully designed z which we will introduce in
Sec. 4.2.1, the new tensor X̃ ′ can get rid of the out-
lier asymmetry attribute. For example, by aligning
the centers of each channel in Fig. 1b, the range
can be reduced to 40 (the maximum channel range)
from 140 (the large tensor range). Finally, note
that this operation is not the conventional shifting
operation for symmetric quantization, as it operates
channel-wisely and provides better distribution for
per-tensor quantization.
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Figure 2: Left: We show the equivalent shifting and scaling operations by giving two representative examples: (a) for problematic
output of Pre-LN (LayerNorm put inside residual connection) with Multi-Head Attention (MHA) structure; (b) for problematic
output of Post-LN (LayerNorm put before residual connection) with Feed-Forward Network (FFN). Right: For effective shifting
and scaling values, the shifting vector can align the center of each channel to 0 and the scaling vector would shrink outliers into
the outlier threshold t which is searched based on its left metric.

Channel-wise scaling. Apart from the asymmetry
feature across channels, there also exists the out-
lier concentration phenomenon (Wei et al., 2022b)
that outliers predominantly accumulate in specific
channels over various inputs. For example, the
8725-th and the 6354-th channels in Fig. 1a hold
more aggressive values than others. Therefore, af-
ter shifting, we equip with the channel-wise scaling
to narrow them down to further alleviate the quan-
tization difficulty.

X̃ = (X − z)⊘ s. (2)

In the above equation, the row vector s ∈ Rn scales
the shifted tensor for each channel and brings final
quantization-friendly activation X̃ . For example,
in Fig. 1c, a tensor with a size of 10 can be obtained
if we scale down channels with signals over 5. De-
tailed calculation of s will be given in Sec. 4.2.2.
Implementation. It is easy to implement these
operations. Take the output of LayerNorm Fig. 2
as an example, we only need to replace its linear
transformation parameters β and γ with (β−z)⊘s
and γ ⊘ s to achieve shifting and scaling effects.
For others, we can update parameters in the former
DeQuant function.

4.1.2 Unified migration pattern
As mentioned in Eq. (1) and Eq. (2), we subtract
z and divide s to make the problematic activation
resilient to quantization. To keep an equivalent
FP model, a unified migration pattern is proposed
that transfers both reversed shifting and scaling
vectors to subsequent modules. We demonstrate

the feasibility of this algorithm on two common
structures.
Linear Layer. First, we consider a prevalent sce-
nario where a linear (convolutional) layer imme-
diately follows. Reversing the above operations
(i.e., (X̃ ⊙ s+ z)W⊤ + b) equals to updating the
W ∈ Rm,n and b ∈ Rm in the next layer, given by

(X̃ ⊙ s+ z)W⊤ + b

= (X̃ ⊙ s)W⊤ + zW⊤ + b

= X̃(W⊤ ⊙ s⊤) + (zW⊤ + b).

(3)

According to Eq. (3), weight and bias can absorb s
and z, respectively, and thus becomes:

W̃ = W ⊙




s1 s2 ... sn
s1 s2 ... sn
...
s1 s2 ... sn


 ,

b̃ = zW⊤ + b.

(4)

For example, Fig. 2(a) depicts the typical chal-
lenging activation (output of LayerNorm) in the
attention structure, all following weights and bi-
ases can absorb the shifting and scaling signals
without any extra computation burden.
Residual connection. Second, we consider the
case where a residual connection is applied after
the LayerNorm structure (Post-LN) and fed into
the quantized input. As shown in Fig. 2b, in ad-
dition to linear layer transformation, the identity
function will be substituted with channel-wise mul-
tiplication and addition to maintain equivalence.
We demonstrate that these increased calculations
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will only incur a negligible inference burden in
Sec. 5.5.

Finally, because s and z serve as shared parame-
ters across tokens and batches of data, the unified
migration pattern can be well-implemented and
produce the same output without additional com-
putation most of the time.

4.2 Effective shifting and scaling

Based on the equivalent shifting and scaling opera-
tions, in this section, we propose a fast and stable
scheme to pursue effective values.

4.2.1 Shifting values
The design of the shifting vector should eliminate
the impact of asymmetry across channels. Thus,
we devise to align the center of each channel to 0
so that the outlier channel will not occupy only the
positive or negative side. In detail, z is defined as
the average of the minimum and maximum signals
in each channel, given by:

zj =
max(X:,j) + min(X:,j)

2
, (5)

With the channel-wise shifting now, the tensor
range reduces to the largest channel range, getting
rid of being defined by asymmetric outliers.

4.2.2 Scaling values
The design of the scaling vector should further
scale down outliers while bringing marginal impact
on following weight quantization. The following
parts introduce how to obtain it with the proposed
optimization objective and procedure.
Challenges. Recall that the equivalent transfor-
mation Eq. (4) also scales weights and poten-
tially leads to inferior weight quantization, which
requires us to calculate elaborate scaling values
to reach a quantization balance between activa-
tion and weights. Nevertheless, we find previous
works (Wei et al., 2022b; Xiao et al., 2022) ei-
ther ignore the affected following weight or take
a heuristic way that simply equalizes ranges of ac-
tivation and weights. Unlike them, we think the
key point is to minimize their interactive output
change resulting from migration and quantization
(a detailed analysis is available in Table 6). Hence,
a new optimization objective is proposed.
Optimization objective. We first study the
simple case that the problematic activation acts
as the input of one linear layer (e.g., Fig. 2b).
Instead of minimizing quantization errors

of activation and weight separately (i.e.,
mins E

[
∥Q((X − z)⊘ s)− (X − z)⊘ s∥2F

]

and mins E
[
∥Q(W ⊙ s)−W ⊙ s∥2F

]
), a task

loss perspective is adopted by concerning their
matrix multiplication output. We measure the
output change after scaling and quantizing weight
and activation to pursue effective factors, given by:

min
s

E[∥Q((X − z)⊘ s)Q(W ⊙ s)⊤ + b̃︸ ︷︷ ︸
output after scaling and quantization

− (XW⊤ + b)︸ ︷︷ ︸
original FP output

∥2F ],
(6)

where the mean squared error (MSE) is used to
quantify the difference.

Multiple linear layers: Furthermore, we study
the case for multiple linear layers like the attention
structure (Fig. 2a), where three weights will be mul-
tiplied by the same scaling vector and calculated
with the same suppressed activation.

In this scenario, their matrix multiplication out-
puts produced by scaled and quantized matrices
are marked as Q̃q, K̃q, Ṽq, (Original outputs are
denoted as Q,K,V ). Applying Eq. (6) to three
linear layers separately and simply summing the
losses can make it difficult to illustrate their differ-
ent importance and usages. Therefore, we employ
the attention mechanism as a post-process function
to reasonably organize their scaling and quantiza-
tion information, given by:

min
s

E[∥softmax(Q̃qK̃
⊤
q )Ṽq − softmax(QK⊤)V ∥2F ].

(7)

Normalization and masking are omitted for nota-
tion simplicity, and it can be seen that information
from the first two linear layers has been encapsu-
lated within the attention map.
Optimization procedure. Toward the above ob-
jective, a fast and stable procedure is introduced to
search the scaling vector. First, we find that scaling
down only channels with outliers can bring better
performance. Because channels with normal acti-
vations can exhibit more variation over different
inputs, it can be difficult to find a decent scaling
value for them. Also, considering that they are not
responsible for low quantization performance, scal-
ing them is not necessary. Second, we propose to
optimize an alternate variable called outlier thresh-
old t, which would squeeze only channels with an
activation range over t into (−t, t) and keep others
intact (Fig. 2). Essentially, t here is used to specify
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which channel to scale down, the final scaled ac-
tivation range, as well as the scaling values in the
following weights.

This technique simplifies the complex problem
with numerous variables s to a single variable t.
Then we adopt the simple grid search for t to min-
imize the objective Eq. (6), Eq. (7). After getting
the effective t, the scaling vector is calculated as:

sj = max(1.0,
max(X:,j − zj)

t
). (8)

5 Experiments

The evaluations are designed to show: I. satisfac-
tory predictions of our OS+ for both small and large
language models with standard quantization; II.
consistent performance of OS+ on even lower-bit
with fine-grained quantization; III. ablation study;
III. analysis like computation complexity.

5.1 Set up
Quantization setting. Both the standard and fine-
grained quantization are considered. For the stan-
dard one, we take quantization nodes the same as in
Wei et al. (2022b); NVIDIA (2022), always adopt
per-tensor activation quantization, consider per-
tensor (fastest speed) and per-channel (high perfor-
mance) weight quantization. For the fine-grained
quantization, we adopt per-token (Yao et al., 2022)
and per-group (Yao et al., 2023) quantization.

Notation: We use INT8, INT6, INT4 to denote
the bitwidth of activation and weight. Specifically,
INT8* refers to per-tensor weight quantization.
And per-token and per-group quantization will be
marked in the table below.
Models and tasks. We conduct experiments on
both small and large language models. First, BERT
models (base and large versions) are evaluated
on the GLUE benchmark (Wang et al., 2018a).
Second, four of the largest OPTs ranging from
13B to 175B, biggest BLOOM (Scao et al., 2022)
and BLOOMZ (Muennighoff et al., 2022) boast-
ing 176 billion parameters, and LLaMA (Tou-
vron et al., 2023) models including 7B, 13B, 30B,
65B sizes are chosen as representatives. Zero-
shot tasks including language modeling, multiple
choice, commonsense reasoning, etc. are selected
for evaluation. The evaluation code is based on
lm-harness-evaluation1.
Baselines. For BERT, we adopt classical PTQ
techniques as baselines, including MinMax, Per-

1
https://github.com/EleutherAI/lm-evaluation-harness

centile (Wu et al., 2020), OMSE (Choukroun et al.,
2019), and recent works on BERT quantization
including PEG (Bondarenko et al., 2021), and Out-
lier Suppresion (Wei et al., 2022b). For large
models including OPT, BLOOM, and LLaMA, we
mainly compare with recent works including Zero-
Quant (Yao et al., 2022), and SmoothQuant (Xiao
et al., 2022). For details, readers can refer to Ap-
pendix C.
Implementation. We randomly select 128 samples
from the training dataset, in-domain data for the
GLUE benchmark, and PILE (Gao et al., 2020)
dataset for zero-shot tasks. A batch of data is first
used to calculate effective shifting and scaling vec-
tors. Then, calibration is conducted. More details
can be found in Appendix C.

5.2 Standard quantization with OS+

In this section, we show how OS+ can help standard
quantization achieve satisfying results from both
the small models and LLMs aspects.

Method CoLA MNLI QNLI SST-2 STS-B Avg.
FP32 59.6 84.9 91.8 93.4 89.5 83.8

INT8*
MinMax 52.3 81.3 89.0 91.1 86.2 79.5
OMSE 54.8 82.1 89.7 91.3 87.7 81.6
PEG 59.4 81.3 91.1 92.7 87.9 82.5
OS 60.3 83.9 90.2 92.9 88.2 83.0
OS+ 60.9 84.4 91.1 92.7 88.3 83.5

INT6
OMSE 35.4 73.7 84.7 86.3 85.8 73.5
Percentile 37.3 72.1 79.4 87.3 86.8 72.9
OS 54.4 81.8 89.8 91.9 88.7 81.2
OS+ 56.0 84.5 90.9 92.4 89.5 82.8

INT4
OMSE 4.7 38.5 52.2 50.3 0.2 41.1
Percentile 7.0 53.0 61.5 77.1 66.1 57.0
OS 28.5 57.9 72.5 80.4 67.8 62.7
OS+ 50.0 80.2 85.4 91.4 86.5 78.2

Table 1: PTQ performance of BERT-base models. MNLI
and STS-B report the combined score. Avg. indicates the
averaged results of 8 tasks on GLUE benchmark (details in
Appendix B). ∗ means per-tensor quantization for weight. OS
indicates Outlier Suppression for short.

BERT. Table 1 gives prediction results of common
PTQ algorithms. Most methods perform well on
INT8* but fail on lower bits while our approach
consistently achieves superior outcomes. Com-
pared to Wei et al. (2022b), our method outper-
forms by 1.6% and 15.5% on 6-bit and 4-bit, re-
spectively. In summary, our approach can achieve
near-floating point performance on high bits and
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Model Method PIQA (↑) Winogrande (↑) HellaSwag (↑) LAMBADA (↑)

FP16 INT8* INT6 FP16 INT8* INT6 FP16 INT8* INT6 FP16 INT8* INT6

OPT-13B
ZeroQuant

75.8
54.1 53.0

65.1
52.1 51.1

52.5
26.5 25.8

68.6
42.9 0.0

SmoothQuant 76.0 73.5 64.9 60.3 52.2 49.2 68.3 65.2
OS+ 76.4 75.8 65.0 64.0 52.3 51.7 68.3 65.7

OPT-30B
ZeroQuant

77.6
54.2 52.0

68.5
51.8 51.8

54.3
26.4 25.7

71.5
9.7 0.0

SmoothQuant 77.2 66.7 68.2 55.0 54.2 37.4 71.0 13.4
OS+ 77.4 77.4 68.0 68.9 54.2 53.7 70.8 69.6

OPT-66B
ZeroQuant

78.7
53.2 51.9

68.9
50.7 48.0

56.4
26.1 25.7

73.9
0.6 0.0

SmoothQuant 78.3 52.0 68.3 52.1 55.9 26.5 72.9 0.0
OS+ 78.7 77.5 69.0 69.4 56.2 55.8 73.0 72.7

OPT-175B
ZeroQuant

79.7
52.3 53.1

72.5
50.2 49.1

59.3
25.4 25.6

74.7
0.0 0.0

SmoothQuant 79.7 52.6 71.2 49.1 58.9 26.0 74.6 0.5
OS+ 79.6 80.0 72.5 71.7 59.2 58.5 74.7 74.2

BLOOM-176B
ZeroQuant

78.8
76.0 61.2

70.3
69.4 52.0

55.9
54.8 30.5

67.7
67.8 7.5

SmoothQuant 77.7 76.7 68.6 67.6 54.1 52.1 69.2 60.2
OS+ 78.4 78.1 69.8 70.3 55.2 54.8 68.0 69.2

BLOOMZ-176B
ZeroQuant

80.6
79.1 54.0

72.5
70.9 49.6

57.1
56.3 28.2

67.8
67.6 1.4

SmoothQuant 79.7 80.0 70.8 69.9 56.3 55.0 68.7 65.2
OS+ 79.9 79.9 71.3 70.6 56.7 56.4 68.8 69.2

Table 2: Comparison among different techniques in terms of accuracy on four zero-shot tasks. INT8* specifically means
per-tensor quantization for weights compared to INT8. More tasks are put in Appendix B due to space limit.

reduce the performance gap to 5.6% on 4-bit.
OPT and BLOOM. With standard quantization,
we list 8-bit and 6-bit accuracy in Table 2. It can
be observed that OS+ outperforms ZeroQuant by
a large margin. While SmoothQuant suffers from
non-negligible accuracy drops on much harder set-
tings like the 6-bit 175B model with significantly
severe outliers, ours still gives enjoyable results,
owning 32.5% upswings on HellaSwag task, 27.4%
boost on PIQA. Results of BLOOM models indi-
cate that their quantization challenges are less se-
vere than OPTs with smaller accuracy drops across
methods. Our approach still beats the best of others
by about 2% points on 6-bit. To conclude, with
standard quantization, ours is indeed close to FP re-
sults on 8-bit and exhibits around 1 point accuracy
degradation on 6-bit.

5.3 Fine-grained quantization with OS+

Here, OS+ is combined with fine-grained quanti-
zation to validate its wide application and go ex-
tremely low bit setting like 4-bit quantization.
Per-token Quantization. Per-token quantiza-
tion (Yao et al., 2022), which customizes quan-
tization parameters for individual tokens, can bring
better predictions, especially for lower-bit quanti-
zation and longer output like WikiText2 (Merity
et al., 2017). We opt for LLaMA models for valida-
tion. It’s worth noting that the structure of LLaMA
differs from others in its design of element-wise
multiplication of two activations as the input to
the final layer in FFN, potentially resulting in very

large signals, even exceeding 600. Given such a
challenge, we provide experiments both with and
without quantization of this layer in Table 3 and
Table 10, respectively. In both tables, we high-
light our lossless performance on 6-bit quantization
while SmoothQuant still suffers in Table 10. Also,
it shows the superior performance of OS+ on 4-bit
(e.g., 10.58% improvement on Winogrande, 10.04
PPL decrease on WikiText2).

Per-group Quantization. Additionally, per-group
quantization (Yao et al., 2023), which tailors quan-
tization parameters for each group of elements, is
a more fine-grained way. Recognizing the difficul-
ties of 4-bit quantization for OPTs, we illustrate
an example by adopting per-group quantization
with relatively large group sizes of 1024 and 512.
Fig. 3 shows that OS+ continues to outperform
other methods and can be more competitive under
harder cases such as a group size of 1024.

Figure 3: Results of 4-bit quantization with group size set to
1024 and 512, respectively.
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Model Method PIQA (↑) Winogrande (↑) HellaSwag (↑) WikiText2 (↓)

FP16 INT6 INT4 FP16 INT6 INT4 FP16 INT6 INT4 FP16 INT6 INT4

LLaMA-1-7B
MinMax

77.37
77.26 55.98

66.93
66.54 49.64

72.99
71.78 32.28

5.68
6.00 473.97

SmoothQuant 77.18 70.08 65.51 52.96 72.10 58.13 5.85 16.87
OS+ 77.48 72.31 67.01 56.67 72.32 61.24 5.76 14.17

LLaMA-1-13B
MinMax

79.05
78.56 50.65

70.09
69.53 50.28

76.22
75.26 26.34

5.09
5.58 3410.45

SmoothQuant 78.45 66.49 69.69 51.78 75.20 58.95 5.25 56.75
OS+ 78.73 75.03 69.53 61.17 75.74 67.21 5.22 18.95

LLaMA-1-30B
MinMax

80.09
78.40 50.00

72.77
72.45 50.12

79.21
77.25 27.09

4.10
5.09 2959.15

SmoothQuant 78.78 71.55 73.01 54.54 78.13 60.97 4.40 51.47
OS+ 79.98 73.01 73.64 60.38 78.77 68.03 4.30 22.61

LLaMA-1-65B
MinMax

80.85
77.58 50.27

77.11
69.46 49.33

80.73
78.72 24.59

3.56
5.25 14584.66

SmoothQuant 78.40 65.02 74.30 51.14 78.57 59.78 3.77 19.37
OS+ 80.47 74.43 75.14 61.72 79.76 67.65 3.65 9.33

Table 3: Comparison in terms of normalized accuracy, accuracy, normalized accuracy and perplexity (PPL), respectively (Touvron
et al., 2023). Techniques are equipped with per-token quantization (Yao et al., 2022). More results are put in Appendix B.

5.4 Ablation study

Design choices of scaling values. In this section,
we compare different scaling vector designs. In
Table 4, the second row displays results without
attention post-processing Eq. (7). Summing the
losses of multiple linear layers, as shown, proves
unwise, resulting in performance declines of about
2% and 10% on OPTs. The third row removes the
outlier threshold and instead learns scaling values
directly. We find this process is unstable and re-
quires suitable hyperparameters, causing failure on
LLMs. As mentioned in Sec. 4.2.2, This instabil-
ity may stem from suboptimal scaling values for
normal channels with varying magnitudes.

Effect of each operation. From Table 5, it can be
observed clearly that by removing the shifting op-
eration, the accuracy drops by about 1%-3% under
difficult settings. This is because, without channel-
wise shifting that initially smooths the quantiza-
tion challenge, scaling factors struggle to suppress
outliers effectively while producing the tolerable
weight quantization burden. Furthermore, when
excluding scaling effects, performance decreases
significantly, with even crashed results on LLMs.

Method
OPT-66B (INT6) BERT (INT4)

PIQA Winogrande SST-2 MNLI

scaling 76.5 66.5 89.3 77.7
- attention post process 74.5 57.4 89.1 77.1
- outlier threshold Fail Fail 83.2 65.2

Table 4: Design choices of scaling factor. The second row
removes the attention post process in optimization objective.
The third row chooses to learn the scaling vector directly rather
than alternately optimize the outlier threshold.

5.5 Analysis

Different activation scaling. Because scaling val-
ues act in both the activation and weights, reducing
quantization error for individual tensors can not
guarantee the minimum output change, which en-
capsulates their information to later forward pass.
For example, in Table 6, Outlier Suppression with
fixed scaling values has the smallest quantization
error for weight. SmoothQuant with a heuristic way
has the smallest quantization error for activation.
However, both of them did not bring the smallest
quantization error for the output. This reveals the
importance of directly optimizing according to the
output, which is what our method exactly does.
Thus, we can enjoy the best final performance.
Model storage and accuracy. Inspired by a vari-
ety of models with diverse sizes, we also study the
relationship between their storage and accuracy un-
der quantization settings. Focusing on one kind of
model with distinct quantization bit-width, Fig. 4
shows that 8-bit quantization which cuts storage
by about half, can generally maintain original per-
formance, and 6-bit quantization can lead to less
performance drop on larger models. Moreover, con-
sidering fixed storage constraints, we discover that
quantized big models typically outperform small
FP models. These observations can relate to model
robustness, which implies that large models can

Method
OPT-66B (INT6) BERT (INT4)

PIQA Winogrande SST-2 MNLI

Ours 77.5 69.4 91.4 80.2
- shifting 76.5 66.5 89.3 77.7
- shifting - scaling 54.7 49.4 82.3 63.7

Table 5: Effect of scaling and shifting operations.
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Method
activation weight Output change

range MSE range MSE MSE

original (-93.9, 31.6) 209.8 (-0.13, 0.13) 0.001 18061.5
OS (-23.5,15.7) 142.9 (-0.40, 0.41) 0.006 6182.52
SQ (-3.5, 2.0) 3.65 (3.4, 3.5) 0.43 3535.86
Our scaling (-8.4, 8.4) 48.54 (1.2, 1.3) 0.02 1334.89

Table 6: Detailed analysis of different techniques from the
activation scaling aspect. OS indicates Outlier Suppression
and SQ indicates SmoothQuant.

benefit from compression more if special outliers
are handled well.
Computation Complexity. We explain our com-
putation complexity of calibration and deployment
phases. For the calibration process, OS+ is efficient,
and able to generate scaling and shifting values in
about 20 minutes for OPT-175B offline. Moreover,
due to the equivalent transformation, our method
does not demand additional training and can be
applied in a post-training setting. For deployment,
we discuss inference efficiency with latency per-
formance evaluated using (NVIDIA, 2022). As
mentioned before, our channel-wise shifting and
scaling can be implemented by updating previous
parameters, and be migrated to subsequent weights.
For LLMs, our transformation does not introduce
any extra computation burden and leads to favor-
able latency improvements, as demonstrated in a
1.5× speedup in Fig. 5. Only BERT models addi-
tionally replace the identity function in the residual
connection with channel-wise multiplication and
addition. Such overhead is minimal, as shown in
Fig. 5, resulting in comparable latency speedup.

6 Conclusion

We present the Outlier Suppression+ framework
for addressing asymmetric and consistent outliers

50 100 150 200 250 300 350
Storage (MB)

64

66

68

70

72

A
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OPT-13B OPT-30B OPT-66B OPT-175B

Figure 4: Averaged accuracy on PIQA, Winogrande, LAM-
BADA, and HellaSwag of OPTs with different storages. We
draw circles, rectangles, and triangles to refer to FP16, the
8-bit and 6-bit models with quantized activation and weight.
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Figure 5: Real latency (x-axis) of our transformed 8-bit mod-
els, 8-bit and FP16 original models over different batch sizes
(y-axis). BERT-large-256 refers to the BERT-large model with
sequence length set to 256 while for OPT-13B-64, 64 means
output length with input length set to 512. Bold numbers
indicate quantization speedup.

in LLMs and other transformers. Our framework
is simple to use, consisting of both scaling and
shifting operations, which can be efficiently and
effectively implemented. Experiments demonstrate
the efficacy of our methods for suppressing outliers.

Limitations

While we have observed features of outliers and
devised methods to deal with them, the underly-
ing reasons for their emergence and attributes have
not been fully understood. This may require an
in-depth analysis of the training pipeline, including
the procedure and hyperparameters. Such investi-
gations are time-consuming but can benefit both
FP and quantized scenarios.

Ethics Statement

Our Outlier Suppression+ framework aims to im-
prove the quantization performance of transformer
language models. It can boost the development of
practical and green machine learning and does not
incur extra ethical concerns.
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A Related work

Quantization. Compression has become more and
more popular these days (Han et al., 2015; Hinton
et al., 2015; Hu et al., 2021; Liu et al., 2022; Xu
et al., 2023; Chen et al., 2023). One of its effective
techniques called quantization (Jacob et al., 2018)
employs low-bit representations for activation and
weight in neural networks. Researchers catego-
rize this approach into two pipelines: post-training
quantization (PTQ) and quantization-aware train-
ing (QAT). QAT (Courbariaux et al., 2015; Choi
et al., 2018; Esser et al., 2019; Li et al., 2019; Gong
et al., 2019; Shen et al., 2021; Zhang et al., 2018)
trains the quantized model end-to-end, necessitat-
ing significant GPU resources and the entire train-
ing dataset. In contrast, PTQ (Choukroun et al.,
2019; Wu et al., 2020; Banner et al., 2018; Wang
et al., 2020; Zhao et al., 2019; Nagel et al., 2019)
only requires hundreds of samples and limited re-
source consumption, producing a calibrated model
quickly. Recently, several works (Nagel et al.,
2020; Hubara et al., 2021; Li et al., 2021; Wei
et al., 2022a) proposed to adjust models slightly for
improved PTQ performance. Besides, other types
of quantization include zero-shot quantization with-
out real calibration data (Cai et al., 2020; Zhang
et al., 2021; Guo et al., 2022), mixed-precision with
mixed bit-width (Dong et al., 2019; Cai and Vas-
concelos, 2020), and FP8 data type (Wang et al.,
2018b; Kuzmin et al., 2022; Micikevicius et al.,
2022; Jin et al., 2022).
Quantization of transformer language models.
Recently, there has been a growing interest in the
quantization of transformer language models. In
the context of QAT, Zafrir et al. (2019) first ex-
plores 8-bit quantization for BERT-like models.
Shen et al. (2020) introduces group-wise quanti-
zation and studies mixed-precision quantization
based on Hessian information. Bai et al. (2020);
Zhang et al. (2020); Qin et al. (2022) combine
distillation strategies with quantization. Kim et al.
(2021) approximates the nonlinear function in trans-
former architectures to enable integer-only infer-
ence. Fan et al. (2020) incorporates quantization
noise for enhancement. Additionally, Tao et al.
(2022) investigates the challenges of quantizing
generative models.

In the realm of PTQ, researchers have discov-
ered that the poor performance of these models
should be attributed to extreme outliers in activa-
tions. These outliers exhibit special characteristics

from both channel and token aspects. In terms of
channels, outliers consistently emerge in certain
channels over different inputs. Bondarenko et al.
(2021) employs a per-embedding-group quantiza-
tion scheme that uses different quantization param-
eters for distinct channel groups, while Dettmers
et al. (2022) suggests utilizing FP16 representa-
tions for problematic channels holding signals over
6. Wei et al. (2022b) identifies this feature lying
in LayerNorm’s output and migrates the scaling
parameter of LayerNorm to subsequent modules
to attenuate outliers. Xiao et al. (2022) proposes
calculating scaling values by equalizing ranges be-
tween activations and weights and evaluates on
large language models. Guo et al. (2023) discards
normal values adjacent to outliers, making room for
outliers with customized GPU support. Compared
to them, we design the scaling factors that con-
cern the interactive results of troublesome activa-
tion and following weights to scale down channels
with outliers offline. Also, we notice the asym-
metric presentation of outliers and design a shift-
ing operation. While we operate on corresponding
channels between weights and activation, a later
work (Liu et al., 2023) adopts the splitting and
merging operations to transfer the quantization bur-
den of outlier channels to opposite channels of
weights, which might encourage us to design a
more flexible technique without the same or oppo-
site channel index requirement. In terms of tokens,
different tokens exhibit varying degrees of outliers.
Dettmers et al. (2022); Yao et al. (2022) introduce
a novel scheme called per-token quantization that
dynamically computes quantization parameters for
each token. Wei et al. (2022b) investigates the clip-
ping impact of outliers and recommends finding an
appropriate clipping range in a token-wise manner.

Besides, some studies focus on weight quanti-
zation, such as Dettmers and Zettlemoyer (2022);
Frantar et al. (2022); Zeng et al. (2022); Lin et al.
(2023) and some including Yuan et al. (2021); Li
et al. (2022), investigate the quantization of Vision
Transformer (ViT) models. Interestingly, several
studies (Kovaleva et al., 2021; Puccetti et al., 2022)
explore the underlying reasons for emerging out-
liers and trace them back to the pre-training phase.

B Supplementary experiments

BERT-base. We provide detailed results of BERT-
base models on GLUE benchmarks in Table 7. In-
terestingly, we find that models which are sensitive
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Algorithm 1: Outlier Suppression+
Input: Problematic output X of LayerNorm with parameters γ,β, subsequent module M with

weight W and bias b, grid search iteration K.
{1. Effective shifting and scaling:}
z =

min(X:,j)+max(X:,j)
2 ▷ Effective shifting vector.

loss∗ = INF
for k = 1 to K do

t = max(X − z) · k
K , ▷ Enumerate outlier threshold.

sj = max(1.0,
max(X:,j−zj)

t )
Calculate lossk based on Eq. (6), Eq. (7).
if loss∗ > lossk then

loss∗ = lossk, s∗ = s ▷ Effective scaling factors.
{2. Equivalent shifting and scaling:}
β̃ = (β − z)⊘ s∗, γ̃ = γ ⊘ s∗ ▷ Fuse z, s∗ into former operations.
b̃ = zW⊤ + b, W̃ = W ⊙ s∗ ▷ Update following modules.
return Transformed LayerNorm and subsequent module;

Method
CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B

Avg.
(Matt.) (acc m/mm) (f1/acc) (acc) (f1/acc) (acc) (acc) (Pear./Spear.)

FP32 59.6 84.9/84.8 91.4/87.8 91.8 87.8/90.9 72.6 93.4 89.7/89.3 83.8

INT8*
MinMax 52.3 80.9/81.7 85.3/80.9 89.0 84.8/88.6 68.2 91.1 84.7/87.6 79.5
OMSE 54.8 81.9/82.2 89.7/86.0 89.7 86.1/89.5 72.2 91.3 87.2/88.2 81.6
PEG 59.4 81.3 88.5 91.1 89.4 69.3 92.7 87.9 82.5
OS 60.3 83.8/84.0 90.4/87.0 90.2 87.3/90.4 71.1 92.9 87.8/88.7 83.0
Ours 60.9 84.4/84.4 90.6/87.2 91.1 87.1/90.6 73.3 92.7 87.7/88.9 83.5

INT8
MinMax 57.1 82.8/83.5 89.9/85.8 90.8 87.8/90.7 69.7 92.8 86.8/88.6 82.3
OMSE 57.2 84.0/84.3 90.1/85.8 91.1 87.6/90.5 72.2 92.2 87.9/88.7 82.9
Percentile 57.1 83.9/84.1 90.7/86.7 91.3 87.7/90.7 71.1 93.4 87.7/88.7 82.9
OS 61.6 84.4/84.5 91.4/87.8 91.5 87.9/90.8 72.2 93.8 89.2/89.0 84.0
Ours 60.3 84.8/84.5 90.5/87.0 91.6 87.5/90.8 71.5 93.6 89.3/89.2 83.6

INT6
MinMax 17.7 32.5/32.5 0.7/31.9 65.2 40.9/69.0 48.0 82.0 59.8/60.3 47.1
OMSE 35.4 74.0/73.3 81.5/76.5 84.7 76.1/82.1 64.3 86.3 85.6/86.1 73.5
Percentile 37.3 72.4/71.7 85.1/79.9 79.4 72.6/80.2 61.7 87.3 86.4/87.3 72.9
OS 54.4 82.0/81.7 87.5/83.3 89.8 84.7/88.9 70.8 91.9 88.7/88.6 81.2
Ours 56.0 84.6/84.4 90.0/86.3 90.9 87.0/90.5 71.8 92.4 89.6/89.4 82.8

INT4
MinMax -6.6 32.6/32.7 0.0/31.6 50.6 53.8/36.8 47.7 50.9 -0.5/-0.5 29.5
OMSE 4.7 38.5/38.4 81.3/69.1 52.2 45.2/50.9 59.9 50.3 0.1/-0.4 41.1
Percentile 7.0 52.6/53.5 83.0/75.7 61.5 44.7/68.3 55.6 77.1 65.9/66.3 57.0
OS 28.5 57.5/58.3 83.9/75.7 72.5 45.4/70.8 56.7 80.4 67.8/67.9 62.7
Ours 50.0 80.6/79.9 87.6/83.1 85.4 85.0/77.5 65.7 91.4 86.4/86.5 78.2

Table 7: PTQ performance of BERT-base models on GLUE benchmark. ∗ means per-tensor quantization for weight. OS indicates
Outlier Suppression for short.

1662



Method
CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B

Avg.
(Matt.) (acc m/mm) (f1/acc) (acc) (f1/acc) (acc) (acc) (Pear./Spear.)

FP32 63.3 86.7/85.9 91.6/88.0 92.2 88.1/91.1 74.0 93.5 90.3/90.1 84.9

INT8*
MinMax 62.4 72.0/73.0 76.3/72.8 87.0 66.5/80.4 46.9 92.2 58.6/52.1 71.5
OMSE 59.9 82.7/83.5 87.8/83.8 89.0 79.2/86.2 47.3 92.0 83.9/83.3 78.1
Percentile 61.3 84.5/84.0 91.6/88.9 91.6 85.9/89.4 69.3 92.4 88.3/88.1 83.1
OS 62.3 85.1/84.5 90.1/86.0 91.1 87.0/90.3 75.1 92.4 88.7/88.4 83.9
Ours 62.2 85.9/85.2 90.9/87.0 92.2 87.8/90.8 71.8 93.3 89.3/89.3 84.1

INT6
MinMax 5.6 32.0/32.0 50.2/46.1 50.2 0.0/63.2 49.5 53.0 5.0/4.8 38.1
OMSE 14.0 59.3/58.4 86.1/78.7 79.5 52.5/73.5 54.9 74.8 44.0/37.9 59.8
Percentile 16.4 63.5/63.8 82.0/77.2 87.0 44.8/70.7 49.8 81.7 65.7/67.8 62.8
OS 24.1 71.3/71.7 85.5/79.4 80.8 68.8/78.3 47.3 82.3 61.1/62.0 65.4
Ours 60.9 86.3/85.4 91.8/88.2 92.0 87.7/90.8 71.5 93.7 86.7/85.6 83.7

Table 8: PTQ performance of BERT-large models on GLUE benchmark. ∗ means per-tensor quantization for weight. OS
indicates Outlier Suppression for short.

to different learning hyperparameters during the
fine-tuning phase, such as CoLA and RTE, also
exhibit less favorable quantization outcomes. This
suggests a possible relationship between quantiza-
tion and robustness.
BERT-large. We also conduct experiments on
BERT-large models in Table 8. Results across meth-
ods indicate that quantizing BERT-large models is
more challenging (e.g., MinMax suffers from a
considerable accuracy drop (about 13%) on INT8*
compared to BERT-base, and Outlier Suppression
also fails on the 6-bit setting). Fortunately, with
Outlier Suppression+, the results can be improved,
yielding an 18.7% enhancement.
OPT. Here, we provide results of OPTs on more
tasks. Table 9 is the supplement for Table 2, which
further shows consistent performance enhancement
of OS+.
LLaMA. Recall that we conduct experiments on
LLaMA with two different settings in the fine-
grained quantization section. Table 10 gives the
results when quantizing the special and challenging
structure (the last layer of FFN) in LLaMA models.
It can be observed that ours still earns near-floating-
point performance on 6-bit quantization and beats
others by about 5%∼14% in terms of averaged ac-
curacy of the first four tasks, and even four times
PPL decrease for WikiText2. By comparing with
the easier setting Table 3, we find that the special
structure with large signals really leads to much
lower 4-bit outcomes across methods, especially

for MinMax and SmoothQuant, which makes us
think of model design, training techniques, and
efficient fine-tuning for quantization.

C Implementation details

C.1 OS+

In this section, we provide detailed descriptions of
our implementation with the core part distilled in
algorithm 1.
BERT. On the GLUE benchmark, fine-tuned FP
models are used for quantization. We randomly se-
lect 128 samples and set the batch size to 32. First,
a batch of data is used to calculate the effective
shifting and scaling signals for problematic acti-
vations, especially outputs after LayerNorm here.
Then shifting and scaling vectors are fused into
former operations and absorbed in later modules.
On fused models, we apply the calibration proce-
dure. Particularly, on BERT models, due to the
great variance of token range as discussed in Yao
et al. (2022); Wei et al. (2022b), we incorporate the
Token-Wise Clipping proposed in Outlier Suppres-
sion which is an orthogonal technique and weakens
outliers from the token aspect.
OPTs. For OPTs, we quantize pre-trained mod-
els and evaluate them on zero-shot tasks. 128
samples are randomly extracted from one of the
train datasets, namely the PILE dataset. As we
have observed that LayerNorm produces severe
asymmetric outliers on certain channels, the pro-
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Name Method OPT-13B OPT-30B OPT-66B OPT-175B

FP16 INT8* INT8 INT6 FP16 INT8* INT8 INT6 FP16 INT8* INT8 INT6 FP16 INT8* INT8 INT6

PIQA

LLM.int8()♣

75.8

- 75.8 -

77.6

- 77.3 -

78.7

- 78.7 -

79.7

- 79.6 -
ZeroQuant♣ 54.1 - 53.0 54.2 - 52.0 53.2 - 51.9 52.3 - 53.1
SmoothQuant 76.0 - 73.5 77.2 - 66.7 78.3 - 52.0 79.7 - 52.6
Ours 76.4 75.9 75.8 77.4 77.6 77.4 78.7 78.6 77.5 79.6 79.5 80.0

LAMBADA

LLM.int8()♣

68.6

- 68.4 -

71.5

- 71.4 -

73.9

- 73.8 -

74.7

- 74.6
ZeroQuant♣ 0.0 - 0.0 0.0 - 0.0 0.0 - 0.0 0.0 - 0.0
SmoothQuant 68.3 - 65.2 71.0 - 13.4 72.9 - 0.0 74.6 - 0.5
Ours 68.3 68.4 65.7 70.8 70.8 69.6 73.0 73.4 72.7 74.7 74.5 74.2

HellaSwag

LLM.int8()♣

52.5

- 52.4 -

54.3

- 54.3 -

56.4

- 56.3 -

59.3

- 59.2 -
ZeroQuant♣ 26.5 - 25.8 26.4 - 25.7 26.1 - 25.7 25.4 - 25.6
SmoothQuant 52.2 - 49.2 54.2 - 37.4 55.9 - 26.5 58.9 - 26.0
Ours 52.3 52.5 51.7 54.2 54.2 53.7 56.2 56.3 55.8 59.2 59.3 58.5

Winogrande

LLM.int8()♣

65.1

- 64.8 -

68.5

- 68.1 -

68.9

- 68.5 -

72.5

- 72.3 -
ZeroQuant♣ 52.1 - 51.1 51.8 - 51.8 50.7 - 48.0 50.2 - 49.1
SmoothQuant 64.9 - 60.3 68.2 - 55.0 68.3 - 52.1 71.2 - 49.1
Ours 65.0 65.3 64.0 68.0 68.5 68.9 69.0 68.8 69.4 72.5 72.5 71.7

ARC LLM.int8()♣

32.8

- 33.5 -

34.6

- 34.7 -

37.3

- 37.0 -

40.3

- 40.9 -
ZeroQuant♣ 19.3 - 20.7 19.8 - 20.6 20.8 - 20.4 21.8 - 20.6

(Challenge) SmoothQuant 32.1 - 30.6 33.8 - 26.7 36.5 - 21.9 40.5 - 21.2
Ours 33.5 33.3 32.7 34.5 34.7 34.6 37.5 37.2 37.0 40.3 39.9 41.0

ARC LLM.int8()♣

67.3

- 67.3 -

70.1

- 69.7 -

71.7

- 71.8 -

74.9

- 74.8 -
ZeroQuant♣ 27.5 - 25.0 30.5 - 25.0 29.7 - 26.0 24.0 - 25.6

(Easy) SmoothQuant 66.2 - 62.2 69.7 - 55.8 70.5 - 27.8 74.1 - 28.8
Ours 67.3 66.8 67.0 70.1 70.0 68.9 71.3 71.8 70.7 74.8 74.7 74.3

COPA

LLM.int8()♣

86.0

- 86.0 -

82.0

- 82.0 -

86.0

- 87.0 -

88.0

- 89.0 -
ZeroQuant♣ 63.0 - 55.0 55.0 - 55.0 53.0 - 52.0 60.0 - 55.0
SmoothQuant 85.0 - 82.0 83.0 - 75.0 84.0 - 55.0 88.0 - 55.0
Ours 85.0 86.0 85.0 83.0 82.0 84.0 85.0 86.0 84.0 88.0 89.0 91.0

StoryCloze

LLM.int8()♣

76.1

- 76.3 -

77.0

- 77.1 -

77.5

- 77.7 -

79.5

- 79.3 -
ZeroQuant♣ 49.6 - 48.3 48.5 - 48.0 49.2 - 48.4 47.7 - 48.2
SmoothQuant 76.0 - 73.5 76.9 - 61.4 77.3 - 48.8 79.1 - 49.8
Ours 75.8 76.0 75.4 77.0 76.9 76.6 77.3 76.4 76.6 79.2 79.1 78.1

Avg. Ours 65.5 65.5 65.5 64.7 67.0 66.9 66.8 66.7 68.8 68.5 68.6 68.0 71.1 71.0 71.1 71.1

Table 9: Comparison among different techniques in terms of accuracy on eight zero-shot tasks. ♣ denotes dynamic and
fine-grained quantization, bringing extra computation overhead. INT8* specifically adopts per-tensor quantization for weights
compared to INT8.

posed method is applied here. After obtaining a
more quantization-friendly model, the MinMax al-
gorithm collects distribution statistics. Since di-
verse tokens do not have outliers of varying degrees
on these models, advanced clipping techniques are
not involved.
BLOOM and BLOOMZ. The main pipeline is
similar to OPTs. The only exception is using the
Token-Wise Clipping as the calibration method be-
cause these models hold different outliers among
different tokens. The clipping ratios are searched
as 0.5% and 1.5% for 8-bit and 6-bit BLOOM, and
0.0% and 0.5% on BLOOMZ.
LLaMA. The main pipeline is similar to OPTs
with some small differences. First, we use the Wiki-
Text2 dataset for calibration. Second, as LLaMA
does not have biases, introducing channel-wise
shifting might incur a little overhead. Thus, for
fair comparisons, we simply omit channel-wise
shifting for LLaMA here. Third, when taking the
harder setting that quantizes the last layer in FFN,
the channel-wise scaling is also conducted thereby
updating the quantization scale of up proj and
weight parameters of down proj, which does not
bring computation overhead during inference. Last,

unlike OPTs, for tasks with normalized accuracy
metrics, we report the normalized accuracy metric
instead of the accuracy one to align the original
paper (Touvron et al., 2023). This point has also
been indicated in each table below.

C.2 Baselines

We introduce the implementation details of base-
lines here. MinMax obtains the minimum and
maximum statistics of the tensor for the quanti-
zation clipping range. Percentile (Wu et al., 2020)
uses the activation distribution percentile as the
quantization clipping range. Using the dev set, we
search its hyper-parameters within [0.999, 0.9999,
0.99999]. OMSE (Choukroun et al., 2019) min-
imizes the mean squared error between quanti-
zation and FP signals. PEG (Bondarenko et al.,
2021) applies fine-grained quantization to problem-
atic activation from a channel perspective. Out-
lier Suppression (OS) (Wei et al., 2022b) uses
fixed scaling factors to suppress outliers and fur-
ther clips outliers in a token-wise manner. Zero-
Quant (Yao et al., 2022) uses per-token quantiza-
tion, assigning different quantization parameters
to different tokens. This fine-grained scheme from
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Model Method PIQA (↑) ARC-e (↑) ARC-c(↑) HellaSwag(↑) Winogrande (↑) WikiText2 (↓)

FP16 INT6 INT4 FP16 INT6 INT4 FP16 INT6 INT4 FP16 INT6 INT4 FP16 INT6 INT4 FP16 INT6 INT4

7B
MinMax

77.37
77.53 53.37

52.48
52.36 29.88

41.38
40.35 25.09

72.99
70.98 30.98

66.93
64.72 52.01

5.68
6.22 430.33

SQ 76.65 49.80 53.11 30.40 40.10 25.80 71.52 27.40 61.88 48.00 6.15 52.85
OS+ 77.20 64.85 52.27 39.60 40.78 31.06 71.68 48.99 65.11 54.85 5.90 40.32

13B
MinMax

79.05
77.42 51.14

59.84
57.66 27.61

44.62
42.75 26.28

76.22
74.72 25.92

70.09
65.75 49.88

5.09
5.76 1558

SQ 77.80 55.55 56.36 34.51 42.58 26.71 75.11 41.56 68.11 48.70 5.50 79.35
OS+ 78.24 62.62 57.83 37.67 43.43 30.46 74.96 52.21 68.59 51.07 5.37 53.64

30B
MinMax

80.09
74.92 49.46

58.92
56.31 26.30

45.39
43.69 29.18

79.21
76.14 25.60

72.77
69.69 48.62

4.10
5.54 4958

SQ 77.14 50.16 57.61 28.11 42.91 26.71 78.07 31.97 69.92 51.14 5.37 399.65
OS+ 79.16 67.19 59.13 48.48 46.25 35.58 78.19 56.44 72.53 51.85 4.48 112.33

65B
MinMax

80.85
77.58 49.95

58.75
55.18 26.39

46.25
45.56 26.79

80.73
78.36 25.35

77.11
69.3 48.78

3.56
5.98 54035

SQ 77.97 61.81 54.67 40.15 44.62 32.08 77.51 46.19 72.61 50.83 4.00 112.02
OS+ 79.76 71.06 56.31 49.49 44.37 37.12 79.00 58.76 73.48 53.08 3.82 32.60

Table 10: Comparison on LLaMA-1 in terms of normalized accuracy (Touvron et al., 2023) for the first four tasks, accuracy for
Winogrande and perplexity for WikiText2. The technique in each row is equipped with per-token quantization in ZeroQuant (Yao
et al., 2022). This table would quantize the last layer in FFN compared to Table 3.

the token aspect also requires dynamic quantization.
Meanwhile, for INT8*, we implement per-group
weight quantization according to its description.
SmoothQuant (Xiao et al., 2022) migrates scal-
ing factors to later modules to smooth problematic
activation. Their scaling factors equal the range
between activation and weights. For lower bits, we
also search its hyper-parameter α according to its
description for better performance.
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