
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 16315–16327
December 6-10, 2023 ©2023 Association for Computational Linguistics

ATHENA: Mathematical Reasoning with Thought Expansion

JB. Kim1 Hazel H. Kim2 Joonghyuk Hahn1 Yo-Sub Han1

1Yonsei University 2Classting AI Research
jb@thejb.net, hazel.kimh@gmail.com, {greghahn,emmous}@yonsei.ac.kr

Abstract

Solving math word problems depends on how
to articulate the problems, the lens through
which models view human linguistic expres-
sions. Real-world settings count on such a
method even more due to the diverse prac-
tices of the same mathematical operations. Ear-
lier works constrain available thinking pro-
cesses by limited prediction strategies with-
out considering their significance in acquir-
ing mathematical knowledge. We introduce
Attention-based THought Expansion Network
Architecture (ATHENA) to tackle the chal-
lenges of real-world practices by mimicking
human thought expansion mechanisms in the
form of neural network propagation. A thought
expansion recurrently generates the candidates
carrying the thoughts of possible math expres-
sions driven from the previous step and yields
reasonable thoughts by selecting the valid path-
ways to the goal. Our experiments show that
ATHENA achieves a new state-of-the-art stage
toward the ideal model that is compelling in
variant questions even when the informative-
ness in training examples is restricted.1

1 Introduction

Math word problem (MWP) solving is one of the
fundamental reasoning tasks of answering a mathe-
matical question by understanding a complex, intri-
cate system of human lexical expressions. Models’
ability to solve a problem depends on a method that
articulates the problem, the lens through which they
view human lexical expressions. Ideal MWP mod-
els understand the diverse applications of the same
mathematical operations in real-world situations,
which require lexically sophisticated. For example,
“×” can count all elements equally divided in mul-
tiple boxes, but also calculate area from length and
width, or tax fee from the tax rate and income.

1The source code is available at https://github.com/
the-jb/athena-math.

Problem 2. The school playground was originally ... How many
square meters are increased by the current playground area
compared to the original one?

Problem 1. The school playground was originally [80] meters long
and [40] meters wide. Later when the school is remodeled, the
length is increased by [10] meters and the width is increased by
[15] meters. How many square meters is the original area?

Thoughts from context
[80] original length

[40]

[10]

[15]original width

increased length

increased width

[80+10] total increased length

[80×40] original area

[40+15] total increased width

[(80+10)×(40+15)] total increased area

[(80+10)×(40+15)-(80×40)] increased area from original

Figure 1: Visualization of thoughts constructed for solv-
ing two problem samples with the same context de-
scription from the UnbiasedMWP dataset, one of our
benchmarks.

It is significant how we estimate if the model
has learned mathematical reasoning to qualify for
the ideal model. We state that the ideal models
that learn mathematical problems must be able to
solve unseen problems if they are applications of
mathematical operations that models have already
seen, or soundly solve problems even when given
examples to learn are restricted.

Humans learn mathematical knowledge by for-
mulating and understanding underlying principles
from seen cases rather than just recognizing the
common lexical patterns. Models currently face
two challenges to reach human-level mathemati-
cal understanding: conceptual knowledge to un-
derstand the practices of mathematical principles,
and procedural knowledge to deductively derive
the answer through the principles, which are indis-
pensable for each other in their development and

16315

https://github.com/the-jb/athena-math
https://github.com/the-jb/athena-math

Context The school playground was originally [80] meters long and [40] meters wide. Later when the school is remodeled, the
length is increased by [10] meters and the width is increased by [15] meters.

Train on an example of a question-solution pair under the context above.

Question How many square meters is the original playground area? Solution (80× 40)

Test on variant questions that share the context above.

Q0 How many times the length of the original playground was the width?
DeductReasoner ATHENA
UnbiasedMWP (80 + 10) × (40 + 15) − (80 × 40) (X) UnbiasedMWP (80 + 10) × (40 − 15) (X)
UnbiasedMWP (1:N) 80 ÷ 40 (O) UnbiasedMWP (1:N) 80 ÷ 40 (O)

Q1 How many square meters is the current playground area?
DeductReasoner ATHENA
UnbiasedMWP (80 + 10) × (40 + 15) − (80 × 40) (X) UnbiasedMWP (80 + 10) × (40 + 15) (O)
UnbiasedMWP (1:N) 80 × 40 (X) UnbiasedMWP (1:N) (80 + 10) × (40 + 15) (O)

Q2 How many square meters are increased by the current playground area compared to the original one?
DeductReasoner ATHENA
UnbiasedMWP (80 + 10) × (40 + 15) − (80 × 40) (O) UnbiasedMWP (80 + 10) × (40 + 15) − (80 × 40) (O)
UnbiasedMWP (1:N) 80 × 40 (X) UnbiasedMWP (1:N) (80 + 10) × (40 + 15) − (80 × 40) (O)

An example with a lexically similar context to that of above from the UnbiasedMWP

Context The school basketball court was [20] meters long and [12] meters wide. After the renovation, the length is increased by
[8] meters, and the width increases by [3] meters.
Question How many square meters are increased? Solution (20 + 8)× (12 + 3)− (20× 12)

Table 1: Predictions of DeductReasoner (Jie et al., 2022) and ATHENA on a sample that has variant questions
while sharing the common context for the problems. The observation above is when models use RoBERTa-large on
UnbiasedMWP (Yang et al., 2022).

usage (Rittle-Johnson and Alibali, 1999; Byrnes
and Wasik, 1991; Canobi, 2009; Rittle-Johnson and
Schneider, 2014).

Prior approaches mostly adopt the transduction-
based models such as sequence-to-sequence (Ling
et al., 2017; Wang et al., 2018), sequence-to-
tree (Xie and Sun, 2019; Liu et al., 2019a) or graph-
to-tree methods (Zhang et al., 2020b; Li et al.,
2020) and concentrate on enhancing problem-level
encoding (Shen and Jin, 2020; Zhang et al., 2020b;
Lin et al., 2021; Yu et al., 2021). These works
have limitations in obtaining procedural knowledge
due to their prediction strategies that operate in
a counter-intuitive order. For instance, sequence-
to-tree approaches determine mathematical oper-
ations before the operands in the inference steps.
Recently, Jie et al. (2022) proposed a deductive pre-
diction strategy, but it still entails procedural bias,
accepting only one particular reasoning pathway.

Overall, the prior studies show limitations in
learning mathematical procedures, which is signifi-
cant for achieving successful mathematical skills.
As a result, despite their high accuracies on some
benchmarks, the current approaches fail to solve
variant questions that are simply mutated from al-
ready trained examples (Patel et al., 2021; Yang
et al., 2022). As shown in Table 1, we empirically
argue that they learn the repeated patterns in given

problems rather than the underlying principles for-
mulating the equations.

The cognitive inadequacy of previous models
motivates us to propose a new reasoning architec-
ture that maximizes feasible reasoning pathways.
We design ATHENA that reasons with thought ex-
pansion inspired by the studies of human reasoning
(Johnson-Laird, 2008; Rittle-Johnson and Schnei-
der, 2014). The key idea is to implement two types
of thoughts in the expansion process: thoughts
before considering goals formed by conceptual
knowledge and goal-directed thoughts yielded by
procedural knowledge.

Figure 1 illustrates an example of thoughts
formed via asking different questions (goal) within
the same situation (context). Because it is tricky
for models to answer different questions that share
a lexically similar problem context, we state that
the two thinking strategies would lead to the right
answer by properly utilizing mathematical knowl-
edge. We expand the thoughts by applying con-
ceptual knowledge to obtain candidate thinking
pathways and procedural knowledge to evaluate
the potential answers. This is how we endow mod-
els with mathematical reasoning ability and em-
pirically demonstrate that the model has actually
learned the mathematical knowledge.

ATHENA puts the aforementioned thinking pro-

16316

cess explicitly into neural network propagation.
Defining the term thought as a representation of
each math expression driven from the problem,
we shape candidate thoughts and the goal-directed
thoughts named reasonable thoughts. The model
generates candidate thoughts by applying mathe-
matical operations and yields reasonable thoughts
by filtering with solidly updated premises until it
meets the appropriate answer. With this recurrent
process, we develop a neural model of processing
thoughts based on multi-head attention (Vaswani
et al., 2017) that effectively carries the subtle fea-
ture changes during expansion.

Our experiments show that the proposed ap-
proach is strong at predicting mathematical ex-
pressions requiring sophisticated comprehension as
shown in Table 1. We observe that ATHENA pro-
duces a solid performance when the model needs to
deal with previously unseen questions. ATHENA
is also very compelling to solve variant questions
once it has learned one question established from
the shared context. From the experimental results,
we conclude that ATHENA reaches a new state-
of-the-art stage toward the ideal MWP model that
we define as the one that can learn mathematical
reasoning.

2 Math Word Problem

Math word problem (MWP) solving is the task of
answering a mathematical question by understand-
ing natural language descriptions.

2.1 Problem Formulation
Our task of solving MWPs is defined as follows.
Each example in the MWP dataset D has a prob-
lem sequence S in natural language as input and
an equation E as expected output. D consists of
K (problem, equation) tuples, where K is the num-
ber of examples:

D = {(S(i), E(i))}i=1,...,K .

We use a pre-trained language model (PLM) to
embed S. Let P = (t1, t2, . . . , tn) denote a to-
kenized sequence of S, where ti represents each
subword token. The PLM output of P is denoted as
X = (x1, x2, . . . , xn), where xi is an embedding
vector of each token ti.

2.2 Related Work
MWP problems have begun with feature engi-
neering via hand-crafted rules or statistical con-
cepts (Bakman, 2007; Hosseini et al., 2014; Mitra

and Baral, 2016). Early works have adopted neu-
ral network approaches through end-to-end learn-
ing strategies such as sequence-to-sequence (Ling
et al., 2017; Wang et al., 2018; Li et al., 2019) or
sequence-to-tree (Xie and Sun, 2019; Liu et al.,
2019a; Chiang and Chen, 2019; Qin et al., 2020).
The previous approaches often use the networks or
manipulate the representation with tree or graph
templates to generate mathematical equations in
a structurally sophisticated manner (Wang et al.,
2017; Zhang et al., 2020b).

Having developed and become accessible to pre-
training and transfer learning, several approaches
have promoted their performance with pre-trained
language models (Shen et al., 2021; Yu et al., 2021;
Huang et al., 2021; Zhang et al., 2020a; Liang et al.,
2022), aiming to enhance the encoder with pre-
trained embeddings. Other approaches have made
a key contribution by utilizing additional knowl-
edge such as semantic meaning. Some take advan-
tage of structural information such as hierarchical
dependency (Shen and Jin, 2020; Lin et al., 2021;
Yu et al., 2021), formula structure (Huang et al.,
2020), graph-edge connection information (Zhang
et al., 2020b; Wu et al., 2021; Li et al., 2020) and
more (Li et al., 2022; Shen et al., 2021).

All these approaches mostly aim at enhancing
problem-level information but the recent studies
demonstrate the significance of inference proce-
dures in reasoning tasks. Wei et al. (2022) show
impressive success for large-scale language mod-
els in complex reasoning tasks by adopting chain-
of-thought prompting. The reasoning extraction
method (Jie et al., 2022) has recently reached de-
cent performance by constructing the deductive
order in solving MWP.

3 ATHENA

Attention-based THought Expansion Network
Architecture (ATHENA) is an architecture that ex-
pands its thoughts to solve MWP. Figure 2 illus-
trates an overall process of ATHENA. ATHENA
extracts initial thoughts Θ0 from PLM and ex-
pands them with inferring through premises un-
til it reaches the final thought. We first clarify
what is a thought—a foundational ingredient of our
model—and explain the premise and goal vectors
that measure the thoughts.

Thought. A thought is an embedding of a pos-
sible math expression derived from quantities in a
problem representing the contextual meaning of the

16317

ExpansionExpansion

Infer

Candidate Thoughts

Context The school playground was originally [80] meters long and [40] meters wide. Later when the school is remodeled, the length is
increased by [10] meters and the width is increased by [15] meters.
Question How many square meters are increased by the current playground area compared to the original one?

Pre-trained
Language Model

original length

original width

increased length

increased width

[80]

[40]

[10]

[15]

[CLS]

[MASK]

[MASK]

[?]

[MASK]

[MASK]

...

...

...

...

...

Premise
Vector

Goal
Vector

θ'

Contextualize quantities
by [MASK] token

[80]

[40]

[10]

[15]

θ'

θ'

θ'

P0

θ'

[-80]

[-40]

[-10]

[-15]

θ'

θ'

θ'

θ'

[1/80]

[1/40]

[1/10]

[1/15]

θ'

θ'

θ'

θ

[80]

[40]

[10]

[15]

θ

θ

θ

neg inv

[80+40]

[80+10]

[10+15]

θ'

θ'

θ' θ'

[80×40]

[80×10]

[10×15]

θ'

θ'

... ...

add mulΘ*
1

θ

[80]

[40]

[10]

[15]

θ

θ

θ

Θ*
2

[80+10]

[40+15]

[80×40]

θ

θ

θ

[((80+10)
×(40+15))

+(-(80×40))]

θ*

Initial
Thoughts

Infer

Reasonable
Thoughts

Θ0 Θ*
0

θ

[80]

[40]

[10]

[15]

θ

θ

θ

Candidate Thoughts

P0

G

𝑑=1

Answer

Θ1

P1 Reasonable
Thoughts

Reasonable
Thoughts

P2

Final Thought

Reasonable
Thoughts

Θ*
𝑑

Answer

yes

θ'

discard select

G θ

Infer

Θ2

premise update premise update

𝑑=2

Candidate Thoughts

Θ𝑑

Infer

Transform
Merge

yes no

(80+10)×(40+15)
-(80×40) = 1750

Golden Equation

Transform

nothing
accepted

M
erge

updated

Θ*
𝑑−1

Prev Thoughts

Thought Expansion Overall Process

no

Initial Stage

𝑑
=

2
𝑛

−
1

𝑑
=

2
𝑛

Figure 2: Overall process of ATHENA. First, extract initial thoughts, an initial reasoning vector, and a goal vector
from PLM. Second, expand thoughts by transform (d = 1, 3, 5, . . .) or merge (d = 2, 4, 6, . . .) and generate
candidate thoughts. Third, infer the candidate thoughts to obtain new reasonable thoughts. Last, give reasonable
thoughts to the next expansion. Repeat until meeting a thought that answers the goal vector.

expression. Let θ denote a thought with hidden size
H corresponding to an expression E(θ). A goal of
the model is to find a thought θ∗ that satisfies the
ground-truth expression E∗:

E(θ∗) ≡ E∗.

Premise Vector. A premise vector represents pre-
viously inferred thoughts to evaluate and filter can-
didate thoughts in each depth. Let Pd denote
a premise vector for depth d. We set an initial
premise vector P0 with the [CLS] token from the
problem descriptions.

Goal Vector. A goal vector plays a role as
ground-truth measurement to evaluate if a thought
is an appropriate answer to the question. We set a
goal vector G with a tokenized embedding of the
punctuation mark in the question description.

3.1 Initial Thought
An initial thought is an embedding that carries
each quantity representation illustrated in a con-
text or question description. We mask quantities
with [MASK] token and obtain the embeddings
that capture contextual information from the per-
spective of corresponding quantities. We denote a
set of thoughts in the initial depth by Θ0:

Θ0 = {xi | xi ∈ X, ti ∈ P, ti = [MASK]}.

Certain quantity representations such as π are
necessary for generating mathematical expressions

despite not being presented in the contexts or ques-
tions. We collect them from a training set and
randomly initialize their embeddings. We also put
their embeddings to initial thoughts Θ0.

3.2 Thought Expansion
In each depth, thought expansion constructs can-
didate thoughts Θd and filters them to obtain the
reasonable thoughts Θ∗

d. Reasonable thoughts are
the waypoint thoughts to reach the final thought.

The two stages in a thought expansion are: (1)
our model generates candidate thoughts Θd from
previous thoughts Θ∗

d−1 through the operations and
(2) it reasons about the candidates if they are worth
to be reasonable thoughts Θ∗

d. Expansion keeps
going until finding one of the reasonable thoughts
qualified to be a final thought θ∗.

3.2.1 Candidate Thought
Our model generates a set of possible new
thoughts Θd from the previous thoughts Θ∗

d−1 as
the candidates. A new thought θ′ is a thought of a
math expression obtained by combining two pre-
vious thoughts θi, θj ∈ Θ∗

d−1 with an arithmetic
operation:

E(θ′) = E(θi) ◦ E(θj) where ◦ ∈ {+,−,×,÷}.

To make a new thought, we introduce two oper-
ation layers whose combination can represent the
arithmetic operations: merge M and transform T.
These layers aim to maximize the reflection of the

16318

characteristics of arithmetic operations rather than
the separate layers of individual arithmetic opera-
tions. The definitions of merge and transform are
shown below.

Merge. Merge layer M merges a pair of thoughts
(θi, θj) into a new thought θ′ such that E(θ′) applies
addition and multiplication to E(θi) and E(θj):

op

M : θi, θj 7→ θ′

s.t. E(θ′) = op(E(θi), E(θj)) where op ∈ {+,×}.

Transform. Transform layer T transforms a
thought θ into a new thought θ′ such that E(θ′)
applies inverse operations of addition and multipli-
cation to E(θ):

op

T : θ 7→ θ′

s.t. E(θ′) = op(E(θ)) where op ∈ {−·, ·−1}.

We use Feed-Forward Network (FFN) and multi-
head attention inspired by Vaswani et al. (2017)
for the implementation of the operation layers. We
use FFN referred to as FF for transform layer T.
Using multi-head self-attention Aself and layer nor-
malization ℓ, we implement merge layer M(θi, θj)
followed by:

M(θi, θj) = FF(θi+θj+ℓ(1⊤2 A
self

([θi; θj]))W+b)

where W ∈ RH×H , b ∈ RH .

This implementation satisfies Mop to be commu-
tative for op ∈ {+,×}:

op

M(θi, θj) =
op

M(θj , θi) and

E(
op

M(θi, θj)) = E(
op

M(θj , θi)).

We apply transform layer T for depth d = 2n− 1
and merge layer M for depth d = 2n to generate the
candidates. In the case of the beginning depth d =
0, we use the initial thoughts Θ0 as the candidates.

3.2.2 Reasonable Thought
After obtaining candidate thoughts Θd, our model
yields reasonable thoughts Θ∗

d that constitute the
final thought θ∗. In each depth d, it selects reason-
able thoughts from candidate thoughts through the
inference layer infer with a premise vector Pd.

Infer. The inference layer calculates the correla-
tion score between the premise vector Pd and each
candidate thought θ ∈ Θd using multi-head atten-
tion A(Q,K = V) and feed-forward network FF

Algorithm 1 Thought Expansion Process of ATHENA

Input: Θ0,P0,G
Output: E∗
d← 0
Θ∗

0 ← {θ | θ ∈ Θ0, infer(P0, θ) ≥ tr}
while d ≤ D or ∃θ ∈ Θ∗

d(answer(G, θ) > tf) do
Pd+1 ← Pd ∥A(FF([Θ∗

d]),Pd)
d← d+ 1
if d = 1, 3, 5 . . . then

Θd ←
⋃

op∈{−·,·−1}{Top(θ) | θ ∈ Θ∗
d−1}

else if d = 2, 4, 6 . . . then
Θd ←

⋃
op∈{+,×}{Mop(θi, θj) | θi, θj ∈ Θ∗

d−1}
end if
Θ∗

d ← Θ∗
d−1 ∪ {θ | θ ∈ Θd, infer(Pd, θ) ≥ tr}

end while
θ∗ ← argmaxθ∈Θ∗

d
answer(G, θ)

return E(θ∗)

with sigmoid function σ to evaluate if a thought is
acceptable within the premises:

infer(Pd, θ) = σ(A(FF(θ),Pd)Wr + br)

where Wr ∈ RH×1, br ∈ R.

A thought θ is reasonable if its correlation score
infer(Pd, θ) exceeds a threshold tr = 0.5. In the
next iteration d+ 1, the reasonable thoughts in the
current depth Θ∗

d become the input.

Update Premises. A previously obtained conse-
quence can become a premise for the next inference
step. Accordingly, our model updates the premise
vector Pd with the reasonable thoughts Θ∗

d obtained
in the current depth d to prepare a premise vector
for the next step Pd+1. It gains the updated premise
vector by concatenating all reasonable thoughts Θ∗

d

after the multi-head attention A using the parame-
ters of the inference layer infer:

Pd+1 = Pd ∥A(FF([Θ∗
d]),Pd).

3.3 Final Thought
A final thought θ∗ is the answer to the question.
When the thought expansion process finishes, our
model decides the final thought by selecting a
thought with the maximum score. We have two cri-
teria to terminate the iteration; (1) when the depth
reaches the maximum expansion depth D; (2) if
there is a thought with the score that exceeds a con-
fidence threshold tf on iteration. We calculate the
score of each reasonable thought θ ∈ Θ∗

d using the
multi-head attention A and feed-forward network
FF with the goal vector G, activated by sigmoid σ:

answer(G, θ) = σ(A(FF(θ),G)Wa + ba),

16319

where Wa ∈ RH×1, ba ∈ R.
A thought with the maximum score in the rea-

sonable thoughts becomes a final thought θ∗:

θ∗ = argmax
θ∈Θ∗

d

(answer(G, θ)) .

The model bestows the final thought the fidelity to
shape the answer to the goal of the problem.

Algorithm 1 shows the overall process to derive
the final answer E(θ∗) from inputs Θ0,P0,G.

4 Experiments

We conduct experiments across a comprehen-
sive range of MWP) solving tasks to show that
ATHENA outperforms strong baselines in both full
datasets and variant versions of the original datasets
while being more interpretable in terms of interme-
diate steps toward the answers.

4.1 Experimental Setups
Baselines. We select four representative ap-
proaches as the baselines to compare with
ATHENA: Transformer (Vaswani et al., 2017)2, a
goal-driven tree-structured model (GTS) (Xie and
Sun, 2019), Graph-to-Tree (Zhang et al., 2020b)3

and DeductReasoner (Jie et al., 2022).4 Trans-
former is a sequence-to-sequence approach that
uses multi-head attention mechanism while GTS is
a strong baseline of sequence-to-tree model. Graph-
to-Tree is another approach that adds a graph en-
coder on top of GTS. We adopt DeductReasoner
as an additional baseline that introduces a complex
relation extraction method for deductive steps and
hence achieves the state-of-the-art performance.

Implementation Details. We use RoBERTa-base
and RoBERTa-large as our base pre-trained embed-
dings (Liu et al., 2019b) and Chinese-RoBERTa
(Cui et al., 2019) for Chinese benchmarks to com-
pare our baselines. We use pre-layer normalization
(Xiong et al., 2020) for our multi-head attention
method to fully leverage a dynamic range of em-
beddings. We set D by the maximum value of the
reasoning depth of test examples for each dataset.5

2We follow hyperparameters by Lan et al. (2022) for both
vanilla transformer and RoBERTa-based transformer.

3We follow the best hyperparameter settings in Patel et al.
(2021) for both vanilla models and RoBERTa-based models.

4We use their hyperparameter setups. We use the MAWPS
setup for testing ASDiv-A, and use the Math23k setup for
UnbiasedMWP. Since the authors do not provide setups for
RoBERTa-large, we optimize the model and report the best
score with half batch size and half learning rate from those
used in the RoBERTa-base setup.

5We present the values of each dataset in Table 8.

We set tf = 0.95 and train our model by giving
ideal accepted prior thoughts Θ∗

d−1 and labels of
infer and answer in each depth to calculate the
loss with binary cross entropy over all labels.6 We
perform our experiments with Nvidia RTX 3090
GPU.

Dataset. We test ATHENA on both standard
MWP benchmarks and relatively new benchmarks
that contain various linguistic expressions in con-
texts or questions for mathematical reasoning.
The standard benchmarks are MAWPS (Koncel-
Kedziorski et al., 2016), ASDiv-A (Miao et al.,
2020), and Math23k (Wang et al., 2017). MAWPS
is an English corpus collected from the online
MWP repository, and Math23k is a Chinese corpus
crawled from online posts. ASDiv-A is an acronym
of An arithmetic subset of Academia Sinica Di-
verse dataset (ASDiv-A), consisting of diverse En-
glish lexical patterns.

The relatively new benchmarks either alter the
standard benchmarks or vary the grounded ex-
pressions from the collected data to evaluate the
model performance without bias from learned
data. SVAMP (Patel et al., 2021) varies in the
components of one of the standard benchmarks,
ASDiv-A to evaluate various contextual expres-
sions on elementary-level arithmetic problems. Un-
biasedMWP (Yang et al., 2022) is an online-
crawled Chinese corpus that augments the ques-
tions from the same context to evaluate models
if they are able to generate adequate correspond-
ing mathematical expressions. We split MAWPS,
ASDiv-A, Math23k, SVAMP, following Jie et al.
(2022) and Patel et al. (2021), respectively.

One-to-Many Test. In addition to the standard
test, we conduct one-to-many variants tests to mea-
sure model generalization to many variant ques-
tions from one example within the common context.
We select two datasets SVAMP and UnbiasedMWP
to apply for this test. Each example in the dataset
has a problem sequence that is composed of context
and question descriptions. Within the groups by
context, we split the examples one-to-many. One
randomly selected example per group goes to a
training set while the rest examples in the group
move to a test set. We use the examples that do
not have other variants within the context group
as a validation set. We name the resorted SVAMP

6We present detailed training settings and hyperparameters
in Appendix A

16320

MAWPS ASDiv-A Math23k SVAMP UnbiasedMWP SVAMP (1:N) UnbiasedMWP (1:N)
Language English English Chinese English Chinese English Chinese

Random embedding

Transformer 85.6 59.3 61.5 20.7 20.5±0.73 9.7±0.19 (14.9) 16.9±0.31 (51.5)
GTS 82.6 71.4 75.6 30.8 26.2±0.20 12.2±0.37 (43.8) 22.8±0.22 (65.0)
Graph-to-Tree 83.7 77.4 77.4 36.5 27.2±0.37 25.3±0.12 (52.5) 24.3±0.25 (66.4)
RoBERTa-base

R-Transformer 88.4 72.1 76.9 30.3 18.3±0.15 13.5±0.33 (33.4) 14.9±0.20 (53.1)
R-GTS 88.5 81.2 - 41.0 - 40.9±0.50 (64.4) -
R-Graph-to-Tree 88.7 82.2 - 43.8 - 31.8±0.36 (66.7) -
DeductReasoner 92.0±0.20 83.1±0.24 85.1±0.24 45.0±0.10 31.6±0.51 42.5±0.41 (69.1) 26.5±0.55 (79.5)
ATHENA(Ours) 92.2±0.10 86.4±0.11 84.4±0.24 45.6±0.50 36.2±0.67 52.5±0.50 (70.1) 35.4±0.45 (80.5)
RoBERTa-large

DeductReasoner 92.6±0.16 89.1±0.46 85.8±0.42 50.3±0.30 34.9±0.11 51.6±0.38 (75.4) 33.7±0.60 (83.2)
ATHENA(Ours) 93.0±0.20 91.0±0.13 86.5±0.25 54.8±0.63 42.0±0.57 67.8±0.58 (79.8) 48.4±0.38 (84.8)

Table 2: Comparison of MWP methods. We use MAWPS, ASDiv-A, and Math23k for standard evaluation,
SVAMP and UnbiasedMWP to evaluate the ability to solve entirely unseen, various expressions, and SVAMP and
UnbiasedMWP with the one-to-many test to estimate the adaptability of confusing linguistic subtlety.

and UnbiasedMWP using the one-to-many setup
as SVAMP(1:N) and UnbiasedMWP(1:N). We con-
struct these sets with 5 different random seeds to
mitigate training bias and report the average perfor-
mance.

4.2 Results

We repeat our experiments 5 times with different
random seeds and report the average answer accu-
racy with the standard error. We report results on
multiple benchmarks, variants splitting tests, the
impact of pre-trained language models depending
on their size, and ablation tests.

Overall Performance. Table 2 shows the per-
formance of different methods on 7 benchmarks.
ATHENA establishes new state-of-the-art results
for overall benchmarks. ATHENA outperforms
prior MWP methods on all occasions with one
exception of its performance on Math23k when
trained on the RoBERTa-base model. When com-
pared to the most competitive work DeductRea-
soner, our model obtains a relative improvement of
3.84%p on total benchmarks.

Performance on One-to-Many Test. We note
that ATHENA achieves large performance gains
compared to the second-best method, from 42.5%
to 52.4% and from 26.5% to 35.0% on SVAMP
(1:N) and UnbiasedMWP (1:N), respectively. As
illustrated in Section 4.1, we evaluate our model
on SVAMP (1:N) by training with one example per
problem set to test how well ATHENA reasons on
the questions that use the same textual descriptions
but ask for different target answers. We observe

0% 10% 20% 30% 40% 50%

ATHENA

DeductReasoner

R-Transformer

Graph-to-Tree

GTS

Transformer
+1.3

+0.8

+1.9

+1.4

+2.0

+6.9

15.6

21.6

22.4

13.5

24.5

28.5

-0.8

-3.0

-2.0

+7.0

+17.5

+24.8

10.5

15.2

18.3

15.5

25.0

27.7

SVAMP (1:N) w/o adding

SVAMP (1:N)

UnbiasedMWP (1:N) w/o adding

UnbiasedMWP (1:N)

Figure 3: Accuracy changes when adding one example
per context into the training set by applying the one-to-
many test.

from Figure 3 that the results show ATHENA is
strong at applying mathematical reasoning that is
formed by unlearned patterns once the model has
learned the context. Our approach is distinguished
from other baselines including RoBERTa-GTS and
DeductReasoner which show the opposite phenom-
ena. Other baselines are relatively stronger on orig-
inal benchmarks than on the benchmark variants
including those with the one-to-many Test. Hence
we reach the conclusion that ATHENA has the supe-
riority of acknowledging the subtlety of contextual
information governed by the required mathematical
operations.

Dependence on Training Set. We observe that
ATHENA performs well on datasets that apply
the one-to-many test because our model has a
sense of subtlety in terms of distinct question con-
cepts, not because our model is reluctant to follow
learned expressions. Figure 5 illustrates where the
wrong prediction for the question variant experi-

16321

is[80] remodel

[40]

[10]

[15]

[80+10]

[40+15]

[80×40]

[(80+10)×(40+15)]

[(80+10)×(40+15)-(80×40)]

playground area square meter

playgroundLater school

Later width

Problem The school playground was originally [80] meters long and [40] meters wide. Later when the school is remodeled, the length is
increased by [10] meters and the width is increased by [15] meters.
How many square meters are increased by the current playground area compared to the original one?

isplayground

widthschool

playground

square meterare

squarearea

playground area

school

meters

playground area

compared

squarecomparedmeters

meters
Attention scores of reasonable thoughts

Initial thoughts from PLM

Thoughts generated from ATHENA

Figure 4: Visualization of reasonable thoughts from ATHENA with calculating attention score of the tokens in the
problem sequence on RoBERTa-large.

0% 20% 40% 60% 80% 100%

ATHENA

DeductReasoner

R-GTS

R-Graph-to-Tree

R-Transformer

Graph-to-Tree

GTS 58.9

40.2

48.4

32.8

34.4

38.8

25.3

n/a

n/a

31.6

29.9

36.9

39.3

22

Wrong predictions of SVAMP(1:N)

Wrong predictions of SVAMP(1:N) match “one” training examples

Wrong predictions of UnbiasedMWP(1:N)

Wrong predictions of UnbiasedMWP(1:N) match “one” training examples

Figure 5: Percentages of the wrong predictions that
match with the answers of “one” training examples in
one-to-many split. The less the percentage scores, the
less the method unnecessarily leans on the training bias.

ments comes from. If a model outputs equations
that are labeled for questions with shared contexts
when being trained, this indicates that the model
relies on training data points, especially on context
contents regardless of different question expres-
sions. The result shows that our model also has
the least accuracy for a golden training example.
It is notable that ATHENA has the lowest score
for following the trained expressions while Deduc-
tiveReasoner predicts the highest scores among
other baselines that use RobBERTa, even higher
than those of R-GTS or R-Graph-to-Tree on Unbi-
asedSVAMP(1:N). This shows that while Deudc-
tiveReasoner can learn to solve mathematical prob-
lems, it also easily falls into learning shortcuts.

Different Sizes of PLMs. We estimate the base-
lines both on RoBERTa-base and RoBERTa-large

models to examine the influence of the model sizes.
As expected, Table 2 shows that the bigger the
model size is for the embedding, the better the
model performance reaches. When we estimate
the accuracy gaps by increasing the model size,
ATHENA achieves relatively better performance
gains (7.26%p) on average for the entire bench-
marks than DeductReasoner does (4.6%p). We can
observe that on dataset variants, ATHENA obtains
relatively more benefits from bigger model sizes
(14.15%p) than DeductReasoner does (8.15%p),
while both are still taking great advantage of the
rich model parameters to understand the question
better and to solve those confusing questions. It
also shows that DeductReasoner fails to improve
performance on question variants from the origi-
nal datasets leveraging the additional training sets
in large-scale PLM. In short, our model leverages
large-scale PLM much more efficiently than the
competitive model.

Visualization of Thoughts. We interpret the
thoughts using attention scores between reasonable
thoughts and the problem sequence.7 As illustrated
in Figure 4, we observe how the thought relates to
the words. Most of the initial thoughts are related
to the “playground”, while the thoughts carrying
the meaning of increased size show a strong corre-
lation to the word “Later”. The thoughts carrying
width sizes [15] and [40+15] show high attention
scores on “width”, while the other thoughts do not
have high attention scores on them. Thoughts that
calculate the area produce high attention scores on
words “square meter” or “area”. The final thought

7We use answer layer to calculate the attention score, giv-
ing the problem sequence embedding as an input, instead of
the goal vector.

16322

MAWPS ASDiv-A SVAMP Math23k UnbiasedMWP SVAMP (1:N) UnbiasedMWP (1:N) Average
Avg depth 3.87 3.46 3.47 5.18 4.44 3.47 4.44 4.05

ATHENA 92.2 86.4 45.6 85.1 36.2 52.5 35.4 62.0
− update 92.1 84.8 44.9 82.7 34.9 52.4 34.7 60.9
− premise 90.6 85.0 44.7 65.7 36.3 51.5 34.6 58.3

Table 3: Ablation studies on premise vector construction. (1) “− update” is the premise vector without updating
strategies and (2) “− premise” is the direct classification method without premise vectors.

marks a high score on “compared”, which asks for
the difference between the increased and original
areas.

Ablation on Premise Vectors. A premise vector
is a criterion for determining thoughts in each in-
ference step to obtain the valid pathways to reach
the goal. We conduct an ablation study to evaluate
how ATHENA composes the premise vectors to
ultimately generate optimal final thoughts.

For evaluating the impact of the premise vectors
in generating reasonable thoughts, we adopt two
different settings: (1) We do not update premise
vectors but use the initial premise vector (i.e.,
[CLS] token) in all expansion depths: Pd = P0.
We aim to see how the existence of thoughts that up-
date the premise vector impacts models to help find
solid reasonable thoughts. (2) We do not use the
premise vector and directly classify the thoughts
for the next iteration: infer(θ) = σ(θWr + br).

Table 3 shows the results of the different premise
construction strategies for reaching the appropri-
ate conclusion. Despite slight fluctuations across
different methods, ATHENA without premise vec-
tors decreases the overall performances by up to
3.7%p compared to our proposed method. When
the model does not update the premise vectors in
the thought expansion iteration while still adopting
the initial one, the performance decreases relatively
by 1.1%p. It is notable that Math23k, a dataset of
the deepest average depth, shows the performance
degradation even worse, 2.4%p and 19.4%p re-
spectively. From these observations, we conclude
that the premise vector plays an important role in
properly deriving the final thoughts. Especially,
considering that the model applies the update on
every expansion depth, the large performance gap
for Math23k strongly supports our premise update
method for its effectiveness.

5 Conclusion

We state that an ideal MWP model needs to be
practical in real-world settings that are critical to

capture the diverse applications of the same math-
ematical operations. For this reason, we conclude
that ATHENA with thought expansion reaches sig-
nificant improvements toward the ideal model due
to its decent performance on unseen problems or
restricted examples to learn.

Limitations

The paper has the following limitations. First, we
only consider arithmetic problems, not algebraic,
calculus, or other topics of mathematical problems.
Especially, for a fair comparison with other mod-
els, we only evaluate the performance using MWP
datasets with single equations, while the model is
able to handle multi-equation problems by simply
adding “=” operation on Merge. Second, we do not
compare ATHENA with large-scale language mod-
els (LLMs) since we focus on acquiring knowledge
from limited mathematical samples.

Ethics Statement

This work breaks down a process of reasoning from
the human cognitive perspective and instantiates
individual thoughts with symbolic representation
so that it can clarify and handle the intermediate
procedures of the model. Although the perspective
may have the potential to filter harmful or toxic
thoughts from the broad sight of thoughts, this work
does not consider or validate the effectiveness of
such applications. Therefore, we do not suggest
using our work for this purpose without thorough
experiments for its possibilities.

Acknowledgements

This research was supported by the NRF grant (RS-
2023-00208094) and the AI Graduate School Pro-
gram (No. 2020-0-01361) funded by the Korean
government (MSIT). Han is a corresponding au-
thor.

16323

References
Yefim Bakman. 2007. Robust understanding of

word problems with extraneous information. arXiv
preprint math/0701393.

James P Byrnes and Barbara A Wasik. 1991. Role of
conceptual knowledge in mathematical procedural
learning. Developmental psychology, 27(5):777.

Katherine H Canobi. 2009. Concept–procedure interac-
tions in children’s addition and subtraction. Journal
of experimental child psychology, 102(2):131–149.

Ting-Rui Chiang and Yun-Nung Chen. 2019.
Semantically-aligned equation generation for
solving and reasoning math word problems.
In Proceedings of the 2019 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 2656–2668.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does BERT
look at? an analysis of BERT’s attention. In Pro-
ceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP,
pages 276–286.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing
Yang, Shijin Wang, and Guoping Hu. 2019. Pre-
training with whole word masking for chinese bert.
arXiv preprint arXiv:1906.08101.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren
Etzioni, and Nate Kushman. 2014. Learning to solve
arithmetic word problems with verb categorization.
In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 523–533.

Zhenya Huang, Xin Lin, Hao Wang, Qi Liu, Enhong
Chen, Jianhui Ma, Yu Su, and Wei Tong. 2021. Dis-
enqnet: Disentangled representation learning for edu-
cational questions. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery &
Data Mining, page 696–704.

Zhenya Huang, Qi Liu, Weibo Gao, Jinze Wu, Yu Yin,
Hao Wang, and Enhong Chen. 2020. Neural mathe-
matical solver with enhanced formula structure. In
Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, page 1729–1732.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov,
Dmitry Vetrov, and Andrew Gordon Wilson. 2018.
Averaging weights leads to wider optima and better
generalization. arXiv preprint arXiv:1803.05407.

Zhanming Jie, Jierui Li, and Wei Lu. 2022. Learning
to reason deductively: Math word problem solving
as complex relation extraction. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
5944–5955.

Philip Johnson-Laird. 2008. How we reason. Oxford
University Press.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate
Kushman, and Hannaneh Hajishirzi. 2016. MAWPS:
A math word problem repository. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1152–1157.

Yihuai Lan, Lei Wang, Qiyuan Zhang, Yunshi Lan,
Bing Tian Dai, Yan Wang, Dongxiang Zhang, and
Ee-Peng Lim. 2022. Mwptoolkit: An open-source
framework for deep learning-based math word prob-
lem solvers. Proceedings of the AAAI Conference on
Artificial Intelligence, 36(11):13188–13190.

Jierui Li, Lei Wang, Jipeng Zhang, Yan Wang, Bing Tian
Dai, and Dongxiang Zhang. 2019. Modeling intra-
relation in math word problems with different func-
tional multi-head attentions. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 6162–6167.

Shucheng Li, Lingfei Wu, Shiwei Feng, Fangli Xu,
Fengyuan Xu, and Sheng Zhong. 2020. Graph-to-
tree neural networks for learning structured input-
output translation with applications to semantic pars-
ing and math word problem. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020,
pages 2841–2852.

Zhongli Li, Wenxuan Zhang, Chao Yan, Qingyu Zhou,
Chao Li, Hongzhi Liu, and Yunbo Cao. 2022. Seek-
ing patterns, not just memorizing procedures: Con-
trastive learning for solving math word problems. In
Findings of the Association for Computational Lin-
guistics: ACL 2022, pages 2486–2496.

Zhenwen Liang, Jipeng Zhang, Lei Wang, Wei Qin,
Yunshi Lan, Jie Shao, and Xiangliang Zhang. 2022.
MWP-BERT: Numeracy-augmented pre-training for
math word problem solving. In Findings of the Asso-
ciation for Computational Linguistics: NAACL 2022,
pages 997–1009.

Xin Lin, Zhenya Huang, Hongke Zhao, Enhong Chen,
Qi Liu, Hao Wang, and Shijin Wang. 2021. Hms:
A hierarchical solver with dependency-enhanced un-
derstanding for math word problem. Proceedings
of the AAAI Conference on Artificial Intelligence,
35(5):4232–4240.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word
problems. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 158–167.

Qianying Liu, Wenyv Guan, Sujian Li, and Daisuke
Kawahara. 2019a. Tree-structured decoding for solv-
ing math word problems. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International

16324

https://doi.org/10.48550/arXiv.math/0701393
https://doi.org/10.48550/arXiv.math/0701393
https://doi.org/10.18653/v1/N19-1272
https://doi.org/10.18653/v1/N19-1272
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.3115/v1/D14-1058
https://doi.org/10.3115/v1/D14-1058
https://doi.org/10.1145/3447548.3467347
https://doi.org/10.1145/3447548.3467347
https://doi.org/10.1145/3447548.3467347
https://doi.org/10.1145/3397271.3401227
https://doi.org/10.1145/3397271.3401227
https://doi.org/10.18653/v1/2022.acl-long.410
https://doi.org/10.18653/v1/2022.acl-long.410
https://doi.org/10.18653/v1/2022.acl-long.410
https://doi.org/10.18653/v1/N16-1136
https://doi.org/10.18653/v1/N16-1136
https://doi.org/10.18653/v1/P19-1619
https://doi.org/10.18653/v1/P19-1619
https://doi.org/10.18653/v1/P19-1619
https://doi.org/10.18653/v1/2020.findings-emnlp.255
https://doi.org/10.18653/v1/2020.findings-emnlp.255
https://doi.org/10.18653/v1/2020.findings-emnlp.255
https://doi.org/10.18653/v1/2020.findings-emnlp.255
https://doi.org/10.18653/v1/2022.findings-acl.195
https://doi.org/10.18653/v1/2022.findings-acl.195
https://doi.org/10.18653/v1/2022.findings-acl.195
https://doi.org/10.18653/v1/2022.findings-naacl.74
https://doi.org/10.18653/v1/2022.findings-naacl.74
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/D19-1241
https://doi.org/10.18653/v1/D19-1241

Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2370–2379.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Shen-yun Miao, Chao-Chun Liang, and Keh-Yih Su.
2020. A diverse corpus for evaluating and developing
English math word problem solvers. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 975–984.

Arindam Mitra and Chitta Baral. 2016. Learning to
use formulas to solve simple arithmetic problems.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 2144–2153.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2080–2094.

Jinghui Qin, Lihui Lin, Xiaodan Liang, Rumin Zhang,
and Liang Lin. 2020. Semantically-aligned universal
tree-structured solver for math word problems. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 3780–3789.

Bethany Rittle-Johnson and Martha Wagner Alibali.
1999. Conceptual and procedural knowledge of math-
ematics: Does one lead to the other? Journal of
educational psychology, 91(1):175.

Bethany Rittle-Johnson and Michael Schneider. 2014.
Developing conceptual and procedural knowledge of
mathematics. In The Oxford Handbook of Numerical
Cognition. Oxford University Press.

Jianhao Shen, Yichun Yin, Lin Li, Lifeng Shang, Xin
Jiang, Ming Zhang, and Qun Liu. 2021. Generate &
rank: A multi-task framework for math word prob-
lems. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2021, pages 2269–2279.

Yibin Shen and Cheqing Jin. 2020. Solving math word
problems with multi-encoders and multi-decoders.
In Proceedings of the 28th International Conference
on Computational Linguistics, pages 2924–2934.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30.

Lei Wang, Yan Wang, Deng Cai, Dongxiang Zhang,
and Xiaojiang Liu. 2018. Translating a math word
problem to a expression tree. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 1064–1069.

Yan Wang, Xiaojiang Liu, and Shuming Shi. 2017.
Deep neural solver for math word problems. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 845–854.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le,
and Denny Zhou. 2022. Chain of thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems.

Qinzhuo Wu, Qi Zhang, and Zhongyu Wei. 2021. An
edge-enhanced hierarchical graph-to-tree network for
math word problem solving. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2021,
pages 1473–1482.

Zhipeng Xie and Shichao Sun. 2019. A goal-driven
tree-structured neural model for math word problems.
In Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, IJCAI-19,
pages 5299–5305.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng,
Shuxin Zheng, Chen Xing, Huishuai Zhang, Yanyan
Lan, Liwei Wang, and Tieyan Liu. 2020. On layer
normalization in the transformer architecture. In
Proceedings of the 37th International Conference on
Machine Learning, volume 119, pages 10524–10533.

Zhicheng Yang, Jinghui Qin, Jiaqi Chen, and Xiaodan
Liang. 2022. Unbiased math word problems bench-
mark for mitigating solving bias. In Findings of the
Association for Computational Linguistics: NAACL
2022, pages 1401–1408.

Weijiang Yu, Yingpeng Wen, Fudan Zheng, and Nong
Xiao. 2021. Improving math word problems with
pre-trained knowledge and hierarchical reasoning.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3384–3394.

Jipeng Zhang, Roy Ka-Wei Lee, Ee-Peng Lim, Wei Qin,
Lei Wang, Jie Shao, and Qianru Sun. 2020a. Teacher-
student networks with multiple decoders for solving
math word problem. In Proceedings of the Twenty-
Ninth International Joint Conference on Artificial
Intelligence, IJCAI-20, pages 4011–4017.

Jipeng Zhang, Lei Wang, Roy Ka-Wei Lee, Yi Bin, Yan
Wang, Jie Shao, and Ee-Peng Lim. 2020b. Graph-
to-tree learning for solving math word problems. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 3928–
3937.

16325

https://doi.org/10.18653/v1/2020.acl-main.92
https://doi.org/10.18653/v1/2020.acl-main.92
https://doi.org/10.18653/v1/P16-1202
https://doi.org/10.18653/v1/P16-1202
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2020.emnlp-main.309
https://doi.org/10.18653/v1/2020.emnlp-main.309
https://doi.org/10.1093/oxfordhb/9780199642342.013.014
https://doi.org/10.1093/oxfordhb/9780199642342.013.014
https://doi.org/10.18653/v1/2021.findings-emnlp.195
https://doi.org/10.18653/v1/2021.findings-emnlp.195
https://doi.org/10.18653/v1/2021.findings-emnlp.195
https://doi.org/10.18653/v1/2020.coling-main.262
https://doi.org/10.18653/v1/2020.coling-main.262
https://doi.org/10.18653/v1/D18-1132
https://doi.org/10.18653/v1/D18-1132
https://doi.org/10.18653/v1/D17-1088
https://doi.org/10.18653/v1/2021.findings-emnlp.127
https://doi.org/10.18653/v1/2021.findings-emnlp.127
https://doi.org/10.18653/v1/2021.findings-emnlp.127
https://doi.org/10.24963/ijcai.2019/736
https://doi.org/10.24963/ijcai.2019/736
https://proceedings.mlr.press/v119/xiong20b.html
https://proceedings.mlr.press/v119/xiong20b.html
https://doi.org/10.18653/v1/2022.findings-naacl.104
https://doi.org/10.18653/v1/2022.findings-naacl.104
https://doi.org/10.18653/v1/2021.emnlp-main.272
https://doi.org/10.18653/v1/2021.emnlp-main.272
https://doi.org/10.18653/v1/2020.acl-main.362
https://doi.org/10.18653/v1/2020.acl-main.362

Appendices

A Training Details

In this section, we provide detailed information
about our training settings.

Loss. Given an answer equation E , let 1infer(θ)
denote the target of infer for a thought θ and
1answer(θ) denote the target of the final decision
answer for a thought θ:

1infer(θ) = 1(E(θ) ⊆ E),
1answer(θ) = 1(E(θ) ≡ E),

where E(θ) ⊆ E denotes that E contains the sub-
expression E(θ) (e.g., “(a+ b)” ⊆ “(a+ b)× c”).

Let BCE denote the binary cross entropy func-
tion, the training objective is to minimize loss L:

L =
1

|⋃dΘd|+ |Θ∗
d|
(

∑

θ∈⋃d Θd

BCE(infer(θ), 1infer(θ))

+
∑

θ∈Θ∗
d

BCE(answer(θ), 1answer(θ))
)
.

Optimizer. We use AdamW optimizer
(Loshchilov and Hutter, 2017) with weight
decay ω = 10−5. Learning rate lre for each epoch
e is decayed every Slr epoch with factor γ starting
from lr:

lre = lr · γ[e/Slr].

Regularization. We adopt dropout with probabil-
ity p to every layer and stochastic weight averaging
(Izmailov et al., 2018) for last epochswa epochs.

Hyperparameters. We present our experiments
for hyperparameters in Table 4, with the bold text
denoting the best performance. We train our model
for 100 epochs. In the result, we observe that
RoBERTa-base and RoBERTa-large share the best
hyperparameter settings except for learning rate lr.

B Dataset Statistics

In this section, we show the statistics of datasets
and their requirements.

One-to-many Split. In Section 4.1, we explain
building one-to-many dataset splits. We provide
how many groups and examples are made from the
contexts in Table 5.

Number of Thoughts. We present the required
number of thoughts for each dataset in Table 6.
While Math23k requires a large number of candi-
date thoughts in total depth, we show a thought
expansion in each depth does not require huge
memory space. Therefore, efficient implementa-
tion strategies such as removing unselected candi-
date thoughts from memory space are enough to
manage computational resources.

C Additional Experiments

This section presents additional studies to further
clarify the robustness and fairness of our experi-
ments for some minor strategies by showing their
performance independence.

Punctuation Mark. In Section 3, we initialize
goal vector G with the punctuation mark of the
question sequence or the last punctuation mark (i.e.,
the question mark in most cases). The motivation
of this strategy is from Clark et al. (2019) show-
ing the punctuation mark gets high attention from
other tokens in the last layers. Intuitively, high at-
tention can generalize the question sequence, so
we conduct experiments to evaluate the general-
ization ability of the punctuation mark compared
to using all question sequences as a goal vector
G. We conduct experiments for all datasets ex-
cept Math23k (Wang et al., 2017) since it does not
provide the question subsequence.

As shown in Table 7, using the punctuation mark
effectively generalizes the question to represent a
goal in most cases. It shows even better perfor-
mances than using the question sequence. From an
intuitive interpretation, the question sequence holds
some tokens that are not informative for reasoning
targets, so a punctuation mark representation helps
the model to focus on a reasoning goal.

Stop Criteria. In Section 3.3 and Algorithm 1,
we present the two stop criteria: (1) the depth
reaches the maximum expansion depth D, or (2)
one of the final scores exceeds a threshold tf . In
addition to the main experiments setting the D and
tf with an arbitrary value, we conduct the experi-
ments of the higher maximum expansion depth and
tf = 0.5 to show the performance differences from
the values. As shown in Table 8, the scores are
fairly equal with a trivial gap. This demonstrates
that the performances of our model do not rely on
stop criteria parameters but are solid achievements.

16326

Batch Size lr Slr γ p epochswa

RoBERTa-base [4, 8] [5e-6, 7e-6, 1e-5, 1.3e-5, 1.5e-5, 2e-5] [10, 15, 20] [0.5, 0.7] [0.1, 0.5] [30, 50, 70]
RoBERTa-large [4, 8] [5e-6, 7e-6, 1e-5, 1.3e-5, 1.5e-5, 2e-5] [10, 15, 20] [0.5, 0.7] [0.1, 0.5] [30, 50, 70]

Table 4: Hyperparameter search spaces of ATHENA

SVAMP (1:N) UnbiasedMWP (1:N)

examples in original split 3138 / 0 / 1000 2507 / 200 / 685
groups of single examples 438 45
groups of multiple examples 205 154
examples in one-to-many split 3343 (+205) / 438 (+438) / 357 (-562) 2661 (+154) / 245 (+45) / 486 (-199)

Table 5: Statistics of one-to-many test splits

Dataset # candidates in total depth # in a reasoning path # candidates in last depth depth of reasoning path

min average max min average max min average max min average max
MAWPS 17 45.40±0.46 192 2 4.52±0.03 12 4 9.49±0.08 48 2 3.87±0.03 11
ASDiv-A 16 26.86±0.42 71 3 4.10±0.03 7 6 9.65±0.09 22 1 3.46±0.02 5
SVAMP 2 28.09±0.44 70 1 4.23±0.03 7 2 10.54±0.10 22 1 3.47±0.03 5
Math23k 4 65.1±0.31 939 1 6.33±0.02 29 2 14.85±0.06 108 1 5.18±0.01 41
U.MWP 5 47.0±0.47 214 1 5.18±0.03 13 2 11.67±0.11 48 1 4.44±0.02 11

Table 6: Statistics of thoughts that are required for each dataset

MAWPS ASDiv-A SVAMP UnbiasedMWP SVAMP (1:N) UnbiasedMWP (1:N) Average
Avg depth 3.87 3.46 3.47 4.44 3.47 4.44 4.05

RoBERTa-base

punctuation mark 92.2 86.4 45.6 36.2 52.5 35.4 58.1
question sequence 92.0 86.3 44.9 36.3 51.0 33.4 57.3

RoBERTa-large

punctuation mark 93.0 91.0 54.8 42.0 67.8 48.4 66.2
question sequence 92.9 91.2 54.4 41.0 66.9 46.8 65.5

Table 7: Comparing goal vector using the whole question sequence from the punctuation mark

Stop Criteria MAWPS ASDiv-A SVAMP Math23k UnbiasedMWP Average
D=7 D=5 D=5 D=19 D=9

tf = 0.95, max. expansion depth=D 92.2±0.10 86.4±0.11 45.6±0.50 84.4±0.24 36.2±0.67 69.0

tf = 0.5, max. expansion depth=D 92.0±0.15 86.3±0.24 45.3±0.37 84.7±0.20 36.0±0.39 68.9
tf = 0.95, max. expansion depth=D + 2 91.9±0.07 86.5±0.28 45.2±0.41 84.6±0.18 35.8±0.75 68.8
tf = 0.95, max. expansion depth=D + 4 92.0±0.09 86.5±0.28 45.2±0.41 84.8±0.27 36.4±0.44 69.0

Table 8: Performances among the different parameters of stop criteria

16327

