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Abstract

We systematically study how three large lan-
guage models with code capabilities - CodeT5,
Codex, and ChatGPT - generalize to out-of-
domain data. We consider two fundamental ap-
plications - code summarization, and code gen-
eration. We split data into domains following
its natural boundaries - by an organization, by
a project, and by a module within the software
project. We establish that samples from each
new domain present all the models with a signif-
icant challenge of distribution shift. We study
how established methods adapt models to better
generalize to new domains. Our experiments
show that while multitask learning alone is a
reasonable baseline, combining it with few-shot
finetuning on examples retrieved from train-
ing data can achieve very strong performance.
Moreover, this solution can outperform direct
finetuning for very low-data scenarios. Finally,
we consider variations of this approach to cre-
ate a more broadly applicable method to adapt
to multiple domains at once. We find that for
code generation, a model adapted to multiple
domains simultaneously performs on par with
those adapted to a single domain1.

1 Introduction
Since the late 2000s, researchers have been re-
porting poor generalization of statistical learning
models to new software systems (Turhan, 2012;
Zimmermann et al., 2009), a phenomenon that has
become important with the rise of large language
models (LLMs) for code, such as GitHub Copilot,
Amazon CodeWhisperer, Replit, etc. Thus, it is
crucial to understand when pretrained large lan-
guage model performance on a private software
system will differ from the performance obtained
on a benchmark. Prior work has studied some as-
pects of this problem, among others studying gener-
alization from older to newer code, large software

1Code and data for the paper are available at https://
github.com/ShushanArakelyan/code_shift/

projects, and small competition problems, authors,
and code representations (Nie et al., 2022; Li et al.,
2021; Hu et al., 2022).

However, the challenges of distribution shifts
stemming from the hierarchical nature of software
data, as depicted in Figure 1, have not been sys-
tematically studied with regard to large language
models for code. Motivated by that, in this work,
we probe the generalization capacity of large lan-
guage models with code capabilities, specifically
Codex (Chen et al., 2021), CodeT5 (Wang et al.,
2021) and ChatGPT, in code generation and sum-
marization tasks, examining three scenarios: gen-
eralization across companies, projects, and project
components. These scenarios are routinely con-
sidered for analyzing software systems (Ma et al.,
2012; Li et al., 2009; Mair et al., 2000) due to the
careful consideration that goes into combining or
separating such entities.

Figure 1: Organization of a software system by the
granularity of its components

First, we want to understand how models per-
form on new domains - if models struggle with
out-of-domain generalization, they should be used
with caution. At the same time, we empirically
establish the legitimacy of our definitions for out-
of-domain scenarios by demonstrating that these
examples present a distributional shift. To answer
this question, we compare the performance of the
models without any additional adaptation with that
of the models that have been adapted on limited
data from a random domain or from the test domain.
Adaptation with labeled examples from the test do-
main is the proxy for model performance if there
were no distributional shift. We find that all three
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models suffer from a drop in performance when
applied out-of-domain. In this experiment, the dif-
ference is more pronounced for code summariza-
tion, where adapting models with few in-domain
examples, on average, leads to an improvement of
over 10 BLEU (Papineni et al., 2002) score points.

Next, we explore ways to improve the out-of-
domain generalization of large language models
with code capabilities, recognizing that relying on
labeled in-domain data for every new domain is
impractical. Instead, we investigate the use of la-
beled out-of-domain data and small amounts of
unlabelled in-domain data to enhance generaliza-
tion. We test methods known to be successful
in other transfer learning scenarios, such as meta-
learning (Thrun and Pratt, 1998; Vilalta and Drissi,
2002) and multitask learning (Caruana, 1996; Sil-
ver, 1996). We also leverage unlabeled in-domain
data to retrieve similar labeled examples from an
out-of-domain corpus for adapting to the new do-
main. We find that while meta-learning and multi-
task learning do not solve the out-of-domain gen-
eralization problem, domain adaptation with re-
trieved examples is a good technique for low-data
domains. In our evaluation on CodeSearchNet
dataset we find that models supervised with re-
trieved examples perform on par, or better, than
models that have been adapted using a few samples
(e.g., 8 or 16) of in-domain labeled data. We are
particularly interested in scenarios with an extreme
scarcity of labeled data - ranging from a few la-
beled instances to no labeled data at all. This is
due to how new data emerges in software engineer-
ing domains - it is not difficult to imagine a new
repository, or a new module, with fewer than 32
functions, let alone - 32 labeled functions.

Lastly, we study if we can make the code models
more broadly applicable and retain their gener-
alization capacities, rather than having to adapt
them to every new domain? Depending on the ap-
proach to model adaptation (e.g. weight update vs
in-context demonstrations) we vary the set of re-
trieved examples for each new domain, or for each
test input individually. We compare performance
obtained this way with that of the models that are
adapted simultaneously to multiple domains (or
instances, correspondingly). We find that Codex
is very sensitive to these changes, so it is best to
retrieve similar instances for each test data point.
On the other hand, CodeT5 has a minor drop in
code summarization and a negligible drop in code

generation. This makes it feasible to adapt and
apply CodeT5 to multiple domains simultaneously
with minimal tradeoff, eliminating the need to store
separate copies of the model for each domain.

2 Background
The shifts in underlying semantics between the
training and evaluation data can be one of the
most impacting factors for deteriorating perfor-
mance at test time. Prior work in code analysis has
mainly focused on cross-project shifts, i.e. training
and evaluating the model on disjunct sets of code
projects. Additionally, the studies were mainly
conducted in the context of traditional machine
learning methods, such as linear classifiers, support
vector machines, and later, LSTMs (Zimmermann
et al., 2009; Turhan, 2012; Angioni et al., 2022).

More recent works consider shifts caused by
different authors of the code, the timeline of the
project, distributions of code tokens, etc (Li et al.,
2021; Hu et al., 2022; Nie et al., 2022). How-
ever, the abilities of large language models under
distribution shift are still under-explored. We con-
duct a comprehensive empirical analysis to probe
the large language models’ capabilities in handling
three different granularity of distribution shifts
(company, domain, module) when different train-
ing and adaptation methods are used. In addition
to directly fine-tuning vanilla LLMs, we experi-
ment with enhancing pretrained models using the
methods described below.

Meta-Learning and Multi-task Learning. In
our work, we experiment with both Meta-Learning
and Multi-task learning to get better initialization
for few-shot performance on the downstream task.
For meta-learning, we employ Model-agnostic
Meta-Learning (MaML) (Finn et al., 2017) which
is a gradient-based method. It is a conceptually
simple and model-agnostic algorithm that has been
shown to outperform existing approaches in several
tasks. Multi-task Learning (MTL) aims to learn a
shared and generalized representation by jointly
training on several tasks. We adopt the simplest ap-
proach to multi-task learning by jointly finetuning
a shared language model on multiple tasks.

Parameter Efficient Methods. Parameter-
efficient methods have been shown to obtain
performance comparable to finetuning all model
parameters with finetuning only a tiny fraction of
model parameters. In our work, we experiment
with Low-Rank Adaptation (LoRA) (Hu et al.,
2021), which is a low-rank update method.
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In-Context Learning. GPT-3 (Brown et al.,
2020) demonstrated the ability of large language
models to perform few-shot predictions, where the
model is given a description of the task in natural
language with few examples. In our work, we con-
duct experiments on in-context learning on Codex.

Retrieval Based Example Selection. It has been
shown in Liu et al. (2021) that in-context exam-
ples selected following a strategy may serve as
more informative input to unleash GPT3’s exten-
sive knowledge. Inspired by this, we leverage a
similarity-based retrieval for domain adaptation.

3 Problem setting

Figure 2: We group the functions from CodeSearchNet
by repos, orgs, and folders they belong to.

We study scenario where users seek to integrate
a large language model, such as Codex or CodeT5,
into their software project. The primary focus of
this study is to gain a deeper understanding of
the performance characteristics exhibited by these
models, particularly when confronted with source
code originating from an unseen organization, an
unseen project, or specific project components that
have not been previously encountered.

For every code data point in the dataset, we have
information about the organization, project, and
the module within the project that the data point
comes from. Based on this information, we can
group data points into sets, and end up with three
sets of sets, as illustrated in Figure 2. For example,
the middle set in the figure contains multiple sets
of data points. Each of those sets corresponds to a
unique organization to which all data points within
it belong. In other words, all data points within a set
belong to the same domain. Appendix, Section 7.3
contains additional analysis on splitting the data
points in this manner. For simplicity, we refer to a
set of examples from the same domain as τ i. We
refer to splits of such a set into train, development,

τ ⊂ Xtrain (total) τ ⊂ Xtrain(|τ | ≥ 96) τ ⊂ Xtest(|τ | ≥ 96)

org. 9737 195 8
repos. 15858 147 15
fold. 25268 100 10

Table 1: Domains in CodeSearchNet dataset. Left col-
umn: training set. Middle column: number of domains
of each kind in Xtrain with > 96 samples. Right col-
umn: number of domains in Xtest with > 96 samples.

or test sections as τ itrain, τ idev, and τ itest.

3.1 Data
We use CodeSearchNet (Husain et al., 2019)
dataset2, in particular, the partition containing
JavaScript language. We refer to the train section
of the dataset as Xtrain, and the development and
test sections as Xtest.

We want to keep all of the domains in Xtest un-
seen, and for that reason, we remove any domain
from Xtest that also appears in Xtrain. This can
happen because CodeSearchNet dataset is split into
partitions by projects, so the same organizations
can appear in different splits. This way, any do-
main coming from Xtest is, by our definition, out-
of-domain for any model trained on Xtrain. We
further split each domain τ i ⊂ Xtest into τ itrain,
τ idev and τ itest. The evaluation is performed on τ itest.
τ itrain and τ idev are used to obtain a proxy for the
upper-bound performance of the model if the do-
main τ i was seen during training, i.e. if there is no
distribution shift for τ itest.

Preprocessing We use the “path” field of the data
point to determine each code snippet’s organization,
repository, and lowest-level folder. Using 5 differ-
ent random seeds, we divide a domain into τ itrain,
τ idev, and τ itest. We aim to have at least 32 sam-
ples each in τ itest and τ idev, and up to 32 samples
for τ itrain. Thus, from Xtest we filter any domain
that has less than 96 samples in total. Final dataset
statistics are presented in Table 1.

3.2 Applications and Metrics
We study two generation applications: code sum-
marization and code generation. Code summa-
rization aims to summarize a code snippet into
a natural language description. The code snippet
in CodeSearchNet dataset is a function, while the
natural language description is the docstring of
that function. This task is evaluated with BLEU-
4 (Papineni et al., 2002) metric. Code genera-

2Since the training data of Codex models is undisclosed,
we cannot be sure that it did not include CodeSearchNet. Nev-
ertheless, we see a performance difference for ID and OOD
experiments.
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Code summarization folder repo org

8-shot 16-shot 32-shot 8-shot 16-shot 32-shot 8-shot 16-shot 32-shot

CodeT5 FT ID 14.39 16.06 18.31 12.68 14.73 16.82 13.14 16.35 17.65
CodeT5 LoRA ID 16.57 19.07 20.93 15.22 17.14 21.20 15.61 18.56 20.87
CodeT5 FT random 3.58 4.30 5.02 4.35 4.70 5.79 4.53 5.47 6.27
CodeT5 LoRA random 3.69 4.37 4.92 4.70 5.56 5.92 5.27 5.53 6.26

Table 2: Model performance for code summarization on in-domain (ID) vs out-of-domain (random) test data.
Reported metric is BLEU (higher is better).

Code generation folder repo org

8-shot 16-shot 32-shot 8-shot 16-shot 32-shot 8-shot 16-shot 32-shot

CodeT5 FT ID 14.67 15.22 16.13 16.15 17.42 18.62 14.54 15.34 16.43
CodeT5 LoRA ID 14.14 15.06 16.36 16.23 17.45 18.96 14.17 15.30 16.62
CodeT5 FT random 15.23 14.94 15.15 14.19 14.14 14.67 13.39 13.43 14.44
CodeT5 LoRA random 14.45 14.29 15.37 14.29 13.74 15.04 13.76 13.85 14.81

Table 3: Model performance for code generation on in-domain (ID) vs out-of-domain (random) test data. Reported
metric is CodeBLEU (higher is better).

Code summarization folder repo org

Codex
instr. only (0-shot) 1.55 1.52 1.61
ICL random (8-shot) 7.17 6.84 6.73
ICL ID (8-shot) 20.34 19.00 20.72

ChatGPT
instr. only (0-shot) 5.74 5.48 4.63
ICL random (8-shot) 5.47 6.58 6.48
ICL ID (8-shot) 7.47 9.15 7.54

Code generation folder repo org

Codex
instr. only (0-shot) 5.49 5.72 5.77
ICL random (8-shot) 16.82 17.47 16.82
ICL ID (8-shot) 25.73 24.64 23.87

ChatGPT
instr. only (0-shot) 8.45 8.39 8.04
ICL random (8-shot) 12.95 13.19 12.70
ICL ID (8-shot) 15.17 15.81 15.55

Table 4: Codex and ChatGPT performance for code
summarization and generation tasks. Models are evalu-
ated 0-shot, as well as using ICL with in-domain (ID)
and out-of-domain (random) data. Reported metric is
BLEU for code summarization (higher is better), and
CodeBLEU for code generation (higher is better)

tion generates the function given a natural lan-
guage description of the code. We follow prior
work and use CodeBLEU (Ren et al., 2020) for
evaluating generated code. We added our own
JavaScript keywords (the full list is in Appendix,
Section 7.1) to an existing CodeBLEU imple-
mentation. However, recently it has been shown
that CodeBLEU scores can disagree with human
judgment scores (Evtikhiev et al., 2022). Moti-
vated by these findings we additionally evaluate
code generation models with chrF (Popovic, 2015),
RougeL (Lin, 2004) and CodeBERTScore (Zhou
et al., 2023) metrics. These metrics are in agree-
ment in our experiments, so we report the results
for them in Appendix, Section 7.7.

3.3 Models
We experiment with three large language mod-
els: (1) CodeT5 (Wang et al., 2021), which is an
encoder-decoder model based on T5 (Raffel et al.,
2019), (2) Codex (Chen et al., 2021), which is
a decoder only model based on GPT-3 (Brown
et al., 2020) and (3) ChatGPT (gpt-3.5-turbo)
which is the chat optimized version of Instruct-
GPT (Ouyang et al., 2022) which is fine-tuned
with Reinforcement Learning with Human Feed-
back(RLHF) (Christiano et al., 2017). The models
vary in size: CodeT5 utilizes the T5-large architec-
ture with 700 million parameters, while the Codex
model employs the GPT-3 architecture with over
100 billion parameters. Although the architecture
of ChatGPT has not been disclosed, it is presumed
to have billions of parameters. A more detailed
discussion of these models is provided in the Ap-
pendix, Section 7.4.

4 Analysis
In this section, we formulate the research questions
that we aim to answer and give a more detailed
description of the setups that we have used for
analyzing and answering each question.

RQ 1 How do code models perform on new do-
mains?

We test the models’ capacity for generalization
to new domains by comparing the performance of
the models that have been adapted to the new do-
main using few-shot instances of in-domain data
(ID) vs those that only encountered out-of-domain
(OOD) data. For CodeT5, few-shot domain adap-
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tation data is used to update the model weights,
whereas for Codex, it is included as demonstra-
tions in the prompt to the model.

CodeT5
For adaptation techniques for the CodeT5 model,
we experiment with using a different number of
supervision examples - 8, 16, or 32.

The first adaptation method we use is full model
fine-tuning (FT). Information on the hyperparam-
eters for this and all other methods is available in
Appendix, Section 7.5. Besides FT, we also experi-
ment with a parameter-efficient fine-tuning method
- Low-Rank Adaptation (LoRA) (Hu et al., 2021).
This method adds trainable pairs of rank decompo-
sition matrices in parallel to existing weight matri-
ces, thus enabling parameter-efficient adaptation to
new domains without forgetting.

Codex and ChatGPT
For GPT models, we do not perform weight up-
dates. Very large models have been shown to be
capable to generalize to unseen tasks with just an
instruction. Thus, we evaluate these models with
just the task instruction, for example, "Summarize
following JavaScript code", and input (i.e. instruc-
tion only). Models can be sensitive to the wording
of the instructions, so we use a number of differ-
ent instruction variations for each application and
average the results. The full list of instruction vari-
ations that we have used with Codex and ChatGPT
models is presented in Appendix, Section 7.10.

Moreover, larger models have been shown to
“learn” from demonstration examples that are pro-
vided as part of their input, even though this process
does not involve any weight updates. This phe-
nomenon is known as in-context learning (ICL),
which is what we use for domain adaptation for
GPT models. Due to the limit on the size of the
input to the models (4096 tokens), we use as many
demonstrations as would fit, including up to 8
demonstrations with each test example. And since
the models can also be sensitive to the order of ex-
amples, we shuffle the order of the demonstrations
5 times and average the results.

Finding: Models struggle on new domains

Tables 2 and 3 demonstrate the performance ob-
tained by CodeT5, and Table 4 shows perfor-
mance for Codex and ChatGPT. Additional results
for other code generation metrics, such as chrF,
RougeL, and CodeBERTScore are available in Ap-
pendix, Section 7.7. We see that the performance

degrades for models that have not encountered in-
domain examples vs those that have, i.e. models
struggle with out-of-domain generalization. For
example, CodeT5 model on code summarization
in most scenarios gains about 200% relative im-
provement after updating the model with few-shot
in-domain data.

While there is a difference in performance for
CodeT5 model on code generation ID and OOD,
the performance difference is next to negligible.
We hypothesize that this can be due to the fact that
code generation is a more challenging task for a
large language model, and so the effect of distri-
bution shift is less noticeable. This observation
becomes evident when examining Table 3, which
demonstrates that the smaller model, CodeT5, ex-
hibits lower performance compared to larger mod-
els such as Codex. Thus, for CodeT5 adding in-
domain data results in a smaller gain. On the other
side, for Codex, the addition of the in-domain data
results in up to 50% relative improvement.

From Table 4, it is evident that while ChatGPT
outperforms Codex in 0-shot setting, we don’t see
as large of an improvement with the addition of
in-context examples, whether in-domain or out-of-
domain. Upon closer inspection of model outputs,
we notice that this is due to the specifics of the
ChatGPT model, which errs on the side of caution,
refusing to provide any answer when presented
with a vague or noisy input. This results in 0 scores
for those entries, lowering the overall model per-
formance and smoothing the effect of in-domain
demonstrations. Due to this characteristic of Chat-
GPT model, having established that it is affected
by distributional shifts same as other models in this
study, we do not perform further comparisons with
it in the rest of the paper.

RQ 2 How to get better out-of-domain general-
ization?

We have seen that models for code performed
significantly better after being adapted for new
domains using in-domain data. However, there
are many reasons why adapting to every new
domain with the help of labeled examples might
be impractical. Thus, we consider some alternative
approaches, that would not require labeled data but
can hopefully close the performance gap partially
or fully. Figure 3 shows an overview.

CodeT5
To answer RQ1, we start from a pre-trained check-
point of the model and experiment with different
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(a) CodeT5

(b) Codex

Figure 3: For the CodeT5 model we use different meth-
ods for training and domain adaptation. We evaluate
both in scenarios with different data sources during the
domain adaptation stage.

approaches for domain adaptation. To answer the
current question, we additionally consider different
methods to use before the domain adaptation stage,
particularly, multi-task learning and meta-learning.
The resulting setups are illustrated in Figure 3a.

Multitask learning (MTL) MTL method trains
a single model on all the domains simultaneously.
For code summarization, we use the model check-
point that has been provided by the authors of
CodeT5, which is fine-tuned on the training portion
of CodeSearchNet. For code generation, we per-
form our own training since there was no JavaScript
checkpoint shared by CodeT5 authors.

Dual-gen MTL In addition to MTL, we experi-
ment with a multitask model that has been trained
on both code generation and code summarization
simultaneously. We refer to this model as “dual-
gen” MTL, following the authors of CodeT5. We
prepend the inputs to the model with a generation
or summarization instruction for each instance.

Model-Agnostic Meta Learning For model-
agnostic meta-learning or MaML (Finn et al.,
2017), we filter the domains in Xtrain set, only
leaving those that have at least 96 samples (see the
middle column of Table 1). This is to ensure that
each domain contains disjoint sets of adequate size
for both training and meta-training.

Stratified Example Retrieval for Supervision
In addition to the strategies above, we experiment
with a domain adaptation method that does not re-
quire in-domain labeled data for supervision. We
use a similarity metric on embeddings obtained

from the pre-trained CodeT5 model checkpoint to
retrieve k most similar examples for every exam-
ple in τtest from Xtrain. We set k to 4, 8, or 32,
and since |τtest| = 32 the combined size of the set
would be 128, 256, or 1024. Finally, we remove
any duplicates. We refer to this set as τret.

For similarity metric, we experiment with co-
sine similarity, as well as a more recent approach -
IsoScore (Rudman et al., 2022). In our experiments,
we find that cosine similarity performs better over-
all, so the results reported in the paper are using
cosine similarity. Additional results using IsoScore
metric are reported in Appendix Section 7.8.
Challenge Scenario In addition to using test data
from CodeSearchNet dataset, in an attempt to make
the evaluation more realistic, we experiment with a
setting where the out-of-domain data comes from
a different dataset. Here we use the test split of
The Vault dataset (Manh et al., 2023), which we
have processed in the same manner as described in
Section 3.1. The details of the processing for the
Vault dataset are provided in Appendix Section 7.6.
Codex
Stratified Example Retrieval for Demonstra-
tions Similarly to the strategy for CodeT5, for
Codex we employ in-context learning with re-
trieved demonstration examples. For each test
query, instead of using random sets of in-domain
or out-of-domain demonstrations, we use 4 or 8 of
the query’s most similar samples from Xtrain as
demonstrations. This case is referred to as ICL ret.

Finding: Strategic adaptation is advantageous
in very low data scenarios
Figure 4a and 4c demonstrate the performance of
the CodeT5 and Codex models. For CodeT5, it
contains the performance obtained without adapta-
tion (0-shot), as well as after in-domain few-shot
fine-tuning (additional results for LoRA are pre-
sented in Appendix Section 7.7). None of the eval-
uated methods perform comparably in zero-shot
setting to those with few-shot domain adaptation -
whether on examples retrieved from training data
or obtained from test domains. So these training
methods do not result in a general-purpose model
that handles out-of-domain generalization well.

The same pattern is evident in the challenge eval-
uation scenario, presented in Figure 4b. From this
figure, we also conclude that retrieved supervision
is less effective when supervised and test exam-
ples are extracted from different datasets - even
when both are collected from the same source, i.e.
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(a) CodeT5, trained and evaluated on CodeSearchNet (b) CodeT5, trained on CodeSearchNet, evaluated on The Vault

(c) Codex

Figure 4: Models with ID and retrieved downstream adaptations.

Figure 5: CodeT5 model finetuned with retrieved supervision using different number of retrieved examples per test
sample. Scores reported are BLEU for code summarization and CodeBLEU for code generation. CodeT5 MTL
model performances in zero-shot, and 8-shot (ID) scenarios are shown with dotted lines for reference.

GitHub. While we have done our best to process
the data in The Vault dataset as similar to the pro-
cessing done in CodeSearchNet, there must still be
subtle differences remaining from data collection,
once again emphasizing how sensitive code models
are even to minute changes.

Adapting the model trained with MTL objective
to test domains with the help of stratified supervi-
sion provides a considerable boost to the perfor-
mance of CodeT5 and Codex. Results for CodeT5
are shown in Figure 5 with bars marked “ret k”,
where k refers to the number of examples included
in τret per test example. Figure 4c reports Codex
performance with 4 or 8 retrieved demonstrations
as “ICL ret 4” and “ICL ret 8” respectively.

First of all, we notice that there is a saturation in
terms of gained performance vs the number of strat-
ified supervision or demonstration examples used.
For CodeT5 using 32 examples per test instance
is almost always worse than using 4 or 8 exam-

ples. For Codex, using 4 or 8 examples results in
approximately the same performance.

Next, for code summarization, retrieving 4 or 8
examples from out-of-domain train data leads to
performance comparable, or even better, than that
of the model adapted using 8 examples from the test
domain. This trend is observed for both Codex and
CodeT5, particularly strongly when generalizing to
new repositories and new organizations. A similar
trend can be observed for code generation, and to a
much stronger degree for CodeT5 - stratified super-
vision models can even outperform models trained
with 32 examples from the test domain. While the
performance of the stratified supervision models
plateau after a certain number of examples, super-
vision on in-domain samples does not demonstrate
such a trend.
RQ 3 Can we have more generic solutions for
out-of-domain generalization?

From our analysis of RQ2, we see that models can
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Code Summarization
BLEU / ∆ BLEU

Code Generation
CodeBLEU / ∆ CodeBLEU

org repo folder org repo folder

FT: combined 4 18.74 / -4.74 18.59 / -4.47 18.06 / -1.06 29.46 / -0.19 29.41 / -0.01 26.60 / -1.53
FT: combined 8 18.46 / -5.07 18.58 / -3.03 17.57 / -3.48 29.13 / -0.73 28.83 / -0.22 27.23 / -0.92
FT: combined 32 17.35 / -2.31 17.63 / -0.94 15.57 / -2.56 26.28 / -3.63 25.01 / -4.02 25.14 / -2.88

ICL: 4 from τret 14.66 / -7.04 12.68 / -7.95 12.10 / -6.96 20.52 / -6.73 20.06 / -7.78 19.39 / -6.21
ICL: 8 from τret 13.77 / -8.53 12.96 / -8.52 12.26 / -7.17 20.81 / -7.05 20.23 / -8.16 19.48 / -7.00

Table 5: Using retrieved supervision examples for general domain adaptaion. The first number in each cell of the
table is the score obtained by the corresponding model, which is followed by the change in the performance w.r.t
domain-specific model or test sample-specific demonstrations.

generalize better to new domains without relying
on labeled data from that domain. Unfortunately,
this still requires adapting to every test domain
individually for CodeT5, and even more strictly
- to every test sample individually - for Codex.
For example, for CodeT5, this means maintaining
multiple copies of the model, performing the
training for the adaptation stage multiple times,
and storing a large amount of out-of-domain data to
retrieve examples from. In this RQ, we experiment
with approaches that would eliminate the need
to train CodeT5 on multiple domains separately.
For Codex, we experiment with sampling from
demonstrations collected for the entire domain. For
CodeT5, we try two approaches. First, we finetune
it on the combined set of τret for all domains.
We also try using fast vote-k algorithm (Su et al.,
2022), which selects representative examples from
the supervision dataset, while ensuring diversity
among selected examples. For Codex, for a
query from τtest, we consider sampling 4 or 8
demonstration examples from τret.

Finding: Multi-domain code generation models
do not require a large performance sacrifice.

The results for both models are presented in Ta-
ble 5. Results for CodeT5 for this experiment are
referred to as “FT: combined k”, where k is the
number of retrieved examples per test example.
Fast vote-k is less effective as an adaptation tech-
nique compared to fine-tuning on a combined set
of retrieved examples, and the results for it are
presented in the Appendix Section 7.9. As can be
seen, training a single model on combined retrieved
samples results in a moderate drop in performance
for code summarization, and a negligible drop for
code generation. In other words, a model finetuned
on stratified supervision data for new domains can
be a viable solution for the out-of-domain general-

ization problem for code generation. Interestingly,
this also indicates that for code generation, good
performance on one domain does not hinder the
performance on another domain, i.e. there is little
to no negative transfer between different domains.

For Codex, the results of the experiment are re-
ferred to as “ICL: k from τret” in Table 5, where
k is the number of sampled demonstrations. It ap-
pears that for Codex replacing demonstrations se-
lected for individual examples with those selected
for a domain introduce too much noise, and de-
grade the performance a lot because of the high
sensitivity of ICL to demonstrations.

5 Conclusion
We evaluate large language models for code -
CodeT5, Codex (code-cushman-001), and Chat-
GPT (gpt-3.5-turbo) - on two fundamental code
applications - code generation and code summa-
rization. We study how the models perform under
distribution shifts that can commonly occur due to
the nature of the software. We experiment with
three granularities for defining domains in applica-
tions for code - organization, project, and module
or folder. Our experiments show that all models
evaluated are susceptible to reduced performance
due to domain shifts. We experiment with a num-
ber of training and domain adaptation techniques
for achieving better out-of-domain generalization.
We discover that retrieving similar out-of-domain
examples from training data is the most effective ap-
proach for adapting to new domains in the absence
of in-domain data. In addition, we experiment with
adapting models to multiple new domains simul-
taneously and find that such models can perform
very well for code generation. However, we find
the generality of the model to be a tradeoff for its
performance for code summarization.
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6 Limitations and Threats to Validity
As can be seen from Table 1, as a result of the
process of filtering, we skew the data towards
larger projects and eliminate from the dataset many
samples that could potentially come from smaller
projects. We believe that this step is necessary to
make the results more reliable, due to the high vari-
ance that can be observed in datasets with very
small test sets. However, we want to draw attention
to this circumstance once more, to make sure that
our findings are interpreted correctly.
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7 Appendix

7.1 Javascript Keywords

The Javascript keywords that we included in the
CodeBleu implementation for evaluation is listed
in table 7.1.

7.2 Extended Background

7.2.1 Meta-learning and Multi-task-learning

Meta-learning focuses on adapting knowledge
gained from previous tasks to be applied to
new tasks with limited training examples. Most
meta-learning algorithms can be categorized into
three groups: 1) Black-box meta-learning ap-
proaches (Santoro et al., 2016) train a black-box
model to take in training data of a target task to
output parameters for the neural network used for
making prediction for that task; 2) Optimization-
based methods (Finn et al., 2017, 2018; Antoniou
et al., 2018) uses gradient descent to learn model
parameters which can be adapted to a future target
task with few gradient steps on a few-shot training
dataset; 3) Non-parametric methods (Vinyals et al.,
2017; Snell et al., 2017; Sung et al., 2017; Koch,
2015) learns a metric space in which predictions
can be performed by computing some similarity
metric, like distance and cosine similarity, to repre-
sentations of each class. In our work, we are using
the MAML (Finn et al., 2017) approach, which is
a gradient-based method and learns model initial-
ization (i.e., initial parameters) that is amenable to
fast fine-tuning with few instances. This method
is a conceptually simple and model-agnostic algo-
rithm that has been shown to outperform existing
approaches in several tasks.

Multi-task Learning aims to jointly learn sev-
eral related tasks providing a generalized represen-
tation with the added benefit of compute and mem-
ory in terms of shared model parameters (Yang and
Hospedales, 2016; Caruana, 1997; Meyerson and
Miikkulainen, 2019). MTL also has a regulariza-
tion effect on the model parameters. By definition,
MTL aims to solve a fixed number of known tasks,
whereas the point of meta-learning is often to solve
unseen future tasks. But both methods capture a
good prior from the training tasks, which can be
used for getting model parameters for future target
tasks.

In our work, we have experimented with both
MAML and multi-task learning to check which

of the method gives us a better prior for few-shot
performance in our setting.

7.2.2 Few-shot Methods
Parameter-efficient finetuning: Conventional
fine-tuning methods retrains all the model parame-
ters for every new task, which becomes infeasible
as the model size increases to the level of GPT-3.
In recent times, parameter-efficient methods have
been studied and it has been demonstrated that
state-of-the-art PEFT methods can match the per-
formance of finetuning all the model’s parameters
while updating only a tiny fraction of the model
parameters. Initially adapters (Raffel et al., 2019;
Houlsby et al., 2019; Bapna et al., 2019) were intro-
duced, which are new feed-forward modules added
between the layers of the fixed pre-trained model.
Since then, various sophisticated PEFT methods
have been proposed, including methods like LoRA
that produce low-rank updates (Hu et al., 2021)
and prompt tuning (Lester et al., 2021) and prefix-
tuning (Li and Liang, 2021) concatenate learned
continuous embeddings to the model’s input or ac-
tivations to induce it to perform a task.

Retrieval-based Example selection: In a study
conducted by Liu et al. (2021) , they explored how
different prompts can impact the performance of
GPT-3 and found that the use of in-context exam-
ples has a significant influence on the downstream
results. To achieve this, they utilized an unsuper-
vised sentence encoder to encode training examples
and then retrieved the nearest neighbors for each
test instance. On a similar note, Das et al. (2021)
developed a supervised prompt retriever for an-
swering knowledge-based questions. Their method
used tailored supervision specifically designed for
knowledge-based queries and relied on surface sim-
ilarity between formal queries. Furthermore, Shin
et al. (2021) employed GPT-3 to select examples
for the prompt in few-shot semantic parsing. They
demonstrated the effectiveness of this approach by
using GPT-3 to identify relevant examples for the
prompt, which in turn improved the overall perfor-
mance of the system.

7.3 Domain split visualization

To better understand how different splits of do-
mains are different from each other, we visualize
our resulting test domains in Figure 6. We plot each
domain as a dot, where different colors correspond
to different splits. X axis demonstrates average pair-
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Languages Keywords
JavaScript await, break, case, catch, class, const, continue, debugger, default, delete, do, else,

enum, export, extends, false, finally, for, function, if, implements, import, in, in-
stanceof, interface, let, new, null, package, private, protected, public, return, super,
switch, static, this, throw, try, true, typeof, var, void, while, with, yield

Table 6: Keywords used for CodeBLEU evaluation

Code generation folder repo org

8-shot 16-shot 32-shot 8-shot 16-shot 32-shot 8-shot 16-shot 32-shot

CodeT5 FT ID 19.36 20.92 21.95 20.42 22.44 24.47 19.29 20.73 22.6
CodeT5 LoRA ID 20.05 21.66 22.56 20.81 23.12 24.52 20.08 21.28 22.99
CodeT5 FT random 17.61 18.03 17.94 16.92 17.50 17.59 16.47 17.46 17.85
CodeT5 LoRA random 17.87 18.02 17.81 17.45 17.15 17.63 17.24 17.13 17.29

Codex ICL ID 28.78 - - 31.05 - - 29.19 - -
Codex ICL random 20.62 - - 20.87 - - 21.10 - -
Codex instr. only (0-shot) (10.24) - - (10.60) - - (10.25) - -

Table 7: Comparison of model performance for code generation on in-domain (ID) vs out-of-domain (random) test
data. Reported metric is ChrF (higher is better).

Figure 6: Each dot signifies a domain. Average pairwise
similarities of examples within each domain (x axis)
plotted against average similarities of that domain to all
other domains (y axis).

wise similarity of examples within a domain, i.e. x
coordinate of a domain corresponds to how uniform
examples within a domain are. Y axis demonstrates
pairwise similarities of examples within a domain
to examples in all other domains, i.e. y coordinate
of a domain demonstrates its similarity to other do-
mains. From the figure we see that the vast majority
of domains are clustered in the lower right corner,
which corresponds to the domains that are uniform,
and dissimilar to other domains. A small handful
of domains are located in the upper left corner, that
corresponds to domains with dissimilar examples
within itself, but higher similarity to other domains.
It is notable, that quantitatively, upper left corner
contains more folders than repos, and more repos
than orgs. We hypothesize, that such distribution

could be explained by functional, rather than hi-
erarchicals similarities across domains. A clear
example of such instance can be a folder with util-
ity functions that can have high similarity to other
folders with utility functions, all the while individ-
ual functions within that folder are implementing
different utilities, and thus - are dissimilar.

7.4 Models

CodeT5: CodeT5 (Wang et al., 2021) is a pre-
trained encoder-decoder transformer model based
on T5 (Raffel et al., 2019) for programming lan-
guages. It uses a unified framework to support
code understanding and generation tasks seam-
lessly. To improve the model’s ability to handle the
unique characteristics of programming languages,
CodeT5 is trained on an identifier-aware pretrain-
ing task. Additionally, the model is trained to ex-
ploit user-written code comments with a bimodal
dual-generation task for better alignment between
natural language and programming languages. This
makes this model suitable for the applications that
we consider. For both of our applications, we used
the CodeT5-large model (Le et al., 2022) without
making any changes to the model architecture.

Codex Codex (Chen et al., 2021) is the language
model for code released by OpenAI. It is a GPT
language model finetuned on 54 million public soft-
ware repositories hosted on GitHub, containing 179
GB of unique Python files under 1 MB. VLLMs
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Code generation folder repo org

8-shot 16-shot 32-shot 8-shot 16-shot 32-shot 8-shot 16-shot 32-shot

CodeT5 FT ID 14.15 15.84 16.73 14.93 16.98 19.19 13.75 14.93 16.94
CodeT5 LoRA ID 14.49 16.58 17.87 15.47 17.69 19.60 14.10 15.48 17.61
CodeT5 FT random 11.34 11.62 11.73 9.91 10.10 10.32 9.49 10.20 10.68
CodeT5 LoRA random 11.45 12.05 12.58 10.09 10.04 11.08 10.15 10.30 11.15

Codex ICL ID 23.70 - - 24.62 - - 22.58 - -
Codex ICL random 15.76 - - 15.67 - - 15.81 - -
Codex instr. only (0-shot) (6.44) - - (6.50) - - (6.18) - -

Table 8: Comparison of model performance for code generation on in-domain (ID) vs out-of-domain (random) test
data. Reported metric is RougeL (higher is better).

Code generation folder repo org

8-shot 16-shot 32-shot 8-shot 16-shot 32-shot 8-shot 16-shot 32-shot

CodeT5 FT ID 0.68 / 0.68 0.69 / 0.68 0.69 / 0.69 0.69 / 0.69 0.69 / 0.68 0.68 / 0.67 0.69 / 0.67 0.69 / 0.68 0.70 / 0.69
CodeT5 LoRA ID 0.68 / 0.67 0.69 / 0.68 0.70 / 0.69 0.69 / 0.68 0.70 / 0.70 0.71 / 0.71 0.69 / 0.68 0.69 / 0.68 0.71 / 0.69
CodeT5 FT random 0.65 / 0.66 0.66 / 0.66 0.66 / 0.66 0.66 / 0.65 0.66 / 0.66 0.66 / 0.66 0.65 / 0.65 0.65 / 0.65 0.65 / 0.65
CodeT5 LoRA random 0.65 / 0.65 0.65 / 0.65 0.66 / 0.66 0.66 / 0.66 0.65 / 0.65 0.66 / 0.66 0.65 / 0.65 0.65 / 0.65 0.66 / 0.66

Codex ICL ID 0.74 / 0.72 - - 0.75 / 0.73 - - 0.74 / 0.72 - -
Codex ICL random 0.69 / 0.67 - - 0.70 / 0.68 - - 0.69 / 0.67 - -
Codex instr. only (0-shot) 0.62 / 0.61 - - 0.63 / 0.62 - - 0.63 / 0.62 - -

Table 9: Comparison of model performance for code generation on in-domain (ID) vs out-of-domain (random) test
data. Reported metric in each cell is CodeBERTScore F1 on the left (higher is better), and CodeBERTScore F3 on
the right (higher is better).

are capable of zero-shot generalization to unseen
tasks, which is achieved by providing them with
an instruction of what the model is expected to
do. This allowed us to successfully evaluate Codex
for both code generation and code summarization
without any need for training.

ChatGPT ChatGPT is a conversational variant
derived from InstructGPT/GPT 3.5 model (Ouyang
et al., 2022). It features a dialogue interface and
is trained using a more refined objective function
called Reinforcement Learning from Human Feed-
back (RLHF) (Christiano et al., 2017). However,
there is currently limited information available re-
garding the specific architecture and training data
employed in the creation of ChatGPT. We utilize
the GPT-3.5 Turbo API, provided by OpenAI, to
access ChatGPT for conducting our experiments.
This API version allows a maximum token length
restriction of 4096 tokens.

7.5 Hyperparameters and training details

For full finetuning of CodeT5, we updated the
model for 500 steps using batch size of 8, the best
model was identified by the performance on the
τdev portion. For LoRA, we use a rank of 4 with
an initialization scale of 0.01 and update all the at-

tention and feedforward layers. We train for 1000
steps with a batch size of 8.

For multitask learning (MTL) of CodeT5, we
update the model for 150K steps on 80% of the
Xtrain data, using a batch size of 4. The best check-
point is selected by evaluating the model on the
remaining 20% of Xtrain which was held-out from
training. For dual-gen MTL, we followed the same
train/dev division strategy as for MTL for code gen-
eration, and updated the model for 150K steps with
batch size of 4. The best checkpoints were again
decided by evaluating the model on the created
development set. In particular, we selected two
checkpoints - one according to CodeBLEU metric,
and another according to BLEU metric for code
generation and code summarization respectively.
For Model-agnostic meta-learning, we updated the
model from the pretrained CodeT5 checkpoint for
10K steps and used the last checkpoint in our ex-
periments.

7.6 The Vault
The Vault is a multilingual dataset extracted from
GitHub. Despite the fact that it comes pretokenized,
we noticed that some of the preprocessing for The
Vault is different from the preprocessing of Code-
SearchNet. For example, while CodeSearchNet
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function body may have inlined comments, the
Vault functions are stripped of those. On the other
side, the Vault docstring typically includes func-
tion parameter documentation, whereas the Code-
SearchNet omits those. On average, CodeSearch-
Net function docstrings are also shorter than those
of the Vault. In our work, we processed the Vault
dataset, to fix these inconsistencies and make new
data points consistent with data from CodeSearch-
Net.

7.7 Additional experimental results

Besides the experiments presented in the main pa-
per, in this section, we report some additional ex-
periments. Tables 7, 8 and 9 report results for code
generation as measured using chrF, RougeL and
CodeBERTScore metrics correspondingly.

Additionally, Figure 7 illustrates how LoRA pa-
rameter efficient finetuning method compares to
the full model finetuning for CodeT5.

Code Summarization
BLEU

Code Generation
CodeBLEU

org repo folder org repo folder

IsoScore (4) 16.71 16.57 15.47 15.05 16.01 14.93
IsoScore (8) 17.27 16.72 15.71 15.32 16.55 15.28
IsoScore (32) 17.46 16.90 14.34 16.13 17.89 16.26

Table 10: Results for CodeT5 model using IsoScore for
measuring embedding similarity and supervising with
retrieved examples from train data.

7.8 IsoScore

IsoScore is a similarity metric of isotropy of an
embedding space. The way we use it to measure
similarity is by computing IsoScore value of a com-
bined set of test example embeddings and every
individual training set embedding. The “closest”
examples selected for supervision are the ones that
resulted in the largest IsoScore value for each set
of test examples. We then use the same number of
supervision examples as we used with cosine sim-
ilarity - selecting 4*32, 8*32, or 32*32 “closest”
examples for supervision. The results for model
adapted using IsoScore metric similarity are re-
ported in Table 10.

7.9 Fast vote-k

To make the setup for fast vote-k similar to the ver-
sion with the combination of nearest examples, we
run this algorithm to select 4*32 (128), 8*32 (256),
and 32*32 (1024) supervision examples. Table 11

show results obtained for a CodeT5 MTL model
that has additionally been finetuned using a set of
examples obtained from fast vote-k algorithm.

Code Summarization
BLEU

Code Generation
CodeBLEU

org repo folder org repo folder

Fast vote-k (4) 10.96 12.34 10.33 24.96 25.76 24.77
Fast vote-k (8) 11.40 12.74 10.60 25.10 26.21 25.14
Fast vote-k (32) 10.84 12.03 10.06 24.25 25.06 24.17

Table 11: Results for CodeT5 model using Fast Vote-
k for measuring embedding similarity and supervising
with retrieved examples from train data.

7.10 Instructions for Codex and ChatGPT
Table 12 contains list of instructions we used with
Codex and ChatGPT models in instruction-only
and in-context learning scenarios.

7.11 Sample outputs
Table 13 presents some examples and the outputs
obtained by different models for those. Here we
can see that CodeT5 model finetuned on in-domain
examples sometimes has the advantage of having
relevant context and thus is using correct mem-
ber names as opposed to other models. On the
other hand, we also see that similar out-of-domain
examples from the train split can in fact be near
duplicates of the ones in the test split. As a result,
the model supervised with retrieved examples may
generate output that is extremely close to that of
the gold test data.
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Figure 7: Performance for CodeT5 model finetuned with LoRA compared to regular finetuning.

Copilot Task instruction

"Write in javascript:",
"Write code:",
"Summarize code:",
"Summarize javascript snippet:",
"Write code intent:"

Demonstration example
template

"Intent: {text} \\n Snippet: {code}\\n\\n",
"Intent: {text} \\n Code: {code}\\n\\n",
"Code: {code} \\n Intent: {text}\\n\\n",
"Code: {code} \\n Summary: {text}\\n\\n",
"Snippet: {code} \\n Intent: {text}\\n\\n",
"Snippet: {code} \\n Summary: {text}\\n\\n",

ChatGPT System messages

’You are a helpful assistant that writes JavaScript code based on English description.
You only output code without any English text.’
“You are a helpful assistant that writes single sentence summarizes for JavaScript code in English.
You only output code summary without any other English text.”

Task instruction
"Write a single sentence summary for the following JavaScript code in English. "
"Implement this functionality using JavaScript. "

Demonstration example
template

["Below are some examples of JavaScript code implemented based on English summary. \n",
"Summary: {text}\nCode: {code}\n\n"]
["Below are some examples of English summaries of JavaScript code. \n",
"Code: {code}\nSummary: {text}\n\n"]

Table 12: Task instructions and demonstration templates used for generating results in the experiments with Codex
and ChatGPT.
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Input Gold CodeT5
MTL (0-shot)

CodeT5
MTL + ID (32-shot)

CodeT5
MTL + ret 4 ChatGPT

Dispatch stack information
to all handlers

Setup captions

Toggle event listener

Returns the absolute path
to the class file

Returns the tag name of the
given library in the given contrib

repository if installed.
Returns false if not installed.

Table 13: Sample outputs from different models.
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