
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 783–791
December 6-10, 2023 ©2023 Association for Computational Linguistics

On Sample-Efficient Code Generation

Hojae Han♠˛, Yu Jin Kim�, Byoungjip Kim�, Youngwon Lee♠˛, Kyungjae Lee�,
Kyungmin Lee�, Moontae Lee� ,̊ Kyunghoon Bae�, Seung-won Hwang♠˛:

♠Seoul National University, ˛SNU-LG AI Research Center,
{stovecat, ludaya, seungwonh}@snu.ac.kr

�LG AI Research, {yujin.kim, bjkim, kyungjae.lee,
kyungmin.lee, moontae.lee, k.bae}@lgresearch.ai

Abstract

Large language models often struggle to predict
runtime behavior in code generation tasks, lead-
ing to a reliance on rejection sampling (best-of-
n) to generate multiple code snippets then select
the best. Our distinction is reducing sampling
costs, without compromising generation qual-
ity. We introduce EFFICODE, a novel frame-
work that prioritizes sampling on test problems
that models can solve. We show how EFFI-
CODE estimates solvability to optimize compu-
tational costs during multiple sampling. Based
on empirical evidence, EFFICODE consistently
demonstrates reduced sampling budgets while
maintaining comparable code generation per-
formance, especially when problems are chal-
lenging. In addition, utilizing EFFICODE to
rank sampled code snippets also shows its effec-
tiveness in answer code selection for reducing
temporal costs, by not requiring any execution
or test case generation.

1 Introduction

Recently, large language models (LLMs) have
achieved success in code generation, aiming at syn-
thesizing a functionally correct program based on a
natural language problem description (Chen et al.,
2021; Li et al., 2022). Ensuring functional correct-
ness is a rigorous objective, as a single token error
during generation can render the entire output incor-
rect, while some grammatical and semantic errors
in natural language are tolerable to human readers.

To achieve rigor despite noise during generation,
existing approaches utilize rejection sampling (mul-
tiple sampling then selecting the best) to increase
the likelihood of finding a correct code among the
candidates (Li et al., 2022; Shi et al., 2022; Inala
et al., 2022; Chen et al., 2023). In this context, the
widely used metric is Pass@k (Chen et al., 2021),
which assigns a score of 1 if at least one of the k

˚is also affiliated with the University of Illinois Chicago.
: Corresponding author.

x1 𝜃

x2 𝜃

x3 𝜃

x4 𝜃
ncorrect

(not sampled)

Budget: 𝑘 samples / problem

(a) Conventional sampling.

x1 𝜃

x2 𝜃

x3 𝜃

x4 𝜃

Correct Incorrect Pruned Incorrect

orrect

Necessary Budget: 𝑘# samples / problem

(b) EFFICODE (this work).

Figure 1: Comparison of EFFICODE to conventional
multiple sampling. The solid and the dashed line boxes
indicate the sampled code and code to be sampled for
each problem xi by the code generation model θ.

sampled candidates is correct, and 0 if all candi-
dates are incorrect.

However, the use of multiple sampling in code
generation incurs high computational costs. While
considerable efforts have been made to optimize the
computational expense of pre-training, including
addressing its environmental impact (Strubell et al.,
2019), resource-intensive inference from excessive
sampling have been largely overlooked. To moti-
vate, AlphaCode (Li et al., 2022) generates 1 mil-
lion code samples for each competition-level prob-
lem, resulting in hundreds of petaFLOPS days of
computation—equivalent to the cost of pre-training
the model.

783

In addition, recent approaches (Chen et al., 2023;
Shinn et al., 2023; Zhang et al., 2023) self-validate
the sampled code, by executing them with (gen-
erated) test cases. This results in a significant re-
sponse time overhead, as the samples are often
inefficiently implemented and may cause time-outs
that take several seconds (Zhang et al., 2023). Thus,
there is a critical need to reduce the expense of
multiple sampling and refining, for deploying an
industry-scale code generation with efficiency and
sustainability.

In our research, we aim to minimize the compu-
tational and temporal costs in code generation by
reducing the sample size and avoiding execution
in validation without compromising accuracy. Fig-
ure 1 illustrates the contrast between conventional
sampling with a uniform sampling cost of k and
our proposed approach, referred to as EFFICODE,
which prioritizes the necessary k samples on aver-
age (k ă k) with the following characteristics:

First, necessary: we prioritize investing the sam-
pling budget in solving simple problems that termi-
nate early (e.g., x3 in Figure 1a), or avoiding wast-
ing resources on hard problems that never terminate
(e.g., x1 in Figure 1a), unlike conventional sam-
pling investing equally to all problems. To achieve
this, we propose a solvability estimator, which de-
termines if a problem is likely to be solvable based
on either 1) producing fewer errors, or 2) close to
the problems successfully solved in the past.

Second, adaptive: we can assess the correct-
ness of a partially decoded sample even before
its completion. In contrast, conventional sampling
continues decoding until their completion without
verification. This adaptability allows us to make
more informed decisions during the decoding pro-
cess to potentially save computational resources by
terminating the decoding early.

In our main experiment, we validate the effec-
tiveness of EFFICODE in improving the sample
efficiency of GPT-3.5 (OpenAI, 2022) on Code-
Contests (Li et al., 2022), HumanEval (Chen et al.,
2021), and MBPP (Austin et al., 2021) benchmarks.
In addition, we empirically confirm the effective-
ness of using EFFICODE as a ranker to select cor-
rect code for reducing temporal costs, without re-
quiring any code execution.

In summary, the key contributions of this study
are as follows:

• We propose a novel framework, called EFFI-
CODE, which significantly enhances the sam-

ple efficiency of code generation models by
leveraging solvability estimation, allowing for
more effective allocation of sampling budget.

• Our method dynamically adapts to the cor-
rectness of partially decoded samples, early
terminating wasteful computation on complet-
ing unnecessary decoding.

• We empirically validate the improved sample
efficiency on various benchmarks. The experi-
mental results provide evidence of the benefits
of our approach in practical scenarios.

2 Preliminaries

In this section, we define code generation task and
its characteristic of requiring multiple sampling.
Next, we explain our research goal, sample effi-
ciency.

Code Generation. Given a set of problems X
and a code generation model θ, code generation is
the task of synthesizing a correct solution code for
each problem xi P X:

c˚ “ arg max
cPC

fpc, xiq, (1)

where C is the set of every possible code that θ
can generate. Ideally, fpc, xiq is calculated by exe-
cuting the generated code c with test cases for the
problem xi, returning 1 if it passes all test runs and
0 for else. Generally, test cases are unavailable dur-
ing inference time (Chen et al., 2023; Shinn et al.,
2023).

Sampling Multiple Candidates. One of the dis-
tinctions of code generation from natural language
generation is its rigor; even a single mistakenly
generated token can cause the entire code to be
incorrect. To compensate this, code generation usu-
ally samples a set of multiple candidates Ci to
solve each problem xi P X (Chen et al., 2021; Li
et al., 2022). Code generation passes, when there
exists c P Ci such that fpc, xiq “ 1, denote as
F pCiq “ 1, and fails otherwise, or, F pCiq “ 0.

Sample Efficiency. Our objective is to maximize
the pass rate of code generation:

ř|X|
i“1 F pCiq

|X| , (2)

while ensuring sample efficiency by constraining
that the total cost of sampling (e.g. the number of

784

generated code samples) should not exceed a total
sampling budget B:

|X|ÿ

i“1

|Ci| ď B. (3)

3 Related Work

3.1 Code Generation with LLMs

Recent work has shown that LLMs trained on
source code corpus can synthesize correct code
by given natural language descriptions. Early ap-
proaches like GPT-NEO (Black et al., 2021) and
GPT-J (Wang and Komatsuzaki, 2021) add code
data into pre-training corpus. Later, CODEX (Chen
et al., 2021), which has Code-davinci-002 as its
variation, targets to code generation solely, by
first pre-trained on text then further pre-trained
on code only corpus. AlphaCode (Li et al., 2022)
shows an average human programmer performance
in competition-level code generation. Several ap-
proaches like CODEGEN (Nijkamp et al., 2023),
CODET5 (Wang et al., 2021), CODET5+ (Wang
et al., 2023), SANTACODER (Allal et al., 2023), and
STARCODER (Li et al., 2023) reveal publicly avail-
able LLMs for code generation. CODERL (Le et al.,
2022) further improves CODET5 by applying rein-
forcement learning and critic sampling. Recently,
GPT-3.5 (Ouyang et al., 2022) and GPT-4 (OpenAI,
2023) show remarkable performance improvement
by reinforcement learning from human feedback
(RLHF), and phi-1 (Gunasekar et al., 2023) orga-
nizes high quality dataset to significantly improve
the performance while keeping the model size as
1.3B.

Our distinction. EFFICODE is a model-agnostic
framework that can be employed to improve sample
efficiency across LLMs.

3.2 Sample Efficiency on Code Generation

To ensure the correctness of generation, existing
approaches aim to over-generate then filter incor-
rect ones. CODERANKER (Inala et al., 2022) pro-
poses a ranker, trained to distinguish between cor-
rect and incorrect code, as well as classify the er-
ror types in the incorrect code. Alternatively to a
trained ranker, later approaches filter out incorrect
code through code execution. AlphaCode (Li et al.,
2022) generates test inputs for each problem, clus-
ters the code samples by the outputs from generated
inputs, and randomly selects code samples from

the biggest cluster to smaller ones. CODET (Chen
et al., 2023) synthesizes test cases, and mutually
verifies the code candidates and the generated test
cases, to filter incorrect ones out. Lastly, one may
consider generating then fixing towards correct-
ness. ALGO (Zhang et al., 2023) uses exhaustively
searched reference oracle code to verify and re-
fine code candidates. REFLEXION (Shinn et al.,
2023) generates test cases then conducts iterative
self-verification and refinement over the generated
code, regarding the final version as the most correct
one.

As an alternative to execution-based correct-
ness evaluation, the similarity of generated code
to human annotated reference can be used. Code-
BLEU (Ren et al., 2020) employs abstract syntax
trees (AST) to capture code syntax and data-flow
to quantify similarity.

Our distinction. All three categories require ad-
ditional model inference, and generally need code
execution using (annotated or synthetic) test cases.
In contrast, EFFICODE tackles sample efficiency
without requiring additional inference or code exe-
cution, reducing both computational and temporal
costs. Specifically, we repurpose CodeBLEU, from
its original use of evaluation, to measure code sim-
ilarity between generated code and past solutions
to estimate generation correctness.

4 EFFICODE

EFFICODE is a novel framework that aims to
achieve sample-efficient code generation by esti-
mating the solvability for each problem, then priori-
tizing the problems to allocate the sampling budget.

4.1 Code Sampling as Discrete Search

We want to estimate the sampling priority among
problems. We explain the paradigm of sampling
multiple code samples per problem as discrete
search, analogous to regarding decoding a text se-
quence as discrete search (Lu et al., 2022). Specifi-
cally, we define a state as st “ rC1

t , C
2
t , ..., C

|X|
t s

where Ci
t is the set of sampled code for each

problem xi P X until a time step t. An action
at P Apstq from an action space A in st means to
sample more candidates for xmpatq where mpatq
is an indexing function.1 The transition of each
step of sampling consists of 1) selecting a problem,

1For example, if mpatq “ 3, then x3 is selected to sample
more code in time step t.

785

Problem: 𝒙𝒊
Sampled codes: 𝑪𝒕𝒊

Solvability Estimation Prioritize problems
by min 𝑒𝑟𝑟#$, 𝑠𝑖𝑚#

$

xi xii xiii

x3
𝒆𝒓𝒓𝒕𝟑
𝒔𝒊𝒎𝒕

𝟑

ER 𝑪𝒕𝒊 > 𝑻𝑬
SIM 𝑪𝒕𝒊 , 𝑪𝒑𝒓𝒆; 𝒔𝒕 < 𝑺%

x2
𝒆𝒓𝒓𝒕𝟐
𝒔𝒊𝒎𝒕

𝟐
ER 𝑪𝒕𝒊 ≤ 𝑻𝑬

SIM 𝑪𝒕𝒊 , 𝑪𝒑𝒓𝒆; 𝒔𝒕 < 𝑺%

𝐶!"#

x1
𝒆𝒓𝒓𝒕𝟏
𝒔𝒊𝒎𝒕

𝟏SIM 𝑪𝒕𝒊 , 𝑪𝒑𝒓𝒆; 𝒔𝒕 ≥ 𝑺%
ER 𝑪𝒕𝒊 ≤ 𝑻𝑬

Solved
HistoryCorrect Code

Incorrect Code

Pruned Incorrect

Figure 2: Solvability estimation by EFFICODE. A prob-
lem xi is assigned a high priority if Ci

t , the set of sam-
pled code so far, has little syntax errors (errit “ h in
Eq (6)) and also exhibits high similarity with Cpre, the
code for problems that are already solved by the model
(simi

t “ h in Eq (7)).

2) sampling new candidates of the selected prob-
lem, and 3) expanding new candidates to the set of
sampled code:

Ci
t`1 “

#
Ci
t Y C 1

t, if mpatq “ i,

Ci
t , otherwise,

(4)

where C 1
t is the set of new code samples of xmpatq

drawn from pθpC 1
t;xmpatqq, i.e., the probability dis-

tribution of the code generation model θ. The initial
state is C0

i “ tu, and the sampling process contin-
ues until Eq (3) is violated.

4.2 Solvability Estimation

During the multiple sampling process, EFFI-
CODE prioritizes the problems by estimating the
ground truth solvability for each xi. As the solv-
ability is relative to the capability of θ, we consider
1) the difficulty of xi by θ, and 2) the similarity of
xi with problems that θ previously solved. Figure 2
shows the overview of solvability estimation by
EFFICODE.

Solvability. We define a solvability of the model
θ to the problem xi as the likelihood of sampling a
correct code using θ:

S˚pxi; θq “ ECi„pθpCi;xiq rF pCiqs , (5)

while satisfying Eq (3). Then, a problem xi is more
solvable than another problem xj if S˚pxi; θq ą
S˚pxj ; θq. If both xi and xj are not solved yet, we
prefer to sample more for xi over xj .

importpickle

def load_pkl(path):
 with open(path, 'rb') as fp:
 data = pickle.load(fp)
 return data

No error
No error
Undecided (EndOfFile error)

Undecided (EndOfFile error)

No error
No error

(a) Fully decoded.

importpickle

def load_pkl(path):
 with open(path, 'rb': as fp:

No error
No error
Undecided (EndOfFile error)

SyntaxError: invalid syntax

data = pickle.load(fp)
 return data

SyntaxError: invalid syntax
SyntaxError: invalid syntax

(b) Pruned before fully decoded due to syntax error.

Figure 3: Sample-prunable decoding periodically checks
whether the current partially generated code contains
syntax errors that will remain after completion.

Error Ratio. Unlike execution-based approaches
such as CODET (Chen et al., 2023) and REFLEX-
ION (Shinn et al., 2023), EFFICODE approximates
the likelihood of errorneous execution at time step
t as syntax errors in Ci

t , following the convention
in (Hendrycks et al., 2021).

For the representativeness, we skip the prioritiza-
tion when |Ci

t | is smaller than a hyperparameter N .
Formally, we assign errit based on the error ratio
in Ci

t as,

errit “
#
h if t ă N or ERpCi

tq ď TE ,

l, otherwise,
(6)

where h and l ph ą lq are hyperparameters for
priority scores, ERpCi

tq is the ratio of code samples
with syntax errors in Ci

t , and TE is the threshold
hyperparameter.

Similarity w/ Solved Problems. We prioritize
sampling for the problem instance xi if it is similar
to previously solved problems by θ. To investigate
the similarity of the problems from the perspective
of θ, we compare Ci

t to Cpre– a set of correct code
for previously solved problems by θ– using Code-
BLEU (Ren et al., 2020). This approach is particu-
larly advantageous in industrial contexts, utilizing
readily available accumulated logs as Cpre.

Formally, we assign simi
t the priority of xi by

786

0

10

20

30

40

50

0.9

0.92

0.94

0.96

0.98

1

Pass@
k

98%

96%

94%

92%

90%

N
ec

es
sa

ry
 B

ud
ge

t
k"

10 20	 30	 40	 50	 60	 70	 80	 90	100	

k

UNIFORMSAMPLING
EFFICODE

100%	of	k

(a) HumanEval-Extreme

0

6

12

18

24

30

36

0.88

0.9

0.92

0.94

0.96

0.98

1

Pass@
k

98%

96%

92%

90%

88%
10 20	 30	 40	 50	 60	 70	 80	 90	100	

k

94%

N
ec

es
sa

ry
 B

ud
ge

t
k"

100%	of	k

(b) MBPP-Extreme

0

2

4

6

8

0.8

0.85

0.9

0.95

1

Pass@
k

95%

80%
10 20	 30	 40	 50	 60	 70	 80	 90	100	

k

90%

85%

N
ec

es
sa

ry
 B

ud
ge

t
k"

100%	of	k

(c) CodeContests-Extreme

Figure 4: Results on various benchmarks with extreme settings. Bar charts, which belong to the left side of y-axis,
denote the reduced amount of sampling budget to reach Pass@k performance. Line charts belong to the right side
of y-axis, indicating Pass@k scores. Throughout the benchmarks, code samples were generated by GPT-3.5 with
Self-planning.

the similarity between Ci
t and Cpre as,

simi
t “

$
’&
’%

h if t ă N or

SIMpCi
t , Cpre; stq ě S%,

l, otherwise,

(7)

where SIMpCi
t , Cpre; stq ranks the similarity be-

tween Ci
t and Cpre within the state st “

rC1
t , ..., C

|X|
t s, and returns this rank as a percent-

age. To enhance the understanding of θ’s capability,
we use Self-planning (Jiang et al., 2023), which
synthesizes commented high-level blueprints then
generates code. The similarity is then measured
after concatenating the blueprints and code.

For the robustness over errors in estimated solv-
abilities, we use weighted sampling to select the
next action at P Apstq. The weight value pit for
at where mpatq “ i is the (normalized) min score
between errit and simi

t:

P pmpatq “ iq “ pit for i P t1, 2, . . . , |X|u,
pit “ minperrit, simi

tqř
j minperrjt , simj

t q
. (8)

4.3 Adaptive Decoding

EFFICODE dynamically adapts to partial decoding
by periodically inspecting for early termination.
EFFICODE specifically targets the subset of incor-
rect code that exhibits syntax errors, which are
relatively common in code generated from LLMs.
For example, approximately 11% of Python code
generated by AlphaCode contains syntax errors (Li
et al., 2022).

EFFICODE halts the decoding procedure when
syntax errors are detected, while excluding unde-
cidable ones like EndOfFile which can be recti-
fied with proper subsequent code lines.2 Figure 3
demonstrates EFFICODE detecting syntax errors
after each line of code is decoded. We leverage
the accurate and low-overhead compiler of the des-
ignated programming language, such as Python’s
built-in compiler, for syntax verification. This ap-
proach effectively prunes incorrect code segments
before their completion, lowering the total decod-
ing expense.

5 Experimental Setup

We evaluate the effectiveness of EFFICODE by as-
sessing its impact on the sample efficiency of GPT-
3.5-turbo-0301 (OpenAI, 2022), a sibling model
of InstructGPT (Ouyang et al., 2022). Throughout
the experiments, we use nucleus sampling (Holtz-
man et al., 2020) with the top p “ 0.95 and the
temperature T “ 0.8 (Chen et al., 2021; Nijkamp
et al., 2023; Chen et al., 2023). The implementation
details for EFFICODE is explained in Appendix A.

5.1 Evaluation Metrics

We use a popular metric Pass@k (Chen et al., 2021)
that equally samples k code samples for each prob-
lem, and plot the average number of samples k
to reach the same performance with Pass@k (i.e.
necessary budget), where the reduced number of
samples per problem can vary. For correct code

2For other languages like C, C++, and Java, we can con-
sider additional undecidable cases such as unfinished paren-
theses.

787

Code Selection Method Execution Model
n@k

k n=1 n=2
HumanEval-Hard50

None GPT-4 30 60.0: -
REFLEXION (w/o test run) GPT-4 30 52.0: -
REFLEXION required GPT-4 30 68.0: -
None GPT-3.5 30 40.9 48.4
None GPT-3.5; 30 47.8 57.4
EFFICODE GPT-3.5; 30 49.0 57.7

HumanEval
CODERANKER Codex 100 32.3 -
ALPHACODE-C required Code-davinci-002 100 55.1 64.1
CODET required Code-davinci-002 100 65.8 75.1
REFLEXION required GPT-4 30 91.0 -
None GPT-3.5 100 63.0 69.4
None GPT-3.5; 100 68.5 77.1
EFFICODE GPT-3.5; 100 69.9 77.3

MBPP
ALPHACODE-C required Code-davinci-002 100 62.0 70.7
CODET required Code-davinci-002 100 67.7 74.6
None GPT-4 30 80.1 -
REFLEXION required GPT-4 30 77.1 -
None GPT-3.5 100 59.7 66.4
None GPT-3.5; 100 66.1 72.3
EFFICODE GPT-3.5; 100 66.1 72.1

CodeContests
CODET required Code-davinci-002 1000 2.1 2.3
ALGO required Code-davinci-002 1000 5.6 5.6
None GPT-3.5 100 2.6 4.1
None GPT-3.5; 100 3.9 5.6
EFFICODE GPT-3.5; 100 6.7 7.9

Table 1: Results for n@k code sample selection are shown above, with values above the dashed line directly sourced
from original works. Red and blue colored scores are the results without code execution that are higher or lower
than the scores when the code selection method is not applied. Generated code is written in Python language, except
for the daggered results (:) written in Rust language. The double dagger (;) signifies that Self-planning (Jiang et al.,
2023) is applied for code generation. For REFLEXION, we regard max 30 iterations of refinement and use the final
version as selecting one from 30 samples.

selection, we use n@k (Li et al., 2022), which sam-
ples k candidates, then ranks or filters to select n
samples.

5.2 Benchmarks

We conduct experiments on below three code gen-
eration benchmarks: CodeContests (Li et al., 2022)
consists of 13K / 113 / 165 of training / valid /
test problems from various code competition web-
sites. HumanEval (Chen et al., 2021) is a hand-
crafted test dataset containing 164 Python prob-
lems. MBPP (sanitized; Austin et al., 2021) con-
tains 427 crowd-sourced Python problems.

In extreme settings, we first sample 100 code
samples per problem by GPT-3.5 with Self-
planning (Jiang et al., 2023), then select problems
that the solved ratio (i.e. the ratio of correct code
samples to all the generated samples) is below
10%. The dataset size of CodeContests-Extreme,

HumanEval-Extreme, and MBPP-Extreme is 151,
22, and 89, respectively.

To compare EFFICODE with REFLEXION (Shinn
et al., 2023) in correct code selection, we also re-
port EFFICODE in another HumanEval subset con-
sists of 50 problems, namely HumanEval-Hard50.

6 Experimental Results

6.1 Sample Efficiency

In our main experiment, we validated the effec-
tiveness of EFFICODE in improving the sample
efficiency, comparing with conventional sampling.
When gauging the effectiveness of solvability es-
timation, it becomes challenging especially when
dealing with problems of high solvability. In such
cases, even if we were to randomly select them, the
Pass@k score would effortlessly increase, poten-
tially masking the true performance of the estima-
tion process. Therefore, we evaluate EFFICODE on

788

Benchmark Method
n@100

n=1 n=2
None 2.0 3.9HumanEval-Extreme EFFICODE 4.6 9.1
None 1.4 2.7MBPP-Extreme EFFICODE 4.5 4.5
None 0.3 0.6CodeContests-Extreme EFFICODE 1.3 2.0

Table 2: Results of selecting n code samples from 100
for each problem (n@100; n@k where k=100).

extreme-level subsets of the benchmarks where
each problem has the solve ratio below 10%.

As shown in Figure 4, EFFICODE consistently re-
quires the reduced number of necessary budget k to
reach the Pass@k performance. This is a novel con-
tribution, as previous research has not addressed
the sample efficiency of code generation models
during inference. Note that EFFICODE is especially
effective when the test set is hard– in CodeContests-
Extreme, EFFICODE only requires 16% less budget
to reach Pass@100 performance.

6.2 Functional Correctness
Recent approaches focus on specifying which can-
didate is functionally correct (Li et al., 2022; Inala
et al., 2022; Chen et al., 2023). We validate the cor-
rectness of EFFICODE, which can reduce temporal
costs by alleviating code execution.

The results are shown in Table 1 and Table 2.
It is noteworthy that REFLEXION, a popular code
refinement method, significantly drops n@k per-
formance when applied without code execution in
HumanEval-Hard50, and even with code execution
in MBPP. In contrast, EFFICODE consistently im-
proves n@k performance except for MBPP, but
still shows comparable performance to that of EF-
FICODE is not applied.

7 Conclusion

This paper studies sample efficiency in code gen-
eration, which significantly affects the computa-
tional/temporal costs and environmental conse-
quences yet has been neglected. Our proposed ap-
proach EFFICODE prioritizes sampling on test prob-
lems by estimating solvability. We conduct exten-
sive experiments on the CodeContests, HumanEval,
and MBPP benchmarks, consistently showing the
improved sample efficiency. Additionally, EFFI-
CODE can be used as correct code selection while
reducing temporal costs by alleviating code execu-
tion.

Acknowledgement

This work was partially supported by Electronics
and Telecommunications Research Institute (ETRI)
grant funded by ICT R&D program of MSIT/IITP
(2022-0-00995, Automated reliable source code
generation from natural language descriptions).

References
Loubna Ben Allal, Raymond Li, Denis Kocetkov,

Chenghao Mou, Christopher Akiki, Carlos Munoz
Ferrandis, Niklas Muennighoff, Mayank Mishra,
Alex Gu, Manan Dey, et al. 2023. Santacoder: don’t
reach for the stars! arXiv preprint arXiv:2301.03988.

Jacob Austin, Augustus Odena, Maxwell I. Nye,
Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le,
and Charles Sutton. 2021. Program synthesis with
large language models. CoRR, abs/2108.07732.

Sid Black, Leo Gao, Phil Wang, Connor Leahy, and
Stella Biderman. 2021. GPT-Neo: Large Scale
Autoregressive Language Modeling with Mesh-
Tensorflow.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan,
Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. 2023.
Codet: Code generation with generated tests. In The
Eleventh International Conference on Learning Rep-
resentations.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, et al. 2021. Evaluating large lan-
guage models trained on code. arXiv preprint
arXiv:2107.03374.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio
César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo
de Rosa, Olli Saarikivi, Adil Salim, Shital Shah,
Harkirat Singh Behl, Xin Wang, Sébastien Bubeck,
Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee, and
Yuanzhi Li. 2023. Textbooks are all you need.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, and Jacob
Steinhardt. 2021. Measuring coding challenge com-
petence with APPS. In Proceedings of the Neural
Information Processing Systems Track on Datasets
and Benchmarks 1, NeurIPS Datasets and Bench-
marks 2021, December 2021, virtual.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text de-
generation. In International Conference on Learning
Representations.

789

http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2108.07732
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://openreview.net/forum?id=ktrw68Cmu9c
http://arxiv.org/abs/2306.11644
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH

Jeevana Priya Inala, Chenglong Wang, Mei Yang, An-
dres Codas, Mark Encarnación, Shuvendu K Lahiri,
Madanlal Musuvathi, and Jianfeng Gao. 2022. Fault-
aware neural code rankers. In Advances in Neural
Information Processing Systems.

Xue Jiang, Yihong Dong, Lecheng Wang, Qiwei Shang,
and Ge Li. 2023. Self-planning code genera-
tion with large language model. arXiv preprint
arXiv:2303.06689.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio
Savarese, and Steven Hoi. 2022. CodeRL: Master-
ing code generation through pretrained models and
deep reinforcement learning. In Advances in Neural
Information Processing Systems.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim,
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo,
Thomas Wang, Olivier Dehaene, Mishig Davaadorj,
Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko,
Nicolas Gontier, Nicholas Meade, Armel Zebaze,
Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu,
Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo
Wang, Rudra Murthy, Jason Stillerman, Siva Sankalp
Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey,
Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya,
Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo
Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel
Romero, Tony Lee, Nadav Timor, Jennifer Ding,
Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri
Dao, Mayank Mishra, Alex Gu, Jennifer Robinson,
Carolyn Jane Anderson, Brendan Dolan-Gavitt, Dan-
ish Contractor, Siva Reddy, Daniel Fried, Dzmitry
Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis,
Sean Hughes, Thomas Wolf, Arjun Guha, Leandro
von Werra, and Harm de Vries. 2023. Starcoder: may
the source be with you!

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,
Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago,
et al. 2022. Competition-level code generation with
alphacode. Science, 378(6624):1092–1097.

Ximing Lu, Sean Welleck, Peter West, Liwei Jiang,
Jungo Kasai, Daniel Khashabi, Ronan Le Bras, Lian-
hui Qin, Youngjae Yu, Rowan Zellers, Noah A. Smith,
and Yejin Choi. 2022. NeuroLogic a*esque decoding:
Constrained text generation with lookahead heuris-
tics. In Proceedings of the 2022 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 780–799, Seattle, United States. Associa-
tion for Computational Linguistics.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2023. Codegen: An open large language
model for code with multi-turn program synthesis.
In International Conference on Learning Representa-
tions.

OpenAI. 2022. Chatgpt: Optimizing language models
for dialogue. openai.

OpenAI. 2023. Gpt-4 technical report.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu,
Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio
Blanco, and Shuai Ma. 2020. Codebleu: a method
for automatic evaluation of code synthesis. arXiv
preprint arXiv:2009.10297.

Freda Shi, Daniel Fried, Marjan Ghazvininejad, Luke
Zettlemoyer, and Sida I. Wang. 2022. Natural lan-
guage to code translation with execution. In Proceed-
ings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pages 3533–3546,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2023. Re-
flexion: Language agents with verbal reinforcement
learning. In Advances in Neural Information Pro-
cessing Systems.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. In Proceedings of the 57th
Conference of the Association for Computational Lin-
guistics, ACL 2019, Florence, Italy, July 28- August
2, 2019, Volume 1: Long Papers, pages 3645–3650.
Association for Computational Linguistics.

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-
6B: A 6 Billion Parameter Autoregressive Lan-
guage Model. https://github.com/kingoflolz/
mesh-transformer-jax.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare,
Nghi DQ Bui, Junnan Li, and Steven CH Hoi. 2023.
Codet5+: Open code large language models for
code understanding and generation. arXiv preprint
arXiv:2305.07922.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H.
Hoi. 2021. CodeT5: Identifier-aware unified pre-
trained encoder-decoder models for code understand-
ing and generation. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 8696–8708, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Kexun Zhang, Danqing Wang, Jingtao Xia,
William Yang Wang, and Lei Li. 2023. Algo:
Synthesizing algorithmic programs with generated
oracle verifiers. arXiv preprint arXiv:2305.14591.

790

https://openreview.net/forum?id=LtJMqnbslJe
https://openreview.net/forum?id=LtJMqnbslJe
https://openreview.net/forum?id=WaGvb7OzySA
https://openreview.net/forum?id=WaGvb7OzySA
https://openreview.net/forum?id=WaGvb7OzySA
http://arxiv.org/abs/2305.06161
http://arxiv.org/abs/2305.06161
https://doi.org/10.18653/v1/2022.naacl-main.57
https://doi.org/10.18653/v1/2022.naacl-main.57
https://doi.org/10.18653/v1/2022.naacl-main.57
https://openreview.net/forum?id=iaYcJKpY2B_
https://openreview.net/forum?id=iaYcJKpY2B_
http://arxiv.org/abs/2303.08774
https://aclanthology.org/2022.emnlp-main.231
https://aclanthology.org/2022.emnlp-main.231
https://doi.org/10.18653/v1/p19-1355
https://doi.org/10.18653/v1/p19-1355
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685

A Implementation Detail

Solvability Estimation. To check syntax errors,
we use the built-in compiler function compile in
Python 3.9.12. The error ratio threshold TE is set
to 0.7, and the skip parameter for representative-
ness N is set to 10. We set the high/low priority
value h and l as 1 and 0.1. For CodeContests, we
generate 10 code samples per problem in the val-
idation set, then use the solved problems and the
corresponding correct code samples as Xpre and
Cpre. As HumanEval and MBPP3 have only test
data, we use each other as the log to build Xpre and
Cpre. To avoid mistakenly giving a low priority, we
conservatively set the top S as 80%.

Adaptivity. To check syntax errors in partial
code written in Python language, we use the same
built-in compile function as in solvability estima-
tion. Specifically, we validate partial code when its
current code line is finished. We determine whether
a line has been finished or not by checking if the
last character is a newline character ('\n')4. If the
partial code contains any syntax errors except for
EndOfFile, we immediately stop decoding and dis-
card the partial sample. If the decoding is success-
fully done, we conduct a final validation. This time,
as there is no further decoding, we discard all the
syntactically erroneous code including EndOfFile
errors.

3To compare with CODET (Chen et al., 2023), we use the
entire MBPP sanitized set as the test set.

4We do not check ‘\\n’ as the compiler regards the current
code line is not finished and is extended to the following line.

791

