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Abstract

In this paper, we provide an explicit interface
to formal semantics for Dependency Grammar,
based on Glue Semantics. Glue Semantics has
mostly been developed in the context of Lex-
ical Functional Grammar, which shares two
crucial assumptions with Dependency Gram-
mar: lexical integrity and allowance of non-
binary-branching syntactic structure. We show
how Glue can be adapted to the Dependency
Grammar setting and provide sample semantic
analyses of quantifier scope, control infinitives
and relative clauses.

1 Introduction

Although the name Dependency Grammar suggests
a theory covering everything that could reason-
ably be understood as grammar (often, these days,
phonology, morphology, syntax and semantics),
it is fair to say that the focus has to a large ex-
tent been on syntax. Nevertheless, there have been
some attempts to extend the idea to phonology (e.g.
Dresher and van der Hulst 1998) and semantics
(e.g. the tectogrammatical layer of Functional Gen-
erative Description: Sgall et al. 1986). In Section 2,
we argue that such frameworks lack some impor-
tant desiderata of semantic theories and suggest
that it is reasonable for Dependency Grammar to re-
main agnostic about semantics and instead attempt
to build an interface between dependency syntax
and established semantic theories. The main contri-
bution of the paper is to provide such an interface
to one influential semantic theory, compositional
(also known as formal or logical) semantics in the
tradition going back to Frege. We take inspiration
from the implementation described in Gotham and
Haug (2018), but the focus here is on how Glue
Semantics can provide a general interface to seman-
tics for Dependency Grammar, irrespective of this
concrete implementation that is tied to a particu-
lar meaning language (partial CDRT, Haug 2014)
and a particular version of Dependency Grammar

(Universal Dependencies, de Marneffe et al. 2021),
which deviates from most theoretical versions of
Dependency Grammar in various respects.

In Section 3 we briefly introduce compositional
semantics and the constraints it puts on the inter-
face to syntax. Then we introduce Glue Semantics
as a way of satisfying those constraints in Section 4.
Finally, in Section 5 we show how Glue Semantics
can be applied to dependency syntax. Section 6
concludes.

2 Previous work

The fundamental concept of Dependency Gram-
mar is of course dependencies. But these are in
themselves nothing but asymmetric, binary rela-
tions as we find them in many domains. For exam-
ple, a phrase structure tree can be defined in terms
of two such relations, dominance and precedence.
The characteristic feature of dependency syntax is
therefore not just that it is based on dependencies,
but that those dependencies are taken to hold be-
tween words.1 This can be seen as a strong version
of the Lexical Integrity Hypothesis (Bresnan and
Mchombo, 1995): not only are words atomic with
respect to syntax, but they are the only atoms of
syntax.

One intuitive way to extend dependency syntax
to semantics, therefore, is to find an analogue to
words on which to build semantic graphs. Indeed,
Koller et al. (2019) provide a useful classification
of graph-based semantic representations by the de-
gree to which the nodes of the graph are anchored
in the words of the sentence: some representations,
such as CCG word-word dependencies (Hocken-
maier and Steedman, 2007), just use the words
as nodes; others, such as Prague Tectogrammati-
cal Graphs (Zeman and Hajic, 2020) allow for a
looser correspondence where nodes can also rep-

1Obviously we can also define notions derived from word-
word dependencies, such as the transitive closure of the domi-
nance relation, yielding something similar to constituents.
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resent elided material (e.g. pro-drop, ellipsis), or
copied material (e.g. words that are interpreted
twice in a coordination structure); and yet others,
most prominently Abstract Meaning Representa-
tions (Banarescu et al., 2013) are fully unanchored:
there is no explicit correspondence between words
and nodes.

While such frameworks have shown themselves
useful for various computational tasks, including
natural language inference, we argue that they cur-
rently lack two features that a semantic theory
should have: compositionality and an explicit proof
theory.

By compositionality we mean that, given a repre-
sentation of the syntax (in our case, a dependency
graph) and of the lexical items in the sentence, it
should be possible to enumerate the possible se-
mantic representations of the sentence. This is a
weak notion of compositionality: we do not require
that there are interpretations of parts of the depen-
dency graph, nor that syntax and lexicon determine
a unique meaning, only that there is some form
of systematicity in the mapping between complete
syntactic and semantic representations. Notice that
this is a theoretical desideratum rather than a prac-
tical one: given a large dataset of hand-annotated
semantic representations, it might make more sense
to train a semantic parser directly rather than going
via syntax, and this is in fact a common approach
in natural language inference these days. Never-
theless it is clear that if we want to construct a
semantic theory for Dependency Grammar, the se-
mantic representations must be constrained by the
syntactic representations we assume if the theory
is to have any empirical bite. And yet not all graph-
based semantic theories have this: Abstract Mean-
ing Representation, for example, is hand-annotated
without regard to any particular syntactic repre-
sentation. While this does not make it less useful,
it does make it hard to use as a semantic theory
for Dependency Grammar. The Prague tectogram-
matical layer, on the other hand, is a graph-based
semantic representation that is explicitly linked to
a surface dependency syntax representation, the
analytical layer. Similarly, Meaning-Text Theory
develops an interface between syntax and a graph-
based semantic representation (see Kahane 2003
for an introduction).

By explicit proof theory, we mean that the se-
mantic representations must be able to answer ques-
tions like “if a set of sentences P is true, does it

follow that sentence h is true?”. We take the abil-
ity to answer such questions to be a core property
of human reasoning. Again, this is a theoretical
desideratum: in natural language inference tasks,
we are typically only given a few explicit sentences
p1, p2 from P , whereas an inference to h relies on
implicit propositions p3, . . . , pn, which could be
either just world knowledge or somehow be made
salient/likely by the explicit premises p1, p2. In this
situation, rather than trying to enumerate the possi-
ble background knowledge on which an inference
may draw, it may easier to predict directly whether
p1 and p2 make h likely. But this cannot be the
basis for a semantic theory.

We are not aware of any graph-based semantic
frameworks that provide a sound and complete in-
ference system for computing entailments, though
some come close. Graphical Knowledge Repre-
sentation (Kalouli and Crouch, 2018; Crouch and
Kalouli, 2018) explicitly views "graphs as first-
class semantic objects that should be directly ma-
nipulated in reasoning and other forms of semantic
processing". The semantic graphs of Meaning-Text
theory are more directed towards tasks like para-
phrasing rather than logical deduction, but Kahane
(2005) explores the connection to logic.

Indeed, basing semantic representations on logic
is one straightforward way to provide a proof the-
ory. This is a long tradition reflected in many theo-
ries such as Montague’s intensional logic (Mon-
tague, 1973), Discourse Representation Theory
(Kamp and Reyle, 1993) and Minimal Recursion
Semantics (Copestake et al., 2005). Linking depen-
dency syntax to this line of work therefore provides
the advantage of being able to connect to a large
body of semantic work. But to do this, we must
solve the compositionality problem: how do we sys-
tematically build formulae in some logic-based for-
malism from a dependency graph? To our knowl-
edge, Dependency Tree Semantics (Robaldo, 2006)
was the first attempt to provide such an interface
between dependency syntax and formal semantics.
However, Robaldo only deals with quantifiers and
quantifier scope ambiguity, and it is not obvious
how to generalize his work to other phenomena.
The aim of this paper, then, is to provide a general
solution to the compositionality problem which
would allow dependency syntacticians to connect
their syntactic analyses to existing work in formal
semantics, or indeed to develop their own semantic
analyses in parallel with syntax.
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3 Formal semantics and the
syntax-semantics interface

As we pointed out above, basing semantic theory
on logic provides an immediate proof theory. In-
deed, the very development of formal logic from
Aristotle onwards can be seen as a way to provide
a proof theory for natural language. The real prob-
lem, then, is compositionality: how do we system-
atically constrain the logical formulae that are licit
translations of a given natural language sentence?
One influential way to achieve this is to provide
meanings for lexical items and let the syntactic
structure of the sentence guide how we assemble
them into a meaning for the whole. This is known
as Frege’s principle of compositionality (although
it is not clear that Frege endorsed it in this form):
the meaning of a (syntactically complex) whole is
a function only of the meanings of its (syntactic)
parts together with the manner in which these parts
were combined. This is a much stronger notion of
compositionality than what we saw in Section 2,
but it has guided much previous work in formal
semantics.

One immediate problem is that it is not always
clear what the meanings of the parts should be.
For example, it seems intuitive that the mean-
ing of Every man loves Chris is something like
∀x.man(x) → love(x, c). Here it seems obvious
that the verb loves contributes the predicate love,
the word man contributes the predicate man , and
the name Chris provides the constant c; but that
then leaves the determiner every to contribute the
rest of the meaning, i.e. the quantifier ∀x and the
ocurrences of x that it binds, as well as the implica-
tion →, although these parts are scattered around
in the sentence in a way which makes it unclear
how we can provide a systematic procedure for
combining the meanings.

Yet Montague’s (1973) insight was that the
lambda calculus can provide such a systematic
procedure. Intuitively, the scattered meaning of
every can be represented as ∀x.? →?, where the
two question marks represent predicates containing
x. In the lambda calculus we can represent this as
λP.λQ.∀x.P (x) → Q(x). This means that every
is a function that takes two predicates and says that
for any x, if the first predicate (the noun P that
every combines with) applies, then the second pred-
icate (the verb that every P is an argument of) also
applies.

Montague’s system based on the lambda calcu-

lus achieves compositionality, but it imposes strong
constraints on the syntax-semantics interface that
are problematic from the point of view of Depen-
dency Grammar.

First, the homomorphism problem: composition-
ality in the strict sense requires that syntax and
lexicon jointly determine meaning: meaning dif-
ferences between two sentences must be attributed
either to the parts of the sentences (i.e. the lexicon),
or the manner in which they are combined (i.e., the
syntax). Therefore, if a sentence with no ambigu-
ous words is semantically ambiguous, that differ-
ence must necessarily be reflected in the syntax.
This is the case, for example, with different quan-
tifier scopings. More generally, homomorphism
requires that the syntactic tree is strictly binary
branching, which is typically not the case in depen-
dency structures. For example, the lambda calculus
requires that a verb combine with its subject and
object in a particular order (it must combine with
one before the other), whereas Dependency Gram-
mars typically assume no hierarchical difference
between subject and object, with both being sister
nodes under the verb.

One way to go would be to use the syntactic
function to distinguish the two, for example by
replicating the view of most phrase structure gram-
mars that the object bears a closer relation to the
verb than the subject. This is the approach taken
in UDepLambda (Reddy et al., 2017), where a syn-
tactic function hierarchy is used to binarize the
dependency tree before it is fed to the composition
process. But given that many languages exhibit
subject-object scope ambiguities, it makes more
sense to interpret the flat dependency tree as an
underspecified representation, which entails giving
up on the view that syntax and lexicon determine
meaning.

Second, lexical integrity is another problem. It
is often natural that single lexical items provide
two or more different meanings that do not directly
combine with each other, but interact with other
elements of the sentence in complex ways. For
example, the verb introduces the basic predicate-
argument structure, but in many languages also
temporal and modal meanings, and we cannot nec-
essarily just combine these first: modal meanings,
for example, may need to take scope over the argu-
ments of the verb. If these composition patterns are
to be directly determined by the syntax, we need to
assume abstract syntactic heads for modality, tense
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etc. This is indeed often done in Chomskyan ap-
proaches, but is alien to dependency syntax, which
normally assumes lexical integrity, i.e. that words
are the atoms of the syntactic structure.

In sum, “standard” formal semantics in the tradi-
tion after Montague relies on strictly binary syntax
and syntactic decomposition of lexical items. This
makes it hard to adapt to Dependency Grammar.
But fortunately these problems have been tackled
within the tradition of another lexicalist theory of
syntax that also does not enforce binary syntax,
namely Lexical Functional Grammar (Kaplan and
Bresnan, 1982; Dalrymple et al., 2019), via the the-
ory of the syntax-semantics interface called Glue
Semantics (Glue: Dalrymple et al., 1993; Asudeh,
2022).

4 Basic Glue Semantics

The semantic building blocks in Glue are called
meaning constructors; these are expressions con-
sisting of two parts: a meaning, given in the lambda
calculus over some formal language; and a for-
mula of another logic, so-called linear logic (Girard,
1987), which constrains but does not necessarily
uniquely determine the valid patterns of combina-
tion between meaning constructors. Semantic com-
position is logical deduction, driven by the linear
logic parts of meaning constructors.

Before we get into the technical details of how
this works, let us consider how it helps with the
problems just described. Treating semantic com-
position as logical deduction helps to loosen the
conection between meaning composition and syn-
tax: provided the logic we use has the property of
commutativity, then the order in which we com-
bine meanings is driven wholly by the types of
the meanings themselves, and not by the order the
words they correspond to happen to occur in the
string. Since we therefore no longer require the
syntax itself to impose a strict order of combina-
tion, it also frees us from the obligation to limit our
syntactic trees to binary branching ones. Finally,
it means that semantic ambiguities, such as scope
ambiguities, need not correspond to syntactic am-
biguities: since the order of combination in syntax
and semantics can vary independently, there can
be semantic ambiguities which have no syntactic
correlate. We will present an explicit example of
how this works shortly.

Linear logic is chosen as the logic of semantic
combination because it has the property of resource

sensitivity: premises cannot be reused or discarded
in linear logic, unlike in classical logic. This is
because linear logic lacks the structural rules of
Weakening and Contraction (Restall, 2000). If a
logic contains the rule of Weakening, then premises
can be freely added; this is shown schematically be-
low, where A and B represent individual premises,
and Γ represents a set of premises:

Γ ⊢ B
Γ, A ⊢ B

That is, if we can prove B from the set of premises
in Γ, we can also prove it from Γ and some other
premise A. If a logic contains the rule of Contrac-
tion, extra occurences of a premise can be freely
discarded:

Γ, A,A ⊢ B

Γ, A ⊢ B

That is, if we can prove B from Γ and two instances
of A, we can also prove it from Γ and just one
instance of A.

By removing these rules, a logic becomes re-
source sensitive in the sense that premises are re-
sources that must be kept track of and accounted
for: they can be “used up” in a way that is not
the case in classical logic. This is evident in the
behaviour of implication, for example. If we ap-
ply the rule of modus ponens in classical logic, we
can prove not only the consequent of the condi-
tional, but also retain both of the premises in the
conclusion if we so wish:

A,A → B ⊢ B
⊢ A ∧ (A → B) ∧B

By contrast, in linear logic, modus ponens uses
up both premises in proving the consequent, so
that the consequent alone is left over (⊸ is linear
implication, and ⊗ is multiplicative conjunction,
which for present purposes can be thought of as the
linear logic equivalent of ∧):

A,A ⊸ B ⊢ B
̸⊢ A⊗ (A ⊸ B)⊗B

All of this means that, as Dalrymple et al. (1999,
15) put it, premises in linear logic “are not context-
independent assertions that may be used or not”, as
in classical logic, but rather “occurrences of infor-
mation which are generated and used exactly once”
(emphasis in original). This seems to be a good
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Application : implication elimination

f : A ⊸ B a : A ⊸E
f(a) : B

Abstraction : implication introduction

[x1 : A]1

f : B ⊸I,1
λx.f : A ⊸ B

Figure 1: Correspondences between operations in the
lambda calculus and proof rules in linear logic

fit with how linguistic meaning contributions be-
have, since they too are resource sensitive (Asudeh,
2012, ch. 5). For example, the sentence Naomi
loves James cannot have the meaning love(n,n)
(i.e. ‘Naomi loves herself’), where we ignore the
meaning of James and use the meaning of Naomi
twice.

Returning to Glue Semantics, the linear logic
formulae of the meaning constructors contributed
by the words of a sentence (and sometimes also by
structural properties of the sentence) are premises
which must all be used up in constructing a proof
of the linear logic formula corresponding to the
sentence as a whole. Thanks to the correspondence
between rules of logical deduction and operations
in the lambda calculus known as the Curry-Howard
isomorphism (Curry and Feys, 1958; Howard,
1980), each step in this proof also provides instruc-
tions for what to do with the meaning expression
that forms the other part of a meaning constructor,
thus providing us with the compositional semantics
we are looking for.

The two most important rules of linear logic
which we make use of are those of implication
elimination (i.e. modus ponens) and implication
introduction (i.e. hypothetical reasoning). In the
lambda calculus, these correspond to the opera-
tions of function application and lambda abstrac-
tion, respectively, as shown in Figure 1. In these
proofs, meaning constructors are written with a
colon separating the meaning expression on the
left-hand side and the linear logic formula on the
right-hand side. As mentioned above, the symbol
⊸ represents linear implication. Figure 2 gives
a more linguistic example, combining a transitive
verb with its two arguments. We use the follow-
ing conventions when writing proofs: unannotated

λx.λy.love(x , y) : A ⊸ B ⊸ C n : A

λy.love(n, y) : B ⊸ C j : B

love(n, j) : C

Figure 2: Glue proof for Naomi loves James

proof steps correspond to implication elimination,
and β-reduction is performed silently. For now, we
continue to use arbitrary labels for the atoms in the
linear logic formulae; in Section 5 we will see how
these can be connected (or ‘glued’) to the syntax.

As mentioned, one of the strengths of the logical
deduction approach to semantic composition is that
scope ambiguities need not correspond to syntactic
ambiguities. Instead, they emerge from the fact
that distinct proofs can (sometimes) be obtained
from the same set of premises. Figure 3 shows an
example of this phenomenon for the scopally am-
biguous sentence Someone loves everyone. From
the same three lexical premises (shown in labelled
boxes), we can obtain two distinct proofs, via hy-
pothetical reasoning, where the quantifiers scope
in different orders: on top, we see the proof of
the surface scope reading (‘there is a person who
loves everyone’), where everyone is applied before
someone, so that the latter scopes over the former;
below, we see the inverse scope reading (‘everyone
is loved by someone’), where the quantifiers are
applied in the opposite order. Both possibilities are
afforded by the linear logic, without requiring dif-
ferent premises to begin with, which means that the
same syntactic analysis can serve for both readings.

5 Application to Dependency Grammar

The next question that arises is: how do we connect
the linear logic formulae in meaning constructors
to such a syntactic analysis, specifically in a Depen-
dency Grammar setting? In the previous section,
we simply used atomic formulae like A and B, but
we cannot assume that the lexical entries of e.g. a
verb and its subject know each other’s types abso-
lutely. Instead, the formulae must be made relative,
and based on the syntactic structure.

There are several ways this can be done: here
we adopt so-called “first-order Glue” (Kokkonidis,
2007). As the name says, this is a first-order logic,
where the predicates are type-constructors and the
terms are nodes of the syntactic trees. By conven-
tion, we use type constructors that are mnemonic
for the corresponding Montagovian type on the
lambda calculus side, so that e.g. E takes a tree
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loves
λx.λy.love(x , y) :
A ⊸ B ⊸ C

[x1 : A]1

λy.love(x1, y) :
B ⊸ C

everyone
λP.∀z.person(z) → P (z) :
(B ⊸ C) ⊸ C

∀z.person(z) → love(x1, z) :
C ⊸I,1
λx.∀z.person(z) → love(x, z) :
A ⊸ C

someone
λP.∃x.person(x) ∧ P (x) :
(A ⊸ C) ⊸ C

∃x.person(x) ∧ (∀z.person(z) → love(z, x)) :
C

loves
λx.λy.love(x , y) :
A ⊸ B ⊸ C

[x1 : A]1

λy.love(a, y) :
B ⊸ C

[x2 : B]2

love(x1,x2) :
C ⊸I,1
λx.love(x,x2) :
A ⊸ C

someone
λP.∃x.person(x) ∧ P (x) :
(A ⊸ C) ⊸ C

∃x.person(x) ∧ love(x,x2) :
C ⊸I,2
λy.∃x.person(x) ∧ love(x, y) :
B ⊸ C

everyone
λP.∀z.person(z) → P (z) :
(B ⊸ C) ⊸ C

∀z.person(z) → (∃x.person(x) ∧ love(x, z)) :
C

Figure 3: Glue proofs for the two readings of Someone loves everyone

node and constructs a linear logic type that cor-
responds to something of type e on the meaning
side. The type of a noun, then, can be given as
E(∗̂) ⊸ T (∗̂), where ∗̂ refers to the node that the
noun occupies.

In order to make this work, it is not enough to
be able to refer to the word’s own node with ∗̂; we
must also be able to refer to the syntactic context
to make sure that entries “fit together”. Here we
exploit the fact that sets of paths through the depen-
dency tree can be expressed through regular expres-
sions over the alphabet L ∪ {↑}, where L is the set
of syntactic labels and ↑ refers to the mother node.
For convenience we also use ∗̂ as a start symbol.
For example, assuming standard labels, ∗̂ SUBJ in
a lexical entry refers to that node’s subject daugh-
ter, ∗̂ OBJ to the object daughter, ∗̂ (SUBJ|OBJ)
to the set of the subject and object daughter, and
∗̂ COMP∗ SUBJ to the set of SUBJ daughters embed-
ded under zero or more COMP daughters.

For the case of the transitive sentence involving
quantifiers that we saw in Section 4, we can use
the full lexical entries in Figure 4. The terms of the
linear logic (i.e. the arguments to the type construc-

tors E and T ) are paths through the tree. Given a
syntactic tree with numbered nodes, they can be in-
stantiated to numbers. Assume that someone, loves
and everyone are numbered 1, 2, 3 and that 1 and 3
are SUBJ and OBJ daughters of 2 respectively. Then
the type of someone becomes (E(1) ⊸ T (2)) ⊸
T (2), loves gets the type E(1) ⊸ E(2) ⊸ T (2)
and everyone (E(3) ⊸ T (2)) ⊸ T (2). It is easily
seen that these types are isomorphic to the atomic
types we used in Figure 3 and so the same proofs
go through.

This technique can be extended to deal with ele-
ments that are semantically active but not present
in the syntactic structure. First, consider the case
of pro-drop. Many dependency grammarians take
the view that pro-dropped subjects should not be
represented in the syntax, but they are obviously se-
mantically active. To deal with this, we allow paths
in lexical entries to be constructive, i.e. if a path
does not lead to a node in the tree, we construct
the path, making sure we pick unused numbers for
the implicit nodes we need. If a second path refer-
ences the same node that did not exist in the syntax,
we use this number to reference it. To avoid infi-
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someone λP.∃x.person(x) ∧ P (x) : (E(∗̂) ⊸ T (↑)) ⊸ T (↑)
loves λx.λy.love(x, y) : E(∗̂ SUBJ) ⊸ E(∗̂ OBJ) ⊸ T (∗̂)
everyone λP.∀x.person(x) → P (x) : (E(∗̂) ⊸ T (↑)) ⊸ T (↑)

Figure 4: Lexical entries for Someone loves everyone

I1 persuaded2 him3 to4 leave5

ROOT

SUBJ OBJ

XCOMP

MARK

Figure 5: Control infinitive

nite trees, path parts under the Kleene star are not
interpreted constructively.

When we allow constructive paths, we can deal
with pro-dropped subjects by assuming that all
verbs that require a subject also introduce a mean-
ing constructor of type E(∗̂ SUBJ) or its Montague
lift (E(∗̂ SUBJ) ⊸ T (∗̂ ↑)) ⊸ T (∗̂ ↑).2 The
meaning side will depend on the semantics for
anaphora that is adopted (if the pro-drop subject is
anaphoric, as is usually the case).

Let us now look at the slightly more complicated
example of control infinitives. These too have an
implicit subject position which must be represented
in the syntax, but which is often not made explicit
in a dependency syntax tree. We will see how Glue
Semantics makes it possible to nevertheless give a
semantic analysis.

A sample syntactic structure is given in Figure 5,
with lexical entries and the linear logic proof in
Figures 6–7. The fact that the object of persuade
is also interpreted as the subject of the infinitive is
encoded in the meaning of persuade by the fact that
the variable y occurs in both positions. Crucially,
the constructive interpretation of paths allows us to
identify E(∗̂ SUBJ) in the meaning constructor of
leave and (E(∗̂ XCOMP SUBJ) in the constructor
of persuade, even if leave has no subject in the
syntactic representation.

Finally, let us look at the more complicated ex-
ample of relative clauses. We first consider En-
glish relative clauses of the type the dog that they
thought we admired. Figure 8 show two ways of
analyzing such sentences that are found in the De-
pendency Grammar literature, differing in how that

2This meaning constructor can be optional, since it will
not be possible to construct a proof with it when there is also
an overt subject. Alternatively, the meaning constructor can
be introduced only when there is no overt subject.

is attached. The two dashed lines show the main
options: either it is attached as an object of admire,
or it is attached to think as a subordinator.

The first type of annotation makes explicit where
the gap inside the relative clause is. The second
does not; and if that is left out, there is in any case
no way of indicating where the gap is in a surface-
oriented dependency analysis. In settings such as
Gotham and Haug (2018), where no lexical infor-
mation is assumed, it is crucial to know where the
gap is, but in the present, theoretical Dependendcy
Grammar setting, we can assume we have access
to valency information telling us that admire takes
an object and think does not; therefore there is no
ambiguity in where the gap is.3

From a semantic point of view, the ordinary anal-
ysis of relative clauses in formal semantics, which
we follow here, is that they denote properties or,
extensionally speaking, sets. That is dog denotes
the set of dogs, that they thought we admired de-
notes the set of things that they thought we admired,
and dog that they thought we admired denotes the
intersection of these sets, i.e. the entities that are
dogs and that they thought we admired. The pre-
cise semantic analysis is not our agenda here, but
a reasonable interpretation of that they thought we
admired (simplifying away from tense and inten-
sionality) would be λx.think(a1, admire(s+, x))
where a1 is a free variable representing the anaphor
they and s+ is a constant referring to a group in-
cluding the speaker.

The lexical entries are given in Figure 9. Notice
that that is semantically vacuous (whether anal-
ysed as a subordinator or an object). When these
meanings are instantiated with the node numbers
from Figure 8, we can construct the proof in Fig-
ure 10. To save space we do not show how admire
and think combine with their subjects. Notice how
node 9 is introduced, since the dependency tree
has no object daughter of admire. This does not
imply any commitment to an empty category in the
syntax: the only role of this element is to provide
abstraction over the gap in the relative clause. This

3Although there can be ambiguity even with valency infor-
mation in case of verbs with several frames.
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I s : E(∗̂)
persuaded λx.λy.λP.persuade(x, y, P (y)) : E(∗̂ SUBJ) ⊸ E(∗̂ OBJ) ⊸

(E(∗̂ XCOMP SUBJ) ⊸ T (∗̂ XCOMP)) ⊸ T (∗̂)
him a1 : E(∗̂)
leave λx.admire(x) : E(∗̂ SUBJ) ⊸ T (∗̂)

Figure 6: Lexical entries for control infinitive

s : E(1) a1 : E(3)
λx.λy.λP.persuade(x, y, P (y)) :

E(1) ⊸ E(3) ⊸ (E(6) ⊸ T (5)) ⊸ T (2)

λP.persuade(s, a1, P (a1)) :
(E(6) ⊸ T (5)) ⊸ T (2)

λx.leave(x) :
E(6) ⊸ T (5)

persuade(s, a1, P (y)) : T (2)

Figure 7: Proof for control infinitive structure

The1 dog2 that3 they4 thought5 we6 admired7 barks8

ROOT

SUBJ

DET

RELCL

SUBJ SUBJ

COMP

OBJ

SUBORD

Figure 8: Two styles of relative clause annotation

they a1 : E(∗̂)
thought λx.λP.think(x, P ) : E(∗̂ SUBJ) ⊸ T (∗̂ COMP) ⊸ T (∗̂)
we s+ : E(∗̂)
admired λx.λy.admire(x, y) : E(∗̂ SUBJ) ⊸ E(∗̂ OBJ) ⊸ T (∗̂)
thought-RELCL λP.λQ.λx.P (x) ∧Q(x) : ∀ξ.(E(ξ) ⊸ T (∗̂)) ⊸ (E(↑) ⊸ T (↑)) ⊸ E(↑) ⊸ T (↑)

Figure 9: Lexical entries for sample relative clause

λy.admire(s+, y) : E(9) ⊸ T (7) [x1 : E(9)]1

admire(s+,x1) : T (7) λP.think(a1, P ) : T (7) ⊸ T (5)

think(a1, admire(s+,x1)) : T (5) ⊸I,1
λx.think(a1, admire(s+, x)) : E(9) ⊸ T (5)

Figure 10: Proof structure for the relative clause

is the crucial part of the proof in Figure 10: abstrac-
tion over the object of admire gives us the set of x
such that they think we admire x as the meaning of
the relative clause. The next step is to intersect this
meaning with the meaning of dog which has the
meaning constructor λx.dog(x) : E(2) ⊸ T (2).
The meaning constructor thought-RELCL from
Figure 9 will do this, though we do not show it in
the proof.

What we call thought-RELCL is different from
other meaning constructors in several ways. First,
it is a constructional meaning, i.e. it is not asso-
ciated with a lexical item alone, but triggered by
a syntactic configuration, in this case a verb that

bears the RELCL relation. To interpret the paths cor-
rectly, it must still be associated with a node in the
tree, in this case naturally the verb of the relative
clause. However, we cannot simply precombine
thought-RELCL and the meaning of thought be-
cause the verb must combine with its arguments
first. Thus, Glue Semantics allows us to split the
meaning contributions at the interface to semantics
without giving up on lexical integrity in the syntax.

Second, we see that this meaning constructor
uses quantification over possible gaps, i.e. it re-
quires some type E resource to be missing in the
relative clause: of course, we only get a success-
ful proof if this is instantiated to the introduced
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index 9 of the actually missing element, the object
of admire. In this way, we can construct a proper
meaning for relative clauses without a commitment
to empty categories in the syntax. Another virtue
of this approach is that we can restrict relativization
sites if needed. In Figure 9 we use universal quan-
tification, which allows all kinds of gaps, but as we
mentioned above, it is also possible to use regular
expressions to express non-deterministic paths. For
example, if the language we analyze only allows
e.g. relativization on local subjects and objects, we
can use E(∗̂ (SUBJ|OBJ)), and if the language al-
lows non-local relativization, but only on subjects
and objects, we can use E(∗̂ COMP∗ (SUBJ|OBJ)).
Whether such an interface restriction on relativiza-
tion is preferrable to a purely syntactic one is an
empirical question, but given the widespread avoid-
ance of empty syntactic categories in Dependency
Grammar, this approach at least offers an alterna-
tive.

6 Conclusion

We have seen how Glue Semantics lets us connect
dependency syntax analyses to formal semantics by
drawing on a framework that is quite close in spirit
to Dependency Grammar, namely Lexical Func-
tional Grammar. In particular, both frameworks
reject the adoption of abstract syntactic analysis
merely for the purpose of syntax-semantics homo-
morphism; and both frameworks assume lexical
integrity and therefore reject decomposing lexical
items in the syntax. Glue Semantics gives us fine-
grained control over the syntax-semantics inter-
face, allowing us to achieve the effects of empty
categories and lexical decomposition there while
preserving the surface-oriented syntactic analyses
characteristic of both frameworks.

The most immediate advantage for Dependency
Grammar is that this opens the door to the large lit-
erature in formal semantics. We have seen how
we can analyse quantifier scope, control infini-
tives, and constructions with gaps, such as relative
clauses. This is valuable in itself and can of course
be extended to numerous other constructions.

But there is a reason why the interface to seman-
tics is particularly important to Dependency Gram-
mar. One way of motivating the surface-oriented
structures that are often adopted in Dependency
Grammar is by delegating to semantics the work
that abstract syntax does in other frameworks. But
if this is to go beyond mere hand-waving, it is im-

portant to accompany such claims with explicit
analysis. We hope this paper has shown one way
this can be done.
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