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Abstract

Language models that are trained on the next-
word prediction task have been shown to accu-
rately model human behavior in word predic-
tion and reading speed. In contrast with these
findings, we present a scenario in which the
performance of humans and LMs diverges. We
collected a dataset of human next-word pre-
dictions for five stimuli that are formed by re-
peating spans of text. Human and GPT-2 LM
predictions are strongly aligned in the first pre-
sentation of a text span, but their performance
quickly diverges when memory (or in-context
learning) begins to play a role. We traced the
cause of this divergence to specific attention
heads in a middle layer. Adding a power-law
recency bias to these attention heads yielded
a model that performs much more similarly to
humans. We hope that this scenario will spur
future work in bringing LMs closer to human
behavior.1

1 Introduction

Transformer-based language models (LMs) are neu-
ral networks that are trained to predict upcoming
words from their preceding context. These models
flexibly retrieve and combine information across
a context that might span thousands of words, en-
abling them to learn from in-context examples (Dai
et al., 2022; Xie et al., 2022; Olsson et al., 2022),
tell coherent stories (Lee et al., 2022), and perform
many other advanced language tasks (Tiedemann
and Thottingal, 2020; Brown et al., 2020).

These abilities far surpass any previous compu-
tational models or linguistic theories (Yang and
Piantadosi, 2022), leading many to use LMs as
models of human cognition. For example, LM
surprisal—a measure of how well it can predict the
next word—has been found to be highly correlated
with both how long humans spend reading each

1Data and code are publicly available at: https://
github.com/HuthLab/lm-repeating-text

word (Goodkind and Bicknell, 2018; Hao et al.,
2020; Wilcox et al., 2020) and the accuracy of hu-
man next-word predictions (Goldstein et al., 2021;
Jacobs and McCarthy, 2020). These results suggest
that LMs and humans might be using similar mech-
anisms to structure and recall information from
memory. However, these seeming parallels have
not gone unchallenged. Oh and Schuler (2023),
for example, showed that LM surprisal and human
reading time become decorrelated as models grow
in size and power, suggesting a more superficial
relationship than previously thought.

In this work we test whether apparent similari-
ties between LM and human next-word prediction
accuracy reflect true similarities in memory mecha-
nisms. To accomplish this we introduce a new task
that combines memory with next-word prediction
using repeating natural text stimuli. Comparing
human behavioral performance with an LM, we
found that LM surprisal decorrelates from human
predictions in this scenario. While human perfor-
mance improves modestly with each repetition, the
transformer-based LM GPT-2 (Radford et al., 2019)
reaches near-perfect performance after just one pre-
sentation. To better understand this behavior, we
examined the patterns of memory access (via atten-
tion) in the model, revealing how the model solves
this task. We then showed that the model can be
made to perform more like the humans by adjusting
these patterns to mimic human memory (Donkin
and Nosofsky, 2012).

This work demonstrates an important way in
which human and LM memory mechanisms di-
verge, casting doubt on the use of existing LMs as
a model of human cognition. However, the frame-
work we developed for making the model more
human-like also provides a potential way forward.
Directly optimizing LMs for human-like behavior—
including but not limited to memory tasks like that
used here—could lead to much better computa-
tional models of human cognition and memory. It

https://github.com/HuthLab/lm-repeating-text
https://github.com/HuthLab/lm-repeating-text
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is also possible that investigating the relationship
between human and model memory could provide
guidance for developing better, more efficient neu-
ral network models.

2 Related works

Human performance on recall tasks, like the experi-
ment we propose here, is primarily limited by short-
term memory (Baddeley, 1992). In these tasks, hu-
mans show both recency biases (i.e. better recall
for the most recent items) and primacy biases (bet-
ter for the first items) (Tzeng, 1973; Jefferies et al.,
2004). Recall tasks often show repetition effects;
presenting a stimulus multiple times successively
decreases the recall error rate (Kintsch, 1965; Bad-
deley and Ecob, 1973; Amlund et al., 1986). Some
have suggested a link between language deficits
and the number of presentations needed to reach
perfect verbatim sentence recall (Miles et al., 2006).
Many studies have also shown that human memory
decay follows a power law (Donkin and Nosofsky,
2012), where, for example, the number of items
accurately recalled from a list will decrease over
time t proportional to t−d for some constant decay
rate d.

Transformers neural networks, in contrast with
humans, can attend to exact token identities hun-
dreds or thousands of tokens in the past at no ad-
ditional cost, subject only to the context length.
One limitation of the standard attention implemen-
tation is that memory and runtime scale quadrati-
cally with the number of tokens, making longer in-
puts prohibitively expensive. Recently, significant
work has gone into extending the maximum con-
text length for transformers while avoiding these
computational issues. Transformer-XL caches hid-
den states to allow attention to tokens beyond the
immediate input (Dai et al., 2019). FlashAttention
is an optimized attention algorithm that exploits the
hardware architecture to train models with context
lengths up to 64K tokens (Dao et al., 2022). The
ALiBi method (Press et al., 2022) replaces sinu-
soidal positional embeddings with a recency bias
on the attention scores, such that closer query-key
pairs are weighted higher than more distant pairs.
Using ALiBi necessitates retraining a model with
the new attention mechanism, though once trained
it can generalize to longer lengths.

3 Human behavioral study

We first designed an experiment to evaluate hu-
man memory in a next-word prediction task with
repeated word sequences. We then compared the
humans against an LM on the same stimuli to eval-
uate the LM’s memory.

3.1 Setup for humans

We collected human next-word predictions on re-
peating stimuli from a corpus of spoken story tran-
scripts (LeBel et al., 2023). To construct the stim-
uli, we chose five phrase-aligned spans of between
40 and 100 words (without punctuation) from the
corpus and repeated each span between one and
three times, for a total of between 2 and 4 presen-
tations of the span. One span was repeated once;
three spans were repeated twice; and one span was
repeated three times. The stimuli can be seen in
Section A in the Appendix. Subjects were pre-
sented words one-at-a-time via rapid serial visual
presentation (RSVP; Potter, 1984) at a fixed dura-
tion of 400ms per word, with 1.5 s pauses at the
end of each presentation. At predetermined mo-
ments, subjects were prompted to predict the next
word given the previous 10 words. Prompts ap-
peared roughly every 13 words, giving the subjects
time to process the story naturally between inter-
ruptions. Figure 1 shows the presentation of the
stimuli and an example prompt screen.

To ensure that we could measure memory ef-
fects robustly, 50% of a given subject’s prompts
were at the same position in all presentations of a
stimulus, while the other 50% were only prompted
on a single presentation. Within each presentation,
prompts were selected by taking a weighted ran-
dom sample of the words to provide a balanced se-
lection of low- and high-frequency words. Weights
were calculated as the average of two values: the
complement of the unigram probability and the re-
ciprocal of the unigram probability. Both weights
were normalized to sum over words to 1 before be-
ing averaged. Subjects were told at the beginning
of the experiment that the word sequences will re-
peat, but were not told where. Human performance
Phuman(correct) was calculated as the proportion
of participants whose responses exactly match the
ground-truth next word, ignoring case and leading
or trailing whitespace.

In total, 100 online participants were recruited
through Prolific (www.prolific.co). Subjects
were required to be fluent in English and were given

www.prolific.co
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Given the context:

Predict the next word:

everything waiting for 

the light to change 

we're at this

we’re at this farmhouse and it was like a scene out of a big buffet and everything [...] 
waiting for the light to change we’re at this farmhouse and it was like a scene out of a 
big buffet and everything [...] waiting for the light to change we're at this farmhouse and 
it was like a scene out of a big buffet and everything [...] waiting for the light to change

Presentation 2

10 s

Time

thisatwe're
change

tolight
the

farmhouse
thisatwe're

1000 ms 400 ms 400 ms 400 ms1.9 s

Presentation 1

Figure 1: Paradigm for collecting human next-word predictions. A span of text is presented three times without
break. Each presentation of the stimulus is denoted with a different color. Subjects are shown words one-at-a-time
with RSVP. When prompted to predict the next word, subjects are shown the previous 10 words and are given 10
seconds to type their prediction. After submitting a response, presentation of the stimulus resumes. If incorrect, they
are first shown the correct word and must acknowledge before continuing.

performance-based bonus compensation. The on-
line experiment was constructed using the Gorilla
Experiment Builder (www.gorilla.sc). The
experimental protocol was approved by the Insti-
tutional Review Board at The University of Texas
at Austin. Written consent was obtained from all
subjects.

3.2 Setup for language models
We used a pre-trained GPT-2 Small (Radford et al.,
2019) model, which we fine-tuned to change its
tokenization from BPE (Sennrich et al., 2016) to
word-level (i.e., whitespace-delimited) so that its
tokenization scheme would match the experimental
protocol for the human participants. We used non-
repeating story transcripts as training data for fine-
tuning and excluded the stories used to construct
the behavioral stimuli. To get model prediction
probabilities for comparison with the human data,
we fed the entire repeating stimulus into the model
and calculated the top-1 accuracy for each token.

4 Behavioral study results

Figure 2a shows human performance on one text
span; as they are shown more words, human ac-
curacy generally increases. Many stop words are
predicted well even during the first presentation,
while non-stop words improve more linearly with
the number of presentations. Humans consistently
improve as they are shown more presentations of
the same text span, as seen in Figure 2b. While the

model accuracy is similar to humans on the first
presentation, it quickly jumps to a much higher
level thereafter.

A more detailed view appears in Figure 2c,
where we show accuracy for both model and human
on each probe word. GPT-2 accuracy is strongly
correlated with human accuracy for the initial pre-
sentation of this span (r = 0.87), replicating earlier
findings (Goldstein et al., 2021). However, model
and human accuracies markedly diverge thereafter,
with the correlation dropping to r = 0.24 in the
second presentation and r = 0.05 in the third.

These results provide a potent counterexample
to previous claims of alignment: Humans and LMs
only seem to behave similarly in the initial presenta-
tion of a stimulus, but produce uncorrelated behav-
ior once short-term memory comes into play. This
suggests that the model and humans are exploiting
very different memory mechanisms to solve this
task. The humans must rely on lossy short-term
memory, while the model can leverage in-context
learning to provide super-human, near-perfect re-
call. While earlier reports suggested that such de-
tailed recall might mimic human working mem-
ory (Armeni et al., 2022), these results suggest that
the models go well beyond human capabilities.

5 Patterns in model attention

Our behavioral results show that human and LM
next-word prediction diverge sharply when short-

www.gorilla.sc
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a

Pres. 1 Pres. 3Pres. 2

Stimulus 1

b
Stimulus 1 Stimulus 2 Stimulus 5

c

Presentation 1 Presentation 2 Presentation 3

Stimulus 1

Figure 2: Behavioral and model results. (a) Human next-word prediction accuracy for one stimulus. Prompted
words are split into stop words and non-stop words using the stop word list from NLTK (Bird et al., 2009). Dotted
vertical lines indicate the boundaries between presentations. (b) Human and model performance, averaged within
each presentation, for three different stimuli. Stimuli 1 and 2 were presented three times, while Stimulus 5 was
presented four times. Both model and human accuracy improve over presentations, but model performance improves
much faster and reaches a higher level. (c) Timecourse for human (green) and model (purple) performance for the
stimulus from (a).

term memory is involved, suggesting that the two
systems use substantially different memory mecha-
nisms. To gain insight into the cause of these differ-
ences, we next sought to understand how exactly
the model was able to achieve such high perfor-
mance on this task.

“Memory” in transformer models is imple-
mented by using dot-product attention over pre-
vious words. Each of the 12 layers in this model
contains 12 attention heads, each of which looks for
specific features in the content or location of previ-
ous words. The action of each attention head can be
summarized in an attention matrix, A, which shows
how much attention token i is paying to token j
for all j < i. Attention weights are normalized
so that each row Ai of the attention matrix sums
to 1. The values in the attention matrix can thus
show us how and where the model is “recalling”
past information.

Previous work on simplified transformer models
has identified the emergence of specific attention
heads that recognize patterns in the input and pro-
duce outputs that complete those patterns (Elhage
et al., 2021; Olsson et al., 2022). These induc-
tion heads specifically attend to the token after
the previous presentation of the current (input) to-
ken, essentially allowing the model to read out the

completion from a previous instance of the same
pattern. For inputs that are constructed from repeat-
ing sequences—like those used in our behavioral
experiment—induction heads should thus produce
a highly stereotypical attention matrix: If a stimu-
lus consists of repeating spans of length k, the head
attends to the token k − 1 tokens in the past.

We examined the attention matrices of GPT-2
Small for our stimuli and found multiple heads
across many layers that exhibit induction behav-
ior. Figure 3a depicts example attention matrices
for four heads in layer 6. While attention values
are non-negative and sum to 1 in each row, we
use log-scaled values here to highlight subtle ef-
fects. For this test the stimulus consisted of three
presentations of a 65-word span, so an induction
head should attend to the word appearing 64 posi-
tions ago, which is exactly the word that the model
should output at each point. This should manifest
as strong diagonals in the attention matrix. This is
exactly the pattern that we see for attention heads
1 and 2. Further, when processing tokens in the
third presentation, these heads attend to previous
instances in both of the first two presentations (64
and 129 tokens in the past). To illustrate that this
pattern is not found everywhere in the model, we
also show two other attention heads (3 and 4) from
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ba Layer 6

Figure 3: Attention patterns. (a) Attention matrices for four heads in layer 6 for Stimulus 1 (65-word span presented
3 times). Plotted is the log-attention. Dotted gray lines indicate boundaries between presentations. Strong diagonals
demonstrating induction from previous presentations are present in heads 1 and 2, but not 3 and 4. (b) Summarized
attention patterns across layers. Probability mass of each category is averaged across all tokens, all heads for the
given layer, and all stimuli. Induction-like attention emerges sharply at layer 6 and is present in each subsequent
layer.

the same layer, which exhibit no induction-like be-
havior, but instead attend to recent words.

To more efficiently find induction-like behavior
in the model, we can summarize how well the atten-
tion matrix for each head matches a few different
patterns. For each layer, we quantified the average
probability mass attributable to the heads attending
to:

• the first token in the input, often thought
to represent a sort of “default” attention
state (Olsson et al., 2022),

• the 5 most recent tokens (likely capturing lo-
cal syntactic effects),

• the current token,

• past instances of the current token,

• the token after each past instance of the cur-
rent token (induction), and

• all other tokens.

Figure 3b shows the probability mass given to each
attention pattern in each layer, averaged across
all 12 heads. We see that the induction attention
pattern arises sharply and specifically in layer 6
and continues through the output layer (layer 12).
These results suggest that these layers—and es-
pecially layer 6—have a causal role in copying
words from previous repetitions of the text span,

and thus may be the source of the divergence in
human-LM accuracy. In the next section, we test
this hypothesis by selectively disrupting each layer
in an attempt to make the model more human-like.

6 Attention optimization

Our previous results showed that human and LM
next-word prediction accuracy diverge when short-
term memory comes into play, suggesting that hu-
man and model memory mechanisms behave very
differently. We then showed this divergence might
be caused by the model’s induction heads, which
we hypothesized enable it to identify and recall pat-
terns with superhuman accuracy. We next asked if
it is possible to modify the model so that its mem-
ory behaves more like the human. Because the LM
is superhuman, such a modification will selectively
hurt the LM’s performance.

Since memory in this model is implemented
through attention, we approached this problem by
modifying the attention matrices of the model. We
learn an additive bias Bh for the attention matrix
of each head h in one layer such that adding this
bias to the pre-softmax attention weights will pro-
duce outputs that are more human-like. Namely,
we modify the attention mechanism in the model
to be

Attn(Q,K, V ) = softmax
(
QKT

√
d

+Bh

)
V (1)

Each stimulus consists of an S-token span
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a Attention bias form

dStimulus 1c e f

b

Presentation 1 Presentation 2 Presentation 3

Stimulus 1

Figure 4: Attention bias optimization. (a) An example bias matrix that would give the attention head a recency
bias (αh = 0.373, βh = 0.0049). (b) Example timecourse that shows human performance (green), original model
performance (purple), and post-optimization held-out model performance (pink). Error bars indicate SEM across
initializations. (c) Human and model performance, averaged within presentations, for the same stimulus. (d)
Average training and validation curves. The validation curve is the MSE on a randomly selected, held-out subset of
the prompts of the training stimulus. Error bars show standard error of the mean (SEM) across training stimuli and
initializations. (e) Change in mass of each attention category. (f) Change in correlation with human predictions and
LM perplexity on unseen text. After optimization, human-model correlation increases after the first presentation of
the stimulus (brown), but slightly decreases in the initial presentation (orange). Perplexity (blue), plotted here as the
ratio of post- and pre-optimization performance, is hurt most in the middle layers.

presented R times, for a total stimulus length
T = SR. Human and model top-1 accuracy
for prompted word i is denoted Phuman(correcti)
and Pmodel(correcti), respectively, and Ni is the
number of participants that responded to that
prompt. Let Bh ∈ RT×T be the additive bias
for head h, and H = 12 be the number of at-
tention heads in each layer of GPT-2. We opti-
mize over {B1, . . . , BH} to minimize the mean
squared error (MSE) between Phuman(correct) and
Pmodel(correct), weighted by the number of sub-
jects who responded to each prompt (Ni). W is the
number of words that were prompted for at least
one subject.

min
{B1,...,BH}

1

W

W∑
i=1

Ni

(
Phuman(correcti)−

Pmodel(correcti)
)2 (2)

What form should Bh take? The model is super-
human in its long-distance memory, so we sought
to reduce the impact of long-distance attention by
giving the model a recency bias. Much earlier work
has shown that human memory tends to decay as a

power law with time (Donkin and Nosofsky, 2012).
A similar form of decay is also seen in mutual
information between words as a function of their
separation (Lin and Tegmark, 2017), and this has
been previously exploited in designing efficient
language models (Mahto et al., 2020). To capture
this type of behavior, we parameterized Bh with
αh, βh ∈ R:

Bh =
T−1∑
k=0

diagk(αh · k− exp(βh)) (3)

where diagk(d) constructs a T × T matrix that
places the scalar d along the k-th diagonal below
the main diagonal. Figure 4a shows an example
matrix with this form. This form of Bh is advanta-
geous because the effect of αh, βh can be evaluated
on stimuli of any form or length, including those
that are non-repeating. We initialize αh, βh by sam-
pling from a standard normal distribution.

We optimize the attention matrix biases Bh to
match human data from one stimulus over 2000
epochs via gradient descent with the Adam opti-
mizer (Kingma and Ba, 2017), and then evaluated
human-model similarity with the other four stim-
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uli. For each training stimulus, we repeated this
procedure with five initializations using different
random seeds. We set the learning rate to 5× 10−3.

6.1 Optimization results

Because the long-range copying behavior seems to
initiate in layer 6 (Figure 3b), we began by only
optimizing the attention bias for that layer.

We first examine the post-optimization time-
course of Pmodel(correct) by averaging the held-out
accuracies for a single stimulus (Figure 4b). While
the model’s predictions are largely unchanged in
the initial presentation, performance significantly
deviates toward human values in later presentations.
This is summarized in Figure 4c, where the model’s
average performance within the later presentations
is closer to humans after optimization. Importantly,
this optimization procedure produces Bh that gen-
eralize across stimuli because we do not fit on the
human data for the held-out stimulus.

Additionally, these Bh generalize within the
stimulus. To measure within-stimulus generaliza-
tion, we randomly selected 30% of the prompts
from each presentation of the span and calculated
the MSE on this subset separately from the rest of
the stimulus. Figure 4d shows the training and held-
out (validation) loss curves for the train stimulus,
averaged across all five stimuli and five random
initializations. Training loss decreases on aver-
age 52.9%, while validation loss decreases 40.4%;
most of the improvement for held-out prompts oc-
curs in the first 1000 epochs.

We next examined the effects of the layer 6 in-
tervention on the summarized attention patterns of
each layer, similar to Figure 3b. Figure 4e shows
the log-ratio of post- and pre-optimization probabil-
ity mass for each attention pattern, averaged across
all held-out stimuli. The learned bias increases at-
tention on the current token at the expense of all
other measured patterns in layer 6, including (im-
portantly) the induction pattern that would directly
copy the correct token from a previous presentation.
Even though we only intervened in layer 6, the in-
duction pattern is weaker in all following layers,
and the model is attending more to the current and
recent tokens.

Finally, we repeated the entire optimization pro-
cedure independently on each layer and evaluated
the change in human-LM correlation. We had hy-
pothesized that our intervention should only work
to create human-like behavior when applied to lay-

ers 6-12, which contained induction heads. How-
ever, the intervention improved model-human cor-
relation on repeated spans regardless of the layer
on which optimization was performed (Figure 4f,
brown line). Effects were strongest for layers 4-9,
but small improvements were seen in every layer.
This might suggest that induction heads are not the
only important memory mechanism for this prob-
lem, or that the same effects can be achieved by
modifying the inputs to induction heads.

Our results show that the recency bias interven-
tion was effective at rescuing the divergence be-
tween human and model performance, but it is
possible that this improvement comes at the cost
of much worse model performance in other ways.
For example, it could reduce the high correlation
between human and model in scenarios lacking
short-term memory, or make the model worse over-
all at next-word prediction. To test for the first
effect, we computed the human-model correlation
for the first presentation of each held-out stimulus
(Figure 4f, orange line). We found that the correla-
tion did fall, but by a much smaller amount than the
correlation on subsequent presentations improved.
For example, in layer 6 human-model correlation
on the first presentation decreased by about 0.03,
but the correlation on later presentations increased
by 0.2.

We also tested whether our intervention in-
creased LM perplexity on an unseen set of non-
repeating text from the story corpus in order to
measure how general LM abilities change due to
the intervention. No stories that were used for fine-
tuning or constructing the repeating stimuli were
used to measure perplexity. We computed the av-
erage perplexity for the modified and un-modified
model, and reported their ratio (Figure 4f, blue
line). We found that perplexity did increase due to
the intervention, meaning that it generally harmed
next-word prediction performance. However, the
degree of increase varied substantially depending
on which layer was modified, with the largest ef-
fect found in layer 6 (a more than 40% increase)
and smaller effects in the earliest and latest layers
(roughly 10% increase). This suggests that at least
part of the model’s general next-word prediction
performance stems from its superhuman recall, and
not its ability to mimic human cognition. Taking
these three results together, we would suggest that
the best layer to modify actually appears to be layer
9, which yields the largest improvement in human-
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model correlation with memory, a modest decline
in human-model correlation without memory, and
only a roughly 15% increase in overall model per-
plexity.

7 Conclusions

Despite widely published results showing that hu-
man and LM prediction performance is compara-
ble, we have found a scenario wherein humans and
GPT-2 show a substantial divergence. By examin-
ing the model’s attention maps for non-initial pre-
sentations, we identify specific attention heads and
layers that attend across presentation boundaries to
copy the next token. We finally demonstrate a pro-
cedure that augments these heads’ attention maps
with a recency bias, disrupting their copying behav-
ior. The intervention reliably improves human-LM
similarity across held-out stimuli in later presenta-
tions, at the cost of increased perplexity.

With the behavioral data we collected, we have
used an LM to build an explicit model of human
memory. Our findings here show that human mem-
ory has a stronger recency bias than GPT-2, and
in the future we hope to use this model to learn
more about human memory. Additionally, it sug-
gests that attending over long distances may result
in diminishing returns—an alternate form of atten-
tion may be able to exploit this phenomenon for
increased efficiency.

Further work must be done to describe the
change in model states during repeated presen-
tations of a stimulus. Characterizing this experi-
ment as a test of in-context learning (ICL), we may
be able to exploit recent work (Dai et al., 2022)
that suggests ICL is analogous to finetuning model
weights.

References
Jeanne T. Amlund, Carol Anne M. Kardash, and Ray-

mond W. Kulhavy. 1986. Repetitive Reading and
Recall of Expository Text. Reading Research Quar-
terly, 21(1):49–58.

Kristijan Armeni, Christopher Honey, and Tal Linzen.
2022. Characterizing Verbatim Short-Term Memory
in Neural Language Models.

Alan Baddeley. 1992. Working memory. Science,
255(5044):556–559.

Alan D. Baddeley and Russell J. Ecob. 1973. Reac-
tion time and short-term memory: Implications of
repetition effects for the high-speed exhaustive scan

hypothesis. Quarterly Journal of Experimental Psy-
chology, 25(2):229–240.

Steven Bird, Ewan Klein, and Edward Loper. 2009. Nat-
ural Language Processing with Python. O’Reilly
Media.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language Models are Few-Shot Learners.
arXiv:2005.14165 [cs].

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Zhifang
Sui, and Furu Wei. 2022. Why Can GPT Learn In-
Context? Language Models Secretly Perform Gradi-
ent Descent as Meta-Optimizers.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc V. Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive Language Models Be-
yond a Fixed-Length Context. arXiv:1901.02860
[cs, stat].

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra,
and Christopher Ré. 2022. FlashAttention: Fast
and Memory-Efficient Exact Attention with IO-
Awareness.

Chris Donkin and Robert M. Nosofsky. 2012. A Power-
Law Model of Psychological Memory Strength in
Short-and Long-Term Recognition. Psychological
Science, 23(6):625–634.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom
Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly,
Nova DasSarma, Dawn Drain, Deep Ganguli, Zac
Hatfield-Dodds, Danny Hernandez, Andy Jones,
Jackson Kernion, Liane Lovitt, Kamal Ndousse,
Dario Amodei, Tom Brown, Jack Clark, Jared Ka-
plan, Sam McCandlish, and Chris Olah. 2021. A
mathematical framework for transformer circuits.
Transformer Circuits Thread.

Ariel Goldstein, Zaid Zada, Eliav Buchnik, Mariano
Schain, Amy Price, Bobbi Aubrey, Samuel A. Nas-
tase, Amir Feder, Dotan Emanuel, Alon Cohen, Aren
Jansen, Harshvardhan Gazula, Gina Choe, Aditi Rao,
Se Catherine Kim, Colton Casto, Lora Fanda, Werner
Doyle, Daniel Friedman, Patricia Dugan, Lucia Mel-
loni, Roi Reichart, Sasha Devore, Adeen Flinker, Liat
Hasenfratz, Omer Levy, Avinatan Hassidim, Michael
Brenner, Yossi Matias, Kenneth A. Norman, Orrin
Devinsky, and Uri Hasson. 2021. Thinking ahead:
Spontaneous prediction in context as a keystone of
language in humans and machines.

https://doi.org/10.2307/747959
https://doi.org/10.2307/747959
https://doi.org/10.48550/arXiv.2210.13569
https://doi.org/10.48550/arXiv.2210.13569
https://doi.org/10.1080/14640747308400342
https://doi.org/10.1080/14640747308400342
https://doi.org/10.1080/14640747308400342
https://doi.org/10.1080/14640747308400342
http://arxiv.org/abs/2005.14165
https://doi.org/10.48550/arXiv.2212.10559
https://doi.org/10.48550/arXiv.2212.10559
https://doi.org/10.48550/arXiv.2212.10559
http://arxiv.org/abs/1901.02860
http://arxiv.org/abs/1901.02860
https://doi.org/10.48550/arXiv.2205.14135
https://doi.org/10.48550/arXiv.2205.14135
https://doi.org/10.48550/arXiv.2205.14135
http://arxiv.org/abs/41489749
http://arxiv.org/abs/41489749
http://arxiv.org/abs/41489749
https://doi.org/10.1101/2020.12.02.403477
https://doi.org/10.1101/2020.12.02.403477
https://doi.org/10.1101/2020.12.02.403477


66

Adam Goodkind and Klinton Bicknell. 2018. Predictive
power of word surprisal for reading times is a linear
function of language model quality. In Proceedings
of the 8th Workshop on Cognitive Modeling and Com-
putational Linguistics (CMCL 2018), pages 10–18,
Salt Lake City, Utah. Association for Computational
Linguistics.

Yiding Hao, Simon Mendelsohn, Rachel Sterneck,
Randi Martinez, and Robert Frank. 2020. Probabilis-
tic Predictions of People Perusing: Evaluating Met-
rics of Language Model Performance for Psycholin-
guistic Modeling. In Proceedings of the Workshop on
Cognitive Modeling and Computational Linguistics,
pages 75–86, Online. Association for Computational
Linguistics.

Cassandra L. Jacobs and Arya D. McCarthy. 2020. The
human unlikeness of neural language models in next-
word prediction. In Proceedings of the The Fourth
Widening Natural Language Processing Workshop,
pages 115–115, Seattle, USA. Association for Com-
putational Linguistics.

Elizabeth Jefferies, Matthew A. Lambon Ralph, and
Alan D. Baddeley. 2004. Automatic and controlled
processing in sentence recall: The role of long-term
and working memory. Journal of Memory and Lan-
guage, 51(4):623–643.

Diederik P. Kingma and Jimmy Ba. 2017.
Adam: A Method for Stochastic Optimization.
arXiv:1412.6980 [cs].

Walter Kintsch. 1965. The effects of repetition on the
short-term memory function. Psychonomic Science,
2(1-12):149–150.

Amanda LeBel, Lauren Wagner, Shailee Jain, Aneesh
Adhikari-Desai, Bhavin Gupta, Allyson Morgenthal,
Jerry Tang, Lixiang Xu, and Alexander G. Huth.
2023. A natural language fMRI dataset for voxel-
wise encoding models. Scientific Data, 10(1):555.

Mina Lee, Percy Liang, and Qian Yang. 2022. CoAu-
thor: Designing a Human-AI Collaborative Writing
Dataset for Exploring Language Model Capabilities.
In Proceedings of the 2022 CHI Conference on Hu-
man Factors in Computing Systems, CHI ’22, pages
1–19, New York, NY, USA. Association for Comput-
ing Machinery.

Henry Lin and Max Tegmark. 2017. Critical Behav-
ior in Physics and Probabilistic Formal Languages.
Entropy, 19(7):299.

Shivangi Mahto, Vy Ai Vo, Javier S. Turek, and Alexan-
der Huth. 2020. Multi-timescale Representation
Learning in LSTM Language Models. In Interna-
tional Conference on Learning Representations.

T. R. Miles, Guillaume Thierry, Judith Roberts, and
Josie Schiffeldrin. 2006. Verbatim and gist recall
of sentences by dyslexic and non-dyslexic adults.
Dyslexia, 12(3):177–194.

Byung-Doh Oh and William Schuler. 2023. Why Does
Surprisal From Larger Transformer-Based Language
Models Provide a Poorer Fit to Human Reading
Times? Transactions of the Association for Com-
putational Linguistics, 11:336–350.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas
Joseph, Nova DasSarma, Tom Henighan, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Con-
erly, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds,
Danny Hernandez, Scott Johnston, Andy Jones, Jack-
son Kernion, Liane Lovitt, Kamal Ndousse, Dario
Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam
McCandlish, and Chris Olah. 2022. In-context Learn-
ing and Induction Heads.

Mary C. Potter. 1984. Rapid Serial Visual Presentation
(RSVP): A Method for Studying Language Process-
ing. In New Methods in Reading Comprehension
Research. Routledge.

Ofir Press, Noah Smith, and Mike Lewis. 2022. Train
Short, Test Long: Attention with Linear Biases En-
ables Input Length Extrapolation. In International
Conference on Learning Representations.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Lan-
guage Models are Unsupervised Multitask Learners.
page 24.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural Machine Translation of Rare Words
with Subword Units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Jörg Tiedemann and Santhosh Thottingal. 2020. OPUS-
MT – Building open translation services for the
World. In Proceedings of the 22nd Annual Confer-
ence of the European Association for Machine Trans-
lation, pages 479–480, Lisboa, Portugal. European
Association for Machine Translation.

Ovid J. L. Tzeng. 1973. Positive recency effect in a
delayed free recall. Journal of Verbal Learning and
Verbal Behavior, 12(4):436–439.

Ethan Gotlieb Wilcox, Jon Gauthier, Jennifer Hu, Peng
Qian, and Roger Levy. 2020. On the Predictive
Power of Neural Language Models for Human Real-
Time Comprehension Behavior.

Sang Michael Xie, Aditi Raghunathan, Percy Liang,
and Tengyu Ma. 2022. An Explanation of In-context
Learning as Implicit Bayesian Inference.

Yuan Yang and Steven T. Piantadosi. 2022. One model
for the learning of language. Proceedings of the
National Academy of Sciences, 119(5):e2021865119.

https://doi.org/10.18653/v1/W18-0102
https://doi.org/10.18653/v1/W18-0102
https://doi.org/10.18653/v1/W18-0102
https://doi.org/10.18653/v1/2020.cmcl-1.10
https://doi.org/10.18653/v1/2020.cmcl-1.10
https://doi.org/10.18653/v1/2020.cmcl-1.10
https://doi.org/10.18653/v1/2020.cmcl-1.10
https://doi.org/10.18653/v1/2020.winlp-1.29
https://doi.org/10.18653/v1/2020.winlp-1.29
https://doi.org/10.18653/v1/2020.winlp-1.29
https://doi.org/10.1016/j.jml.2004.07.005
https://doi.org/10.1016/j.jml.2004.07.005
https://doi.org/10.1016/j.jml.2004.07.005
http://arxiv.org/abs/1412.6980
https://doi.org/10.3758/BF03343376
https://doi.org/10.3758/BF03343376
https://doi.org/10.1038/s41597-023-02437-z
https://doi.org/10.1038/s41597-023-02437-z
https://doi.org/10.1145/3491102.3502030
https://doi.org/10.1145/3491102.3502030
https://doi.org/10.1145/3491102.3502030
https://doi.org/10.3390/e19070299
https://doi.org/10.3390/e19070299
https://doi.org/10.1002/dys.320
https://doi.org/10.1002/dys.320
https://doi.org/10.1162/tacl_a_00548
https://doi.org/10.1162/tacl_a_00548
https://doi.org/10.1162/tacl_a_00548
https://doi.org/10.1162/tacl_a_00548
https://doi.org/10.48550/arXiv.2209.11895
https://doi.org/10.48550/arXiv.2209.11895
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.1016/S0022-5371(73)80023-4
https://doi.org/10.1016/S0022-5371(73)80023-4
https://doi.org/10.48550/arXiv.2006.01912
https://doi.org/10.48550/arXiv.2006.01912
https://doi.org/10.48550/arXiv.2006.01912
https://doi.org/10.48550/arXiv.2111.02080
https://doi.org/10.48550/arXiv.2111.02080
https://doi.org/10.1073/pnas.2021865119
https://doi.org/10.1073/pnas.2021865119


67

A Stimuli

Below are the stimuli in their entirety. Bolded
words are those which at least one subject is asked
to predict, given the previous ten words. Presenta-
tion boundaries are marked with //, but this token
is never presented to the subject or LM.
Stimulus 1 (3 presentations of a 65-word span):
we start to trade stories about our lives we’re both
from up north we’re both kind of newish to the
neighborhood this is in florida we both went to
college not great colleges but man we graduated
and i’m actually finding myself a little jealous of
her because she has this really cool job washing
dogs she had horses back home and she really loves
// we start to trade stories about our lives we’re
both from up north we’re both kind of newish to
the neighborhood this is in florida we both went
to college not great colleges but man we graduated
and i’m actually finding myself a little jealous of
her because she has this really cool job washing
dogs she had horses back home and she really loves
// we start to trade stories about our lives we’re
both from up north we’re both kind of newish to
the neighborhood this is in florida we both went
to college not great colleges but man we graduated
and i’m actually finding myself a little jealous of
her because she has this really cool job washing
dogs she had horses back home and she really loves

Stimulus 2 (3 presentations of a 61-word span):
get out to the hamptons and we’re at this farm-
house and it was like a scene out of christopher
isherwood the berlin stories all these blonde boys
about ten of us running around doing push ups so
that our muscles would swell and in and out of the
pool and a big buffet and everything waiting for
the light to change // get out to the hamptons and
we’re at this farmhouse and it was like a scene
out of christopher isherwood the berlin stories all
these blonde boys about ten of us running around
doing push ups so that our muscles would swell
and in and out of the pool and a big buffet and ev-
erything waiting for the light to change // get out
to the hamptons and we’re at this farmhouse and
it was like a scene out of christopher isherwood
the berlin stories all these blonde boys about ten
of us running around doing push ups so that our
muscles would swell and in and out of the pool
and a big buffet and everything waiting for the
light to change

Stimulus 3 (3 presentations of a 52-word span):
nine hours i find myself nine hours later back in the
situation room looking through the glass window
at the operations people hoping this works when i
see people start cheering and erupting in cheers
and excited and i hear alice bowman’s voice over
the intercom we are back on the prime // nine
hours i find myself nine hours later back in the
situation room looking through the glass window
at the operations people hoping this works when i
see people start cheering and erupting in cheers
and excited and i hear alice bowman’s voice over
the intercom we are back on the prime // nine
hours i find myself nine hours later back in the
situation room looking through the glass window
at the operations people hoping this works when i
see people start cheering and erupting in cheers
and excited and i hear alice bowman’s voice over
the intercom we are back on the prime

Stimulus 4 (2 presentations of a 107-word span):
year during the seventies my four aunts would take
me and my two cousins on their dream vacation a
rented beach house in hyannis on the very cove
sharing beachfront with the kennedy compound
every day for an entire week my aunt pat would
roll up her sisters’ hair my aunts would apply
sunscreen to the back of their necks the backs
of the hands and the tops of their feet and then
they would drag their beach chairs down to the
beach and they would set them up perfectly not
facing the water not into the sun for tanning but
perfectly for spying on the kennedys // year during
the seventies my four aunts would take me and
my two cousins on their dream vacation a rented
beach house in hyannis on the very cove sharing
beachfront with the kennedy compound every day
for an entire week my aunt pat would roll up her
sisters’ hair my aunts would apply sunscreen to
the back of their necks the backs of the hands and
the tops of their feet and then they would drag their
beach chairs down to the beach and they would set
them up perfectly not facing the water not into the
sun for tanning but perfectly for spying on the
kennedys
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Stimulus 5 (4 presentations of a 57-word span):

pastor was this forty something british guy and
he really wanted to attract twenty somethings so
we were a hot commodity we were right in the
demographic and we started to get promoted up
into higher and higher echelons of leadership so
we were invited to the leadership team meeting
and then the core leadership team meeting // pas-
tor was this forty something british guy and he
really wanted to attract twenty somethings so
we were a hot commodity we were right in the
demographic and we started to get promoted up
into higher and higher echelons of leadership so
we were invited to the leadership team meeting
and then the core leadership team meeting // pas-
tor was this forty something british guy and he
really wanted to attract twenty somethings so we
were a hot commodity we were right in the demo-
graphic and we started to get promoted up into
higher and higher echelons of leadership so we
were invited to the leadership team meeting and
then the core leadership team meeting // pastor
was this forty something british guy and he really
wanted to attract twenty somethings so we were a
hot commodity we were right in the demographic
and we started to get promoted up into higher and
higher echelons of leadership so we were invited
to the leadership team meeting and then the core
leadership team meeting

B Additional GPT-2 experiments

Our human-LM comparisons were limited by the
amount of data we could collect from our behav-
ioral experiment, but GPT-2 has no such limitation.
We further tested the LM on 100 random, non-
phrase-aligned spans of text of different lengths
(10 to 570 words, in increments of 40) from the
corpus of annotated spoken narratives (LeBel et al.,
2023). For each text span, we form a stimulus by re-
peating the span 15 times, or until the resulting text
exceeds the maximum input length of the model –
in this case, 1024 tokens for GPT-2.

We feed each stimulus into the model and calcu-
late the perplexity for every token in the input. For
each span length, we average the perplexity across
the 100 random spans, yielding a single perplexity
measure per token position. We finally average the
perplexity within the tokens of each presentation.

B.1 Results
Figure 5 shows results for the repeated span experi-
ment for GPT-2. GPT-2’s perplexity on the initial
presentation improves with longer spans. After
only a few presentations, however, the perplexity
for GPT-2 quickly plateaus to near-perfect perfor-
mance. The model effectively memorizes the span,
and has learned when to regurgitate the previously
seen tokens. These results confirm the observa-
tions in Figure 2 on a significantly larger set of
stimuli. For smaller spans at higher repeats, though
the mean perplexity across spans remains stable
with more presentations, the standard deviation in-
creases substantially.

These results extend the findings for LMs in
Figure 2 to more presentations.
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Figure 5: Model results for GPT-2. (a) shows the average perplexity for each presentation. (b) changes the x-axis to
show the total number of tokens.


