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Abstract

Early detection and automated classification
of dementia has recently gained considerable
attention using neuroimaging data and spon-
taneous speech. In this paper, we explore the
problem of dementia detection with in-hospital
clinical notes. We collected 954 patients’ clin-
ical notes from a local hospital in Melbourne
and assign dementia/non-dementia labels to
those patients based on clinical assessment and
telephone interview. Given the labeled demen-
tia data sets, we fine tune a ClinicalBioBERT
using filtered clinical notes and conducted ex-
periments on both binary and three class demen-
tia classification. Our experiment results show
that the fine tuned ClinicalBioBERT achieved
satisfied performance on binary classification
but performed poorly on three class dementia
classification. We explore the difficulties we
encountered applying ClinicalBioBERT to hos-
pital text. Further analysis suggests that more
human prior knowledge should be considered.

1 Introduction

Dementia describes a collection of symptoms that
are caused by disorders affecting the brain. The
global burden of dementia is large and expected to
triple by 2050 in the absence of a treatment (Pat-
terson, 2018). The application of deep learning
to early detection and automated classification of
dementia has recently gained considerable atten-
tion (Jo et al., 2019; Reuben et al., 2017), as rapid
progress in neuroimaging techniques has generated
large-scale multimodal neuroimaging data. The
ADReSS challenge (Luz et al., 2020) released a
benchmark dataset of spontaneous speech, which
is acoustically pre-processed and balanced in terms
of age and gender, defining a shared task through
which different approaches to dementia recognition
in spontaneous speech can be compared, several
speech classification models were used for demen-
tia detection, in which different types of linguistic
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features were extracted and fed into traditional sta-
tistical models. This study is an interesting proof
of concept, with fewer than 100 patients. More
recent studies (Calza et al., 2021; Farzana et al.,
2022) measured the impact of linguistic features
(e.g. verbal disfluency tags) on dementia detection.

Dementia can be an underlying cause of hospi-
tal admissions, for example due to increased rates
of falls in dementia sufferers. However the di-
agnosis associated with the admission will be a
fracture, rather than dementia. In this paper, we
test the possibility of early detection for demen-
tia patients based on the in-hospital clinical notes.
Specifically, we collected 954 patients’ clinical
notes from Melbourne Frankston hospital ! and
assign dementia/non-dementia/uncertainty labels.
Given the labeled dementia data sets, we develop
a deep learning model based on ClinicalBioBERT
(Alsentzer et al., 2019). We experiment with both
the binary (dementia/non-dementia) and the coarse
(dementia/non-dementia/uncertainty) settings, and
find that ClinicalBioBERT works well in the binary
setting but performs poorly on the coarse setting,
at the same time it still suffers from the low anno-
tation problem, and the embedding representation
is not effective as the structured representation (e.g.
UMLS concept representation). "Poor" in this con-
text is in comparison to traditional statistical and
machine learning classifiers (not discussed here).
Our main contributions are:

* We collected clinical text from a local hospital
and provided a labeled data set for dementia
detection.

* We developed a deep neural model based on
ClinicalBioBERT and evaluated its perfor-
mance on both binary and three-class coarse
level dementia prediction, suggesting it works

"https://www.peninsulahealth.org.au/
locations/frankston/
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well on the binary setting but performs poorly
on the coarse setting.

* We analyzed the representation power of the
fine tuned ClinicalBioBERT, and find that the
UMLS concept representation is stronger than
the embedding one. As far as we are aware,
our work is the first application to leverage
deep models and clinical notes for dementia
disease classification.

2 Dementia Dataset Construction

In this section, we describe how we collected the
medical notes and acquired the gold-standard la-
bels, we also show some of the basic data statistics.

2.1 Dataset collection and labeling

We recruited patients from two sources: i) a Cogni-
tive Dementia and Memory Service (CDAMS) and
ii) random selection based on attendance at the lo-
cal health service. Patients attending CDAMS were
split into two groups: those with a clinical diagno-
sis of dementia (/@) and those without (/b). Pa-
tients in group /b may have received a different di-
agnosis or not completed their assessment. Patients
in group 2 were screened with the Telephone In-
terview for Cognitive Status (TICS-M, Australian
version), with those scoring in the population aver-
age or better band after adjustment for age, sex and
education (cohort 2a) considered as free of demen-
tia and those scoring below the average considered
as uncertain (cohort 2b). We collected documents
from the in-patient electronic health record for a
total of 954 patients. Table 1 shows the number
of patients in each cohort. It can be seen there are
much more patients in cohort /b, which is around
half of all the patients. Also, we notice cohort 1
has more than two times patients than cohort 2, this
imbalance may have some impact on later model
development and cause low specificity issues.

2.2 Dataset statistics

Document Types There are various document
types for the patients, including but not limited
to patient demographics, medications, vital signs,
past medical history description, radiology report
and progress note. We noticed that the progress
notes were the majority ( 24.89%) types for the
patients, as shown in Table 1, patients in cohort
1 had more than 2% progress notes than that in
cohort 2. The /a cohort has largest number of

progress notes (26.61%), which is reasonable as
those patients may have more times of visits than
other groups.

Document Counts and Length We also calcu-
lated the statistics of document counts and length
for each cohort. As shown in Table 2, document
counts for patients from different cohorts vary
significantly, while the document average lengths
from the four cohorts is more or less similar. More
specifically, patients in cohort 1 tend to have around
4 times as many documents (283) as those in cohort
2a (66). Patients in cohort 2a had fewer documents,
because the randomly selected patients were usu-
ally less complex and had fewer admissions than
cohort 1. However, we cannot use document count
as an input feature for later statistical modelling as
other complex disorders are likely to have similar
document counts to dementia patients.

An example We show a progress note with de-
mographic information removed for a patient from
cohort /a as the following: [Progress Note: Pt am-
bulated to toilet Independently with x1 assist While
coming out from Toilet ,pt become agitated and ag-
gressive towards author T/L involved and pt stating
his Meds is not given Though Writer mentioned
this matter to Treating Dr earlier, couldn’t chart
the meds as he hasn’t had the list of meds Informed
to Treating Dr and NIC Contacted wife over the
phone and treating Dr spoke to her Pt become calm
and has had Meds as per MAR. | We notice three
important characteristics for such clinical text: 1)
abbreviations, ii) spelling errors - clinical staff com-
plete documents under time pressure and spelling
errors are common. iii) Long distance context, as
the history notes may also needed to give full inter-
pretation for the current text.

3 Methodology

In this section, we describe the development of
classification models using the data sets described
above. There are two aspects to consider before
the model development. First, what is the classi-
fier’s granularity? There could be three levels of
input, i.e., sentence, document and patient (multi-
document) level. Typically, it is more challenging
to achieve high performance when the input text is
longer. However, developing a sentence or single
document level classification model requires fine
grained annotation, which is often time consuming
and expensive in the medical setting. Meanwhile,
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Cohort Description Patient counts Progress note Pct.
la Diagnosed as dementia in CDAMS, Positive 245 26.61%
1b No final diagnosis in CDAMS, Uncertain 419 24.10%
2a Diagnosed as non-dementia via TICS, Negative 196 22.94%
2b No diagnosis via TICS, Uncertain 99 23.02%
Total - 959 24.89%
Table 1: Patient statistics

Cohort Max Min Mean Std Median

la 2150 (4750) 1(170) 283 (871) 356 (319) 125 (847)

1b 3770 (4678) 1(239) 241(898) 410 (308) 79 (887)

2a 737 (2586) 1(393) 66 (813) 90(269) 34 (775)

2b 347 (2829)  1(400) 74 (893) 79(340) 48 (822)

All 3770 (4750) 1(170) 199 (873) 340 (309) 67 (844)

Table 2: The statistics for document counts (document length) in each cohort.

multi-instance learning may further improve the
complexity in the prediction stage. Therefore, we
aim to develop a patient level classification model
directly. Second, what types of Machine Learn-
ing models can be used? We consider the recent
deep neural models (e.g. BERT), but since BERT
is pre-trained from generic text, we will fine tune a
ClinicalBioBERT (Alsentzer et al., 2019) 2 due to
its domain similarity.

Clinical Note Filtering and Compression For
the BERT based classification model, we choose
ClinicalBioBERT as the pre-trained LM, and fine
tune it with the medical text from each patient.
However, as most BERT based models can only
take 512 tokens as the maximum input, it is neces-
sary to compress each patient’s notes within that
length. We consider several strategies: The first
one is to filter out the notes where there are struc-
tured notes, as these structure information are often
progress notes and not disease specific. The sec-
ond strategy is to annotate some key sentences and
build a sentence level classifier, and use the classi-
fier to filter and shorten the clinical notes. However,
it is expensive and requires further human annota-
tion. The third strategy is truncation based on the
latest notes, as in table 2, we show the average clin-
ical note length for all patients is 873, in our text
pre-processing stage we notice there are at least
10 annotated UMLS concepts for a clinical note if

>The ClinicalBioBERT model was trained on all notes
from MIMIC-III, a database containing electronic health
records from ICU patients at the Beth Israel Hospital in Boston,
MA. Model can be found from https://huggingface.
co/emilyalsentzer/Bio_ClinicalBERT

the number of tokens in it is over 873. Therefore,
we use a simple and realistic heuristic by keeping
those medical notes in which there are at least 10
UMLS concepts, and aggregate the latest notes to
represent the patient note summary.

Fine tune ClinicalBioBERT After getting the
patient note summary, we pair those summaries
with their cohort labels and fine tune Clinical-
BioBERT. We add the [CLS] token at the beginning
of the patient note summary and use it as the hid-
den representation. During fine tuning, we update
all the transformer layers and use Adam(Kingma
and Ba, 2014) as the optimizer.

4 Experiments

Experiment Setup We experimented with two
classification schemes: binary and three-class. For
the binary case, only the medical notes for patients
from cohorts /a and 2a were selected, which is an
exact binary classification (la v.s. 2a) setting. In
contrast, in the three-class setting, we regard the
1b and 2b cohorts as the uncertainty group, which
returns the three class (1a v.s. 2a v.s. uncertain)
setting. For the ClinicalBioBERT model, we keep
the default settings and trained 20 epochs until con-
vergence. Like other biomedical settings, we use
accuracy, precision, recall and Micro F1 as the eval-
uation metrics. We also add a keyword method as
the naive baseline, where we use a pre-recognized
245 UMLS concept names as a keyword list, these
concepts are recognized by human experts to corre-
lated with dementia. If any of those concept names
appear in the document, we give a prediction of
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Models Accuracy Precision Recall F1

Keyword-based (binary) 0.453 (0.021) 0.469 (0.023) 0.482(0.025) 0.475(0.021)
Keyword-based (coarse) 0.398 (0.051) 0.382(0.052) 0.393(0.043) 0.387 (0.052)
ClinicalBioBERT (binary) 0.810 (0.041) 0.832 (0.051) 0.801 (0.052) 0.814 (0.050)
ClinicalBioBERT (coarse) 0.458 (0.045) 0.449 (0.043) 0.406 (0.046) 0.381 (0.045)

Table 3: Binary/coarse dementia classification results for the fine Tuned ClinicalBioBERT model, the binary
classification are for (1a vs 2a), the coarse classification are for (1a vs 2a vs 1b, 2b) The numbers in the parenthesis

show the standard deviation of the ten runs.

positive dementia, otherwise negative.

Results We perform 10-fold cross validation on
the selected patients given the binary and three
class setting. Table 3 shows the key results. In gen-
eral, we find that the fine tuned ClinicalBioBERT
performs well in the binary setting with a 0.81 accu-
racy, but it dropped significantly in the three class
coarse setting. Meanwhile, it is shown that the per-
formance of both models decreased around 20%
from the binary to the three class setting.
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(b) t-SNE for ClinicalBioBERT representation

Figure 1: We apply t-SNE for the 954 patients’ feature
representation with (a) 245 UMLS concepts and (b) the
[CLS] embedding of the note summaries. In general,
the UMLS concept representation distinguish positive
and negative dementia patients better.

5 Analysis

Even though BERT based models show superior
performance on most generic text classification
tasks, the fine tuned ClinicalBioBERT does not
exhibit satisfied results in the coarse setting in this
study. We anticipate three reasons: First, the clin-
ical notes are too long for ClinicalBioBERT to
encode, since the standard BERT models can only
take an input length of 512 tokens. Meanwhile,
the dementia related text spans are quite sparse in
the clinical notes, further text compression and se-
lection heuristics are required. Furthermore, the
BERT based modeling techniques cannot leverage
expert prior knowledge, which in this study are the
filtered UMLS concepts. To validate our hypothe-
sis, We apply t-SNE for the 954 patients’ feature
representation with either the 245 UMLS concepts
or the [CLS] embedding of the clinical note sum-
mary. As shown in figure 1 (a), the UMLS concept
representation is more meaningful, as those posi-
tive dementia patients can be easily separated with
those negative patients, while in figure 1 (b) there
is no clear representation patterns for these three
classes.

6 Related Work

Clinical text representation and classification
When clinical text classification is used for dis-
ease detection tasks, it varies a lot from generic
text classification: (i) Traditional text classification
tasks take both precision and recall as the system
measurement, while recall is considered to be top
priority in most medical text classification tasks
(Spasic et al., 2020) because doctors would never
like to miss the information of any "likely" infected
patients. That is, the system is being used to screen
latent potential candidates. (ii) Annotation cost is
higher in the medical domain (Wei et al., 2019)
because professional skills from medical experts
are needed. In common text annotation tasks, it is
not necessary to hire highly skilled people and even
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crowd sourcing can be used. (iii) The text in the
medical domain contains a lot of abbreviations, jar-
gon and acronyms for different medical concepts
(Xu et al., 2007). (iv) There are patient records
which are sequential and correlated within each
other. A patient can have multiple reports, in which
each report is the description of a specific time pe-
riod. The classification for these multiple reports
varies based on time, so there should be some level
consistency. ClinicalXLNet (Huang et al., 2019)
was recently developed to model such sequential
clinical text. (v) Medical text for a patient can come
from different sources (Yang and Wu, 2021) such
as CT scans, blood scans and operation reports, etc.

Disease detection with NLP Before this study,
we have previously explored automatic fungal dis-
ease detection with radiology reports (Liu et al.,
2016, 2017; Baggio et al., 2019) and showed the
effectiveness of various NLP models on clinical
notes. Even though deep learning has revolution-
ized the ML applications, Sheikhalishahi et al.
(2019) reviewed the ML models on chronic dis-
eases with clinical notes and showed that more
than 90% of the methods still relied on statistical
models. Wang et al. (2020) conducted a systematic
evaluation of NLP in medicine over the past 20
yeears, they showed that cancer (24.94%) was the
most common subject area in NLP-assisted medical
research on diseases, with breast cancers (23.30%,
24/103) and lung cancers (14.56%) accounting for
the highest proportions of studies.

Dementia detection The application of deep
learning to early detection and automated classi-
fication of dementia has recently gained consider-
able attention (Jo et al., 2019), as rapid progress
in neuroimaging techniques has generated large-
scale multimodal neuroimaging data. The ADReSS
challenge (Luz et al., 2020) released a benchmark
dataset of spontaneous speech, which is acousti-
cally pre-processed and balanced in terms of age
and gender, defining a shared task through which
different approaches to dementia recognition in
spontaneous speech can be compared. More re-
cently, Farzana et al. (2022) measured the impact
of verbal disfluency tags on denmentia detection.

Biomedical language models Most biomedical
language models are pre-trained with BERT (De-
vlin et al., 2018) and related clinical text. For exam-
ple, the ClinicalBioBERT (Alsentzer et al., 2019)
model was trained on all notes from MIMIC-III

(Johnson et al., 2016), a database containing elec-
tronic health records from ICU patients at the Beth
Israel Hospital in Boston, MA. MedBERT (Rasmy
et al., 2021) was pretrained on a structured EHR
dataset of 28,490,650 patients.

7 Conclusion

In this work, we collected clinical text from a
local hospital and leveraged deep neural models
for dementia detection. We fine tuned a Clinical-
BioBERT and evaluated its their performance on
dementia classification, experiment results showed
that the fine tuned model works well on binary de-
mentia classification but fails on three class demen-
tia classification. As for the future work, we will
leverage more human prior knowledge and experi-
ment with both statistical and deep neural models.
Also, more structured patient representation using
knowledge graphs will be considered.

8 Limitation

There are a few limitations of this study: First, the
patient sample size for the validation cohorts was
limited to 954 patients from a local hospital. As
annotation in the medical setting is expensive and
time consuming, we only get patient level labels
and cannot pay the effort for document level anno-
tations. The size and diversity of the data sample
could be improved by collecting clinical notes for
patients from other hospitals in different age groups
and of similar clinical complexity. We did not per-
form cross label check for the sampled patients, as
there is a large number of uncertain patients, among
those patients there are still ones who suffer from
dementia but not diagnosed. Second, more statisti-
cal models can bee developed. At the moment we
only tried a keyword based model and a deep neural
models. Traditional statistical models like Logistic
Regression with biomedical concept features can
also be considered. Furthermore, our study would
have benefited from more model interpretability
and human error analysis on the classifier predic-
tions. We have plans to extend our current work
with the above mentioned directions.
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