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Abstract

Several methodologies have recently been pro-
posed to evaluate the ability of Pretrained Lan-
guage Models (PLMs) to interpret negation. In
this article, we build on Gubelmann and Hand-
schuh (2022), which studies the modification of
PLMs’ predictions as a function of the polarity
of inputs, in English. Crucially, this test uses
“self-contained” inputs ending with a masked
position: depending on the polarity of a verb
in the input, a particular token is either seman-
tically ruled out or allowed at the masked po-
sition. By replicating Gubelmann and Hand-
schuh (2022) experiments, we have uncovered
flaws that weaken the conclusions that can be
drawn from this test. We thus propose an im-
proved version, the Self-Contained Neg Test,
which is more controlled, more systematic, and
entirely based on examples forming minimal
pairs varying only in the presence or absence
of verbal negation in English.

When applying our test to the roberta and
bert base and large models, we show that only
roberta-large shows trends that match the
expectations, while bert-base is mostly in-
sensitive to negation. For all the tested models
though, in a significant number of test instances
the top-1 prediction remains the token that is
semantically forbidden by the context, which
shows how much room for improvement re-
mains for a proper treatment of the negation
phenomenon.

1 Introduction

The treatment of negation by PLMs has recently
been the subject of various works whose conclu-
sions are fairly contradictory.

On the one hand, Kassner and Schütze (2020)
and Ettinger (2020) compare the predictions of
Transformer-based language models (Vaswani
et al., 2017) in minimal pairs varying in polarity (1).

(1) a. A robin is a [MASK].
b. A robin is not a [MASK].

Noting that changes of polarity in the model’s in-
puts result in little or no change for both top-1
predictions and the entire vocabulary distribution,
these authors conclude that the models are insensi-
tive to negation.

However, it has been established that the pres-
ence of negation can be detected in contextual rep-
resentations. Celikkanat et al. (2020) thus find
“traces” of negation on the negated verb, its subject,
its object. Moreover, the extent to which negation is
diffused in contextual representations follows syn-
tactic constraints: Kletz et al. (2023) show that the
presence of negation in contextual representations
is stronger for tokens within the scope of negation,
this effect being visible even when controlling for
the distance between the token and negation.

As pointed out by Gubelmann and Handschuh
(2022), this apparent contradiction can be ex-
plained by the fact that Kassner and Schütze (2020)
study the factual knowledge of models, and there-
fore use contexts involving world knowledge, such
as (1). The inability of models not to predict bird
in the negated case could be explained by stored
factual knowledge taking precedence over the abil-
ity to capture that negation reverses the truth value
of a proposition. Especially as there is an asymme-
try in the number of acceptable words to replace
the mask: only a few are possible for the positive
version, but a huge number are for the negative one,
which can’t be a favorable situation when only the
top-1 prediction is studied.

Gubelmann and Handschuh (2022) have thus
proposed a test where the inputs supplied to the
models are self-contained (in our terminology): a
context sentence is followed by a target sentence
containing a masked position. The context sentence
is either negative or affirmative. In the negative
case, it renders semantically impossible a certain
token at the masked position (sail in example (2)),
which is itself plausible in the positive case (see
section 2.2).
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(2) Jessica is an architect who doesn’t like to
sail. However, she does like to [MASK].

Gubelmann and Handschuh (2022) observe a vari-
able sensitivity to negation depending on the mod-
els tested, suggesting that the truth-value inversion
effect of negation is more or less captured depend-
ing on the model.

In this article, we build on (Gubelmann and
Handschuh, 2022) (hereafter GH22), taking up the
idea of self-contained inputs, allowing us to target
understanding of the semantics of negation inde-
pendently of world knowledge. Our contributions
are the following:

• a finer-grained analysis of GH22 experiments,
uncovering a much more contrasted picture.
In particular, averaged results for different in-
put patterns mask significant sensitivity to fac-
tors other than negation (e.g., an intensifier
really or does).

• the development of a more controlled test1,
using self-contained inputs organized in mini-
mal pairs differing only in polarity, as well as
the introduction of control tests (double nega-
tion, use of a non-negative adverb instead of
not, and variations on coreference between
NPs in the context sentence and the target sen-
tence).

Finally, this test enables us to make a detailed
assessment of four models, and to conclude that
among these, only roberta-large reasonably
meets the defined criteria. Crucially, a number of
models like bert-large seemed reasonably sen-
sitive to negation in GH22, do pass our baseline
test, but don’t pass the control tests at all, calling
into question the positive interpretation of the base-
line test. This highlights the many limitations to
PLMs’ understanding of negation for English, and
the need for highly controlled tests to reach solid
conclusions.

2 Replication of (Gubelmann and
Handschuh, 2022)

2.1 Presentation of the test
The GH22 test aims at studying the tokens pre-
dicted at a masked position, within an input con-
sisting of two sentences, a C(ontext) sentence fol-
lowed by a T(arget) sentence. The actual exam-
ples provided as input to PLMs are obtained by

1https://github.com/davkletz/self-neg-test

instantiating variables within patterns: the context
sentence C contains a variable ACT, to be instan-
tiated with a verb (called ACT-token), like sail in
(3), embedded in a negative (doesn’t like to ACT)
or affirmative (tries to ACT as often as possible)
phrase. We refer to Cn and Cp as the negative
and affirmative contexts. The sentence T contains
a masked position, and is defined in such a way
that repetition of the ACT-token is acceptable with
an affirmative context (Cp), while semantically im-
possible with a negative context (Cn): for example,
repeating sail in the masked position is plausible
in (4) while semantically impossible in (3).

(3) NAME(Jessica) is PROF(an architect) who
doesn’t like to ACT(sail). However,
PRON(she) does like to [MASK].

(4) NAME(Jessica) is PROF(an architect) who
tries to ACT(sail) as often as possible. So,
PRON(she) really likes to [MASK].

The metric proposed by GH22 is the rate of repe-
tition of the ACT-token (%-ACT-repetition), i.e.
the percentage of instantiated examples for which
the top-1 at position MASK is the ACT-token it-
self. In the Cp case, a high repetition rate is ac-
ceptable, as the ACT-token is not mandatory at
this position, but plausible. In the Cn case, a high
%-ACT-repetition is clearly a sign of a failure of
the model, by construction of the input examples.
Note, however, that a weak %-ACT-repetition may
be due to a good “understanding” of negation by
the model, but may also stem from inconsistencies,
if the model predicts agrammatical tokens in top-1
in this context.

GH22 also varied other parameters, such as the
presence or absence of ACT-coordinated verbs in
C2, intensifiers does and/or really in T, and a dis-
course connective in T (contrastive however if C
is negative, mplicative so if C is affirmative). De-
tails of the combinations tested by GH22 are given
Table 1.

2.2 Pattern instantiation

The authors generated the input examples by in-
stantiating first the variables NAME (with typically
feminine or masculine first names), PROF (with
a profession), and PRON (third person pronoun,
same gender as NAME). Then, for any instantiated
triplet (NAME, PROF, PRON), the ACT-token is

2As in NAME is a PROF who doesn’t like to ACT, ACT1
or ACT2.
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pol. main v in C aux adv conn.
N doesn’t like to D - D
N doesn’t like to D - -
N doesn’t like to - - -
P tries to D D D
P tries to - D -

Table 1: Details of the parameter combinations tested
by GH22. Columns: pol. is the polarity of the context
(negative or positive); main v in C indicates which verb
was used in the C sentence; aux (resp. adv) indicates
whether does (resp. really) is used in T; conn. indicates
whether T begins with a connective (contrastive however
for Cn, and implicative so for Cp). In addition, in GH22,
all these configurations are combined with the gender
of the subject proper noun (fem/masc) and with 0, 1 or
2 verbs coordinated to ACT.

.

chosen by considering the tokens predicted at the
masked position in the sentence (5): either the first
one, the 50th, 100th or 200th in the predicted dis-
tribution. As a consequence, the examples that will
be given as input vary from one model to another,
the ACT-token being adapted for each triplet and
model).

(5) NAME is PROF and PRON likes to [MASK]

2.3 Critical analysis

The reason we give these details is that a careful
examination of the data set and a replication of the
GH22 experiments reveal variance in the results
and certain asymmetries, making it difficult to draw
firm conclusions.

Firstly, the GH22 test is not organized on the
basis of minimal pairs varying only in polarity
(like the pair (1) above, from Kassner and Schütze
(2020)). Such minimal pairs cannot be formed,
firstly because the parameter combinations are not
exactly the same for cases with positive context
(Cp) and those with negated context (Cn), and sec-
ondly because the embedding verb is different in
Cp and Cn (tries to ACT as often as possible versus
doesn’t like to ACT). So it’s hard to tell whether the
variations in %-ACT-repetition are due to negation
sensitivity or to other parameters.

These parameters (connectives and intensifiers)
have a major impact on the interpretation of the
examples, and more specifically on the discourse
link between the context and target sentences. The
test is based on:

• examples with an affirmative context, for
which a repetition of the ACT is expected and
corresponds to a discourse relation ‘elabora-
tion’ (for instance, in the context “Jessica is
an architect who tries to dance as often as
possible”, the second sentence “She likes to
dance” goes in the same direction);

• examples with a negative context, for which
a non-repetition of ACT is expected, corre-
sponding to a ‘contrast’ between C and T.

In GH22, the interpretation of the discourse rela-
tion between C and T is supported by various clues
in addition to the absence or presence of negation
in C: (i) the possible co-reference between NAME
and PRON, (ii) the semantic link between the main
predicates in C and in T (e.g. for Cp cases, the link
between try to ACT as often as possible and like
to ACT) and (iii) the intensifiers does and really
and the discourse connectives. Because they make
the elaboration or contrast relation explicit, con-
nectives make the test easier, and weaken the pos-
sibility of analyzing the models’ “understanding”
of negation. Intensifiers strengthen the elaboration
relation in the positive case, but the effect is more
ambiguous in the negative case. This excessive
number of parameters weakens the interpretation
that can be made of this test.

And indeed, while overall the PLMs tested show
a sensitivity to negation in the GH22 results (i.e. the
repetition rate is lower for Cn cases than for Cp),
in replicating their experiments we observed signif-
icant variance depending on the various parameters
cited above, notably the presence of coordinated
verbs in C, and the rank for the choice of ACT-
token (GH22 give results aggregating ranks 1 and
50). In the next sub-section, we present our repli-
cation of GH22 in detail, before moving on in the
next section to our proposal for a more controlled
test, based on minimal pairs varying only in po-
larity, and on additional control tests to ensure a
correct interpretation of the results.

2.4 Partial replication
In this sub-section, we present our replication re-
sults for GH22. To focus on the ways models deal
with negation, we have ignored a number of param-
eters, and systematized the combination of retained
parameters. More specifically, we have limited
ourselves to (i) patterns with no coordination in
context sentences and (ii) instantiations using rank-
1 ACT-token (we observed significant variations
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with respect to these parameters). We also dis-
card patterns with connectives, which allows us
to reconcile the affirmative and negative versions
of the tested inputs (since the connectives differ
along with the polarity of C), and above all to re-
move cues favoring or hindering the repetition of
the ACT.

To sum up, the parameters we have kept for this
replication are the presence/absence of negation in
C, the presence/absence of the intensifiers does and
really in T, and we test all 8 combinations.

We apply this reduced test to the models
bert-large-cased (Devlin et al., 2019) and
roberta-large (Liu et al., 2019). The results are
summarized in Table 2.

n° pol. aux adv roberta-l bert-l

1
P

- -
44.2 24.6

N 27.3 3.3

2
P D -

31.8 91.8
N 25.1 58.3

3
P

- D 94.1 99.6
N 25.3 73.6

4
P D D 99.8 100
N 55.9 96.3

Table 2: %-ACT-repetition rates, for the two models
roberta-large & bert-large, using GH22 patterns
without coordination in the context sentence C nor dis-
course connectives. As in GH22, the ACT-token is
chosen as the top-1 prediction for NAME is a PROF and
PRON likes to [MASK]. Columns: pol: polarity in C;
aux: presence of does in T; adv: presence of really in T.

The results are analyzed by comparing the P
lines with their corresponding N lines, and consid-
ering the drop in repetition (drop = P rate − N rate).
GH22 consider that the greater the drop, the more
sensitive the model is to negation. For both models,
a drop is indeed observed for all 4 pairs of P/N pat-
terns, so we can say that the test is effective. Note,
however, that for bert-large-cased, the drop is
small in patterns with really. The model seems to
interpret intensifiers as elaborations, and doesn’t
seem to be able to interpret a contrast despite the
negation in the context sentence (NAME is a PROF
who doesn’t like to ACT. PRON really does like to
[MASK]).

These results underline the strong interference of
intensifiers on ACT repetition rates and drops, yet
only a pattern without intensifiers (or connectives)
comes close to a minimal pair targeting negation.

In addition, we believe that the method has a

significant shortcoming. For patterns with positive
polarity, the ACT repetition rate can be far from
100% (e.g., 31.8 for roberta-large, pattern 2P).
For this pattern, therefore, 100 − 31.8 = 68.2%
of the affirmative examples are such that the top-
1 prediction is not the ACT. This corresponds to
cases like (6)).

(6) Maria is a doctor who tries to pad as often
as possible.
She does like to [MASK]top-1=teach.

However, in this case, GH22 count a non-repetition
in the corresponding negative example (as in ex-
ample (7)) as a proper handling of negation by the
model.

(7) Maria is a doctor who doesn’t like to pad.
She does like to [MASK]top-1=follow.

But such a non-repetition can no longer be taken
as an evidence for an understanding of negation:
it is not so striking not to repeat the single forbid-
den token (pad), since it was not repeated in the
affirmative case (as in (6)).

In order to circumvent the shortcoming, we pro-
pose to consider by construction only examples
leading to a repetition of the ACT-token in the af-
firmative case.

3 Our proposal: the Self-Contained Neg
Test

3.1 Patterns

On the basis of the above findings, we propose to
create a test that is strongly inspired by GH22, but
that allows us to draw a more reliable conclusion:
we want to be able to attribute any drop in the ACT-
token repetition rate solely to negation, and thus
judge whether a model has mastered the semantics
of verbal negation.

We keep the principle of “self-contained” inputs,
composed of a context sentence (C), and a target
sentence (T) ending with a masked position, syn-
tactically calling an infinitive verb. But we propose
a single pattern for C and T, each sentence being ei-
ther affirmed or negated, so that variation in C and
T is limited to the presence or absence of negation.
We give the two variants Cp and Cn and the two
variants Tp and Tn in table 3. By combining these
variants, we obtain four patterns (CpTp, CpTn, but
also CnTp and CnTn).
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Context Target
Cp: NAME is a PROF

who likes to ACT.
Tp: PRON is happy

to [MASK].
Cn: NAME is a

PROF who doesn’t
like to ACT.

Tn: PRON isn’t
happy to [MASK].

Table 3: Context and target sentences, either positive
and negative, used for the base Self-Contained Neg Test.

Note that in CpTp, and to a lesser extent CnTn,
although the repetition of the ACT-token is not
mandatory, it leads to a pragmatically felicitous
discourse. In contrast, the repetition is semantically
forbidden in CpTn and CnTp.

3.2 Instantiation of examples

As in GH22, final examples are obtained by instan-
tiating NAME, PROF and ACT (PRON is she or
he depending on the gender of the proper noun in-
stantiating NAME), but we modify the way ACT is
instantiated, to resolve the shortcoming described
in section 2.4: we only consider by construction
positive examples (pattern CpTp) leading to a top-1
repetition. To do this, instead of using a different
sentence, external to the test (GH22 used (5)), we
take the CpTp pattern (NAME is a PROF who likes
to ACT. PRON is happy to [MASK].), and for each
pair [NAME, PROF], for each model, we instanti-
ate ACT with an English intransitive verb such that
the top-1 prediction at the masked position is that
very same verb.

More precisely, the instantiation procedure is
as follows: we have four lists (100 female proper
nouns, 100 male proper nouns, 91 professions,
and a number of monotokenized intransitive
verbs, the number varying according to the
tokenizer of the models). For proper nouns and
professions, we re-use the GH22 lists. For verbs,
we use monotokenized infinitives among English
verbs that may have an intransitive usage, by
cross-referencing the list on this wiktionary page
https://en.wiktionary.org/wiki/Category:
English_intransitive_verbs and the verbs
present in Verbnet (Schuler, 2006). We apply this
procedure to two bert models (bert-base-cased,
bert-large-cased) and two roberta models
(roberta-base and roberta-large), and we
obtain 597 and 106 verbs for the bert and
roberta models respectively.

For each PLM and for each of the
2*100*91=18200 [NAME, PROF] pairs, we

compute the subset of verbs in the list that lead to
a top-1 repetition. The number of such [NAME,
PROF, verb] triplets is shown in row number 4 of
table 5. We then randomly select at most 20 verbs
for each model and each [NAME,PROF] pair (row
6 of table 5). Note that these subsets hence depend
on the tested model.

Table 4 illustrates the process for the pair [Jes-
sica, dancer].

Instantiated NAME/PROF: Jessica, dancer
Tested verb: smoke
Tested example: Jessica is a dancer who likes
to smoke. She is happy to [MASK].
model top 1 pred. retained?
bert-base-cased smoke D
bert-large-cased smoke D
roberta-base dance no
roberta-large chat no

Table 4: Example of selection of [NAME, PROF,
ACT] triplets, for a given instantiated [NAME=Jessica,
PROF=dancer] pair. When instantiating ACT with
smoke, the top-1 at the MASK position is smoke
(repetition) for the models bert-base-cased and
bert-large-cased, and will eventually be selected
when retaining 20 random such verbs for the given input
pair.

For each model, the triplets thus obtained to in-
stantiate NAME, PROF, ACT are then used to form
the saturated examples for each of the patterns.

3.3 Test interpretation

For each pattern, we can detail how a decrease or
stability in %-ACT-repetition should be interpreted
in relation to the rate of 100% repetition for CpTp.
As we’ll always be comparing %-ACT-repetition
with the 100% rate obtained by construction for
CpTp, we prefer to consider a measure of rate de-
crease: drop = 100 − %-ACT-repetition.

• CnTp: this pattern is an evolution of patterns
proposed by GH22, but designed here to form
a true minimal pair with CpTp. By construc-
tion, ACT-token is semantically impossible at
the masked position, so a small drop would
mean that the model doesn’t interpret negation
in C. On the contrary, the larger the drop (the
maximum being 100), the more likely it is that
the model interprets correctly the negation in
C. Note that any other verb is semantically

https://en.wiktionary.org/wiki/Category:English_intransitive_verbs
https://en.wiktionary.org/wiki/Category:English_intransitive_verbs
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model bert-b-c bert-l-c roberta-b roberta-l

1. Available verbs 597 597 106 106

2. Available NAME,PROF pairs 18200 18200 18200 18200

3. Tested triplets (row 1 × row 2) (*106) 10.9 10.9 1.9 1.9

4. ↪→ leading to ACT repetition (*106) 2.4 2.0 1.2 0.4

5. Ratio (row 4/row 3, %) 21.7 18.4 61.9 18.3

6. Selected triplets 364000 363922 362027 107856

Table 5: Statistics for the selection stage of triplets instantiating NAME, PROF, ACT, for each model. Row 3:
number of tested triplets (NAME, PROF, verb). Row 4: number of such triplets for which the instantiated CpTp
example leads to a repetition (top-1 prediction is identical to the ACT-token). Row 6: number of selected triplets
among those of row 4 (retaining at most twenty verbs for each [NAME,PROF] pair).

and discursively possible in the masked posi-
tion, and corresponds to a contrast discourse
relation between Cn and Tp.

• CpTn: we also add the case where nega-
tion is in the target sentence, and therefore
closer to MASK. Here again, ACT-token is se-
mantically impossible at the masked position,
and the drop interpretation is the same as for
CnTp.

• Control pattern CnTn: here the repetition of
the ACT-token is discursively natural. A high-
performing pattern is expected to have only a
marginal drop. The pattern is used to check
that a negation in one sentence is correctly
interpreted in relation to the polarity in the
other sentence, and not just in isolation.

• Control pattern CpTv: we also add a con-
trol where the modification with respect to
CpTp is not the addition of the negative ad-
verb, but the addition of another adverb, very,
in T. This pattern makes it possible to check
whether a drop in CpTn is really attributable
to the negation in T, and not simply to the ad-
dition of any adverb. More generally, as ACT
has been instantiated to obtain 100% repe-
tition in the CpTp pattern, this CpTv pattern
makes it possible to check the stability of ACT-
token repetition: if a model’s predictions are
often different depending on the presence or
absence of very in NAME is a PROF who likes
to ACT. PRON is (very) happy to ACT, then
this would be a sign that any change could
potentially have a lot of impact, and it would
prevent any positive interpretation of a drop
for this model.

3.4 Properties of the test

These patterns have been chosen to limit the factors
that can be used to interpret the discourse relation
between C and T. In our case, the interpretation is
solely driven by (i) the coreference between NAME
and PRON, (ii) the semantic link between like to
ACT and be happy to ACT and (iii) the absence
or presence of negation on these predicates: only
(iii) varies within the test, (i) and (ii) remain stable,
and no intensifier or discourse connector cues are
added that would favor or hinder the repetition of
ACT-token.

In this way, we can form true minimal pairs
varying only by a negation, in C or in T: for each
triplet instantiating NAME, PROF and ACT, we
have four minimal pairs (CpTp / CpTn), (CpTp /
CnTp), (CnTn / CnTp) and (CnTn / CpTn).

By forcing an ACT repetition rate of 100% for
the CpTp pattern, we totally avoid positive exam-
ples that don’t lead to a repetition, which render
the corresponding negative examples unusable (cf.
sub-section 2.4). What’s more, the CpTp pattern
now serves as a reference point, and decreases in
%-ACT-repetition are more comparable one with
another, whether for a comparison between models,
for the same pattern, or a for comparison between
patterns for the same model. Finally, we make sure
to obtain instantiated examples where the discourse
relation between like to ACT and be happy to ACT
is “understood”. In this way, a lower repetition rate
in a negative context will be all the more signifi-
cant.

Note that the procedure to select [NAME, PROF,
verb] triplets yields a large number of ACT-
repetitions in CpTp (cf. the ratios for each model
provided at row 5 of table 5). This confirms that
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repetition in the CpTp pattern is pragmatically felic-
itous, although not mandatory. We observe that this
ratio is much higher for the roberta-base model
compared to the other three models. We cannot
state whether this stems from a higher tendency to
repeat tokens or from a preference to interpret the
discourse relation between the two sentences as an
elaboration.

3.5 Models evaluation

We apply our test to the four above-mentioned mod-
els and provide the results in Table 6.

Recall that passing our test implies having strong
drops for the CpTn and CnTp patterns, and that
these drops be greater than in the control pattern
CpTv, and to a lesser extent in the CnTn pattern.

The bert-base-cased model fails the test com-
pletely: the drop is almost non-existent for the
CpTn and CnTp patterns. Moreover, the drop is
much stronger for the CpTv control pattern: in the
context of NAME is a PROF who likes to ACT,
the model repeats ACT less often in PRON is
very happy to MASK than in PRON isn’t happy
to MASK.

Although the drop of the bert-large-cased
model is larger for the CpTn and CnTp configura-
tions than those of bert-base-cased, its drop in
the CpTv configuration is still too high to conclude
that this model understands negation.

The roberta-base model shows drops closer
to our expectations: its CnTn drop is smaller than
those of CpTn and CnTp (20.7 and 46.7). But since
the drop for the CpTv control is 21.3, only the 46.7
drop is significant.

Finally, the model that seems to have acquired
the most robust understanding of negation is
roberta-large, having both a drop of over 50%
for CpTn and CnTp, and a small drop for the con-
trols. The maximum drop is obtained for CnTp, i.e.
with a negation in the context sentence. It remains
to be investigated why this configuration is better
handled than CpTn.

To sum up, none of the models reaches drops
close to 100% for CpTn and CnTp: many examples
lead to a repetition of a token that is semantically
forbidden by the context sentence. Nevertheless,
it seems that the roberta models, and in partic-
ular roberta-large, “understand” the semantic
value of verbal negation in English better than bert.
Moreover, within a family of models, the large
version performs better.

4 Additional controls: forcing
non-coreference

In the results analyzed in the previous section, the
drop can only be interpreted as an understanding of
negation if the model has resolved the co-reference
between the proper noun in C and the pronoun in
T. In the absence of such a resolution, a repetition
of the ACT is neither forbidden nor required.

While the ability of bert to resolve coreference
has been evidenced by Clark et al. (2019), we need
to ensure that this resolution is effective in the case
of our patterns. To do this, instead of directly test-
ing coreference resolution, we build a set of alter-
native examples to the base examples, in which
non-coreference is forced. In practice, we replace
the pronoun in T by a proper noun other than the
one used in C, with two variants, depending on
whether or not these two proper nouns have the
same gender (cf. examples 1 and 2 table 7). If
the model does indeed resolve coreference in base
examples, then we should observe a much smaller
drop for examples with forced non-coreference: in
the absence of coreference, the context sentence
no longer gives information about the target sen-
tence, and therefore no longer prohibits or favors
the choice of a particular token. As the sequences
have been selected to favor repetition of the ACT
token, this repetition should however remain high.

We also consider cases where we help the model
establish a co-reference, so as to test only the im-
pact of negation, independently of the models’ abil-
ity to establish the co-reference between the proper
noun and the pronoun in the basic examples. To
this end, we use the same proper noun in C and T
(cf. example 3 table 7). The repetition gives a less
natural example, but in which the coreference is
forced.

Triplets are selected using the same procedure
as in section 3.2, namely retaining only triplets
leading to a top-1 repetition for the CpTp pattern,
and at most 20 verbs for a given [NAME,PROF]
pair.

Results for roberta models are provided in ta-
ble 8 (those for bert models are in appendix A,
table 9). A first observation is that the number of
selected triplets (first row of tables 8 and 9) un-
dergoes a severe decrease. This is consistent with
the fact that in such configurations, repetitions are
pragmatically less felicitous.

An efficient model is expected to obtain small
drops for the Non-Coref columns, while retaining
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Pattern bert-b-c bert-l-c roberta-b roberta-l

CpTn 3.6 44.7 27.7 64.7
CnTp 1.2 16.5 66.9 82.8
CnTn 1.5 9.7 12.1 43.5
CpTv 25.5 42.9 23.3 26

Table 6: Drops of the %-ACT-repetition with respect to 100% for CpTp, when applying the Self-Contained Neg Test
to four PLMs. To pass the test, drops should be high for the first two lines, and low for the last 2.

id Type Context Target

1 non coref, same gender Joyce is a designer who likes to smoke. Janet really likes to [MASK].
2 non coref, other gender John is a dentist who likes to dance. Anna really likes to [MASK].
3 forced coref by repetition Judith is a diplomat who likes to drink. Judith really likes to [MASK].

Table 7: Examples of the corefence control test. In 3, coreference is forced by using the same name in C and T. In 1
and 2, coreference is ruled out by using distinct names, of either same or different genders.

large drops in the Coref column, for the CpTn and
CnTp cases. The drops in CnTn and CpTv controls
should remain small.

Pattern Coref Non-Coref
Same-gend. Other-gend.

# (×103) 118.7 39.6 44.7
CpTn 3.9 7.5 6.9
CnTp 12.6 3.3 3.4
CnTn 1.5 3.4 2.4
CpTv 8.7 4.5 4.8

(a) roberta-base

Pattern Coref Non-Coref
Same-gend. Other-gend.

# (×103) 60.8 4.4 5.1
CpTn 28.9 11.7 12.1
CnTp 64.1 1.9 10.8
CnTn 14.3 6.2 7.1
CpTv 17.3 9.4 11.5

(b) roberta-large

Table 8: Last 4 rows: drops of the %-ACT-repetition
for the roberta models, when forcing coreference by
using the same name in C and T (Coref) or forcing non-
coreference using different names (Non-Coref), either
of same or different genders. First row (#): number
of selected [NAME, PROF, ACT] triplets, among those
leading to a top-1 repetition in the CpTp pattern (still
retaining at most twenty verbs for each [NAME,PROF]
pair).

We can see this is not the case for the
roberta-base model: the drops in the upper left
part of table 8a are smaller with respect to the
“vanilla” examples (with a pronoun in T sentences).

It is as if the model interpreted the same two names
as non-coreferent. It is though impossible to con-
clude whether this is the case (in which case the
smaller drops do not mean that negation is mis-
understood), or whether the model interpreted the
coreference correctly, but failed to interpret nega-
tion.

On the other hand, the trends observed for
roberta-large (table 8b) do follow our expec-
tations: the drops do remain large for the Coref
case for CpTn and CnTp (and significantly larger
than for the CnTn and CpTv controls) but they are
small for the non-coreference patterns. This con-
firms the observations made for this model with the
previous test, and thus further confirms the abilitiy
of this model to capture the semantics of verbal
negation.

5 Conclusion

In this paper we propose a methodology and a
dataset to study PLMs’ abilities to correctly in-
terpret the semantics of negation, more precisely
verbal negation in English. We were inspired by
Gubelmann and Handschuh (2022), who proposed
self-contained examples, consisting of two sen-
tences, the first serving as a context that favors
or hinders the repetition of a certain verb in the
second sentence. After critically analyzing this test,
we propose an improved version, which is more
controlled, more systematic, and entirely based on
examples forming minimal pairs varying only in
the presence or absence of verbal negation. We
have sought to minimize the interpretations that the
models have to make in addition to the negation
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interpretation, so that the observed results can be
more reliably interpreted as the model’s good or
bad “understanding” of negation.

We applied our test to four pretrained
Transformer-based language models. A detailed
analysis of the results shows a continuum of situa-
tions: bert-base is globally unable to take ver-
bal negation into account, bert-large is a lit-
tle better at first sight, but the control tests we
added show its limitations. roberta-base par-
tially passes the basic test, but is disappointing
when it comes to controlling co-reference resolu-
tion. Only the roberta-large model shows trends
in line with expectations, for both base and control
patterns, clearly showing some ability to capture
the semantics of verbal negation in English.

However, for all the models we tested, a signif-
icant number of examples get a top-1 prediction
that is exactly the token semantically forbidden
by the context. This shows how much room for
improvement remains for this type of models.

We chose to focus on verbal negation, being the
most frequent form of negation in English, but we
plan to extend our test to other forms of negation.
Extension to other languages is also considered.

6 Limitations

The Self-Contained Neg Test only works on a
Masked language modeling task. As such it is
clearly designed for bidirectional models. Apply-
ing it to generative language models would require
a complete rethinking of the test.
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A Results non coreference for bert
models

Pattern Coref Non-Coref
Same-gend. Other-gend.

# (×103) 21.4 7.2
CpTn 2.0 3.4 2.9
CnTp 2.2 2.3 2.3
CnTn 1.4 4.1 3.7
CpTv 10.3 13.1 15.3

(a) bert-base

Pattern Coref Non-Coref
Same-gend. Other-gend.

# (×103) 47.1 14.3 16.5
CpTn 41.1 47.9 44.7
CnTp 5.8 6.4 5.7
CnTn 2.9 7.3 5.8
CpTv 38.5 44.8 45.7

(b) bert-large

Table 9: Last 4 rows: drops of the %-ACT-repetition
for the bert models, when forcing coreference by us-
ing the same name in C and T (Coref) or forcing non-
coreference using different names (Non-Coref), either
of same or different genders. First row (#): number
of selected [NAME, PROF, ACT] triplets, among those
leading to a top-1 repetition in the CpTp pattern (still
retaining at most twenty verbs for each [NAME,PROF]
pair).


