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Abstract
Sign Language (SL) animations generated from motion capture (mocap) of real signers convey critical information about their
identity. It has been suggested that this information is mostly carried by statistics of the movements kinematics. Manipulating
these statistics in the generation of SL movements could allow controlling the identity of the signer, notably to preserve
anonymity. This paper tests this hypothesis by presenting a novel synthesis algorithm that manipulates the identity-specific
statistics of mocap recordings. The algorithm produced convincing new versions of French Sign Language discourses, which
accurately modulated the identity prediction of a machine learning model. These results open up promising perspectives
toward the automatic control of identity in the motion animation of virtual signers.
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1. Introduction

Using motion capture (mocap) systems, the movements
of signers can be recorded with high accuracy and
be used to produce natural and comprehensible con-
tent (Lu and Huenerfauth, 2010; Gibet, 2018). How-
ever, this process raises an unexpected problem, re-
lated to the human ability to identify individuals from
their movements (Troje et al., 2005; Loula et al., 2005;
Bläsing and Sauzet, 2018). As for spoken languages
in the auditory domain, where voice parameters inform
about the identity of a speaker, signers can be identi-
fied from their movements (Bigand et al., 2020). We
present a synthesis algorithm for controlling the motion
features that characterize the identity of a signer. This
would allow producing anonymized, non-identifiable,
content with virtual signers, which is crucial (e.g., for
sharing anonymized testimony) given that Sign Lan-
guages (SLs) have no written form (Lee et al., 2021).

In line with prior work on non-SL movements (Troje et
al., 2005; Carlson et al., 2020; Zhang and Troje, 2005),
our recent studies suggested that identity was mainly
inferred from the kinematic aspects of the movements,
beyond size, shape or posture of the signers (Bigand
et al., 2020; Bigand et al., 2021). Using a machine
learning model, we automatically extracted the specific
kinematic aspects of motion that carry identity, using
time-averaged statistics (Section 2). The present syn-
thesis algorithm was then developed in order to manip-
ulate the identity-specific statistics of original mocap
recordings (Section 3). We tested the performance of
the synthesis algorithm by modifying the identity at-
tribute of mocap recordings in French Sign Language,
and by assessing the identity inferred from the new ex-
cerpts (Section 4). This constitutes the first step toward
automatically anonymizing the movements of signers
in SL animations, in the same way as for the voice of a
speaker, which can be anonymized by modifying spe-
cific vocal parameters (Section 5).

2. Motion statistics of identity
Mocap recordings were taken from MOCAP1 corpus
(Benchiheub et al., 2020). Six signers had freely de-
scribed the content of 24 pictures using French Sign
Language (LSF). From each of the 24 original record-
ings, one mocap recording unit of 5-seconds duration
was extracted from the beginning of the utterance (see
examples in Videos 7.1 to 7.6). As shown in Figure 1,
the used markers were (L = left, R = right, F = front,
B = back): (1) pelvis, (2) stomach, (3) sternum, (4)
LB head, (5) LF head, (6) RB head, (7) RF head, (8)
L shoulder, (9) L elbow, (10) LB wrist, (11) LF wrist,
(12) LB hand, (13) LF hand, (14) R shoulder, (15) R el-
bow, (16) RB wrist, (17) RF wrist, (18) RB hand, (19)
RF hand. The mocap examples were normalized with
respect to size, shape and posture of the signers (see
Bigand et al. (2021)). The mocap data of the pelvis
marker were ignored as it was set as the origin, which
leads to zero vectors. Position and velocity of the body
markers were used as temporal features. Velocity was
estimated by time differentiation of the mocap position
coordinates.

Figure 1: The 19 upper-body markers used in the mo-
cap recordings.
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Figure 2: Distributions of position and velocity data of the RF hand marker along the Z axis, for mocap example
24. Dashed vertical lines represent the means.

Figure 3: The two moments of the position and velocity data along the Z axis, for all markers and all 144 mocap
examples. Thick lines represent the average statistics of each signer across their 24 examples.

Figure 4: The covariance of velocity between body markers (rows and columns) of Signer 2 and Signer 4 in the
three dimensions, for mocap example 24. Markers are sorted from the 1st to the 19th as presented in Bigand et
al. (2021), along X, Y and Z axes. Coefficients correspond to the covariance measures centered and standardized
across examples and signers. Blue represent positive covariances, while red represent negative ones. (A) covari-
ance between all markers along the Y axis. (B) covariance between the right hand and arm markers along the Y
axis, and the trunk and head markers along the X axis.
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Statistics of the mocap examples were then computed
as follows. Based on previous research investigating
the perception of auditory and visual textures (McDer-
mott and Simoncelli, 2011; Portilla and Simoncelli,
2000), we measured the first two moments (i.e., mean
and standard deviation (SD)) of position and veloc-
ity, and covariances of velocity between body mark-
ers. The first two moments of position and velocity
described their statistical distributions, which may vary
from one individual to another, as shown for expert ges-
ture analysis (Tits, 2018). Moreover, the covariance
of velocity allowed for quantifying the extent to which
any two markers covaried with each other, in two direc-
tions. This latter statistic has been shown to allow for
automatic person identification from dance movements
(Carlson et al., 2020).
These statistics vary substantially across the mocap
data of different signers. For instance, as shown in Fig-
ure 2, the position and velocity data of one body marker
are distributed differently across signers, for one mo-
cap example (i.e., for comparable content: the descrip-
tion of the same picture in LSF). Distributions of posi-
tion data differ in location of the peak (captured by the
mean) and width (captured by the standard deviation).
Figure 3 further supports that the two moments of po-
sition and velocity may capture substantial differences
across signers.
Furthermore, velocity covariances capture different as-
pects of motor coordination between the markers in
three dimensions, which can differ across signers. Vari-
ous distinct coordination patterns can be extracted. For
instance, for mocap example 24, the movements of
Signer 2 show an overall substantial (positive) covari-
ance between body markers along the Y axis, while this
covariance is near zero for Signer 4 (Figure 4.A). In-
versely, Signer 4 displays an important (negative) co-
variance of movements of the right arm and hand along
the Y axis with the trunk (i.e., stomach and sternum)
and head markers along the X axis, while this covari-
ance is less important for Signer 2 (Figure 4.B). Taken
together, these examples raise the possibility that the
identity of a signer is conveyed by statistical properties
of his or her movements.

3. Methods
The automatic signer identification model presented in
Bigand et al. (2021) allowed extracting specific kine-
matic statistics that carry identity information about the
signers. A linear classifier was trained to extract the
statistics of the mocap data characteristic of identity
(i.e., the ones that allow for accurate signer identifica-
tion).
Then, the aim of the present synthesis algorithm was
to manipulate the statistics of an original SL mocap
recording (i.e., impose new statistics to the original
recording), in order to reduce (α < 0) or exaggerate
(α > 0) the identity attribute, following Equation 1:

d̃α = dorig + αdk (1)

where d̃α is a vector containing the new target statistics
to be imposed by the synthesis alogrithm, dorig is a
vector containing the original statistics of the mocap
example, dk is a vector containing the overall statistical
patterns characteristic of the identity of Signer k, and
α is a scalar related to the amount of reduction (α < 0)
or exaggeration (α > 0) of the identity attribute.

The different steps of the synthesis process are dis-
played in Figure 5. In summary, the synthesis pro-
cess consisted of modifying (i.e., “re-synthezing”) an
existing mocap recording in order to change the iden-
tity attribute of the signer, according to the following
steps. First, statistics of the original mocap example
are measured, while the discriminant statistical kine-
matic patterns are extracted by the automatic identifi-
cation model (see Bigand et al. (2021)). Then, the dis-
criminant statistics characteristic of Signer k are either
added to (α > 0) or subtracted from (α < 0) the ones
of the original example (see Equation 1). Multiple ma-
nipulations can then be done using this technique, de-
pending on the values of k and α. For instance, if the
original mocap example relates to Signer 1, reducing
the importance of her identity-specific statistics (i.e.,
k = 1, α < 0) would make her less identifiable (i.e.,
kinematic anonymization). By contrast, increasing the
importance of the identity-specific statistics of Signer 2
(i.e., k = 2, α > 0) would make this latter signer iden-
tifiable while the SL movements were originally exe-
cuted by Signer 1 (i.e., kinematic identity conversion).
Once the target statistics defined, they are imposed to
the original mocap signal by the algorithm, which cre-
ates a new mocap excerpt.

Target statistics were imposed using an iterative pro-
cess where a synthesized mocap signal (initialized with
the content of the original mocap recording) is modi-
fied until its statistics are sufficiently close to the target
ones d̃α. Mathematically, the objective of this process
is to minimize the loss function that calculates the mean
square of the differences between the target statistics
and the statistics of the synthesized movements (see
Equation 2). We imposed the first two moments (mean
and SD) of position and velocity data and the covari-
ance of velocity between markers, as they were found
to be the most important statistics for signer identifi-
cation (Bigand, 2021). Imposing the mean of position
and mean of velocity of the markers was done to main-
tain consistent motion data when synthesizing (e.g.,
to avoid the generation of unrealistic, non-biological,
movements), although these two statistics had only mi-
nor role in the identification.
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Figure 5: Schematic representation of the steps used in the synthesis algorithm for the kinematic control of identity.

loss1 =
∑
m

(µpos,m,targ − µpos,m,synth)
2

loss2 =
∑
m

(σpos,m,targ − σpos,m,synth)
2

loss3 =
∑
m

(µvel,m,targ − µvel,m,synth)
2

loss4 =
∑
m

(σvel,m,targ − σvel,m,synth)
2

loss5 =
∑
i,j

(Ci,j,targ − Ci,j,synth)
2

losstot =

5∑
i=1

lossi

(2)

where µpos,m, σpos,m, µvel,m and σvel,m are the first
two moments of position and velocity data of marker
m (m ∈ [1, 54]), Ci,j is the covariance of velocity be-
tween markers i and j. targ and synth subscripts dis-
tinguish between target statistics and statistics of the
synthesized movements, respectively.
In order to be able to minimize all of the five loss com-
ponents of Equation 2 despite the differences in ranges
of amplitude across statistics, we used a weighted loss
function, whose weights then need to be optimized (see
Equation 3). The loss function was then minimized us-
ing the Adam optimization algorithm for gradient de-
scent. Each iterative step of the gradient descent mod-
ified the synthesized mocap signals (i.e., position tem-
poral curves of the 19 markers along the three dimen-
sions) so that they approached the target statistics.

losstot =

5∑
i=1

wilossi (3)

where lossi is the loss function related to one statistical
measure and wi the optimized weight.
Initially, there was no constraint in the synthesis pro-
cess that forced the position and velocity signals of
the synthesized movements to remain consistent with
their initial temporal structure in the original move-
ments. The limitation of this first version of the algo-
rithm is that, although it managed to impose the statis-
tics present in Equation 2, the modifications applied

to the new movements seemed to generate noise arti-
facts rather than changing relevant aspects of the mo-
tion of the signer (see Video 10.1). In fact, the im-
posing algorithm managed to impose the target statis-
tics but by modifying the movements in an undesired
manner. First, low-energy segments of the motion were
modified in the same way as high-energy ones, which
is not relevant as they may not be perceived by ob-
servers. Moreover, reaching the target statistics caused
very rapid oscillations in the synthesized velocity tem-
poral curves, which are unlikely to be perceived as bio-
logical motion by the observers (but rather noisy, wob-
bling, markers).
In order to modify the movements in proportion to their
energy (i.e., modify the aspects of the movement at
relevant times of actual, perceptible, motion), we in-
cluded another target statistic in the imposing algo-
rithm: the correlation of velocity between the original
and synthesized movements. The algorithm then aimed
to minimize the mean squared error between this corre-
lation and a value of 1, which characterizes two signals
that are perfectly positively correlated (see Equation
4). In other words, imposing this additional statistic
(Equation 5) allowed forcing the velocity curves of the
synthesized movements to be consistent with their ini-
tial temporal structure in the original mocap recording
(Figure 6).

loss6 =
∑
m

(1− ρvel,m,synth)
2

(4)

losstot =

6∑
i=1

wilossi (5)

where ρvel,m is the correlation of velocity between
the original and synthesized movements of marker m
(m ∈ [1, 54]). The target correlation value is set to 1
for all markers, in order to preserve the original tempo-
ral structure of velocity curves.

4. Results
This synthesis procedure was run on mocap examples
of different signers and for different modifications of
the identity attribute. In order to visualize how these
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Figure 6: Example of the synthesis results for the iden-
tity conversion from Signer 1 to Signer 2 (mocap ex-
ample 1). Position (up) and velocity (down) data of RF
hand marker along the Z axis are shown, for the origi-
nal mocap recording and synthesized mocap excerpt.

new statistics affected the movements of the SL dis-
course of Signer 1, the original and synthesized mocap
examples can be seen as “point-light” display videos.
For instance, the movements of Signer 1 were modified
so that the perceived identity was that of Signer 2 (i.e.,
identity conversion) (see Videos 10.3 and 10.4). Then,
they were modified to make Signer 1 not identifiable,
without making another signer identifiable specifically
(i.e., anonymization) (see Videos 10.5 and 10.6). One
further synthesis example of identity conversion (from
Signer 2 to Signer 1) can be found in Bigand (2021).
In order to assess the extent to which the novel move-
ments generated by our algorithm could convey a mod-
ified identity attribute (e.g., could be anonymized, or
identified as movements of another signer), we tested
our automatic signer identification model on the syn-
thesized mocap examples. If the identity-specific as-
pects of the movements are correctly modified by the
synthesis algorithm, then automatic identification from
these synthesized examples should be compromised.
When converting the identity of Signer 1 into that
of Signer 2, the automatic signer identification model
identified the synthesized mocap example as that of
Signer 2, while it identified the original motion as
produced by Signer 1 (see Table 1). Then, when
anonymizing the content of Signer 1, the signer identi-
fication model did not manage to identify Signer 1 from

the synthesized movements (see Table 1). Moreover,
the highest identification probability from this excerpt
was 0.43, which means that it did not clearly identify
any other signer from the anonymized movements.

Table 1: Output of the automatic signer identification
model from original and synthesized movements of
Signer 1. The synthesized versions consist of identity
conversion into Signer 2 and anonymization. Each out-
put number is the probability that the movements were
produced by the signer. Bold numbers represent the
highest probability across the six signers.

Original Synthesized
Conversion Anonymization

Signer 1 0.99 0.00 0.05

Signer 2 0.00 0.99 0.34

Signer 3 0.00 0.00 0.14

Signer 4 0.00 0.00 0.01

Signer 5 0.00 0.00 0.02

Signer 6 0.00 0.00 0.43

5. Discussion
This paper shows that simple statistics of the move-
ments of a signer can be manipulated in order to re-
generate mocap recordings with a modified identity at-
tribute. The mocap data of SL discourses can undergo
various manipulations, such as kinematic identity con-
version or anonymization. Moreover, the synthesis al-
gorithm preserves the original temporal structure of the
movements, which is crucial because degrading tempo-
ral structure could impair the comprehension of the SL
discourse.
Up to now, anonymization methods of SL content were
modifying appearance, using virtual signers (Kipp
et al., 2011) or modified videos (e.g., face-swapped
videos, where the face of the signer is replaced with
another face) (Lee et al., 2021; Bragg et al., 2020).
Our technique focuses on controlling the identity in
the kinematics of the signers, which could interestingly
complement prior approaches in order to provide full
anonymity, beyond face or body shape manipulations.
Moreover, the proposed algorithm has the advantage
that it can render the movements of signers as neutral
(i.e., not reflecting the identity of any other signer), by
contrast with face-swapping techniques.
However, some limitations of the present work should
be noted in order to ensure an effective use of these
tools in actual applications. First, although we aimed to
use SL mocap data as representative as possible of real-
life conditions (i.e., spontaneous LSF), the discourses
used in the present study were picture descriptions,
which may have involved specific linguistic structures
more than others (e.g., depicting ones). The different
outcomes reported here should be further tested in a
wider linguistic context.
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Moreover, the present computational findings call for
further tests with human participants. Three key prob-
lems should be investigated, similarly to prior work on
video anonymization (Lee et al., 2021): (1) identifiabil-
ity, by verifying that the ability of human observers to
identify the signers is compromised when showing the
synthesized modified movements, as compared to the
original ones (e.g., with “point-light” displays like in
Bigand et al. (2020) and Troje et al. (2005)); (2) com-
prehensibility, by evaluating the extent to which the
observers still understand the SL content in the mod-
ified motion examples; and (3) acceptability, by assess-
ing the deaf user perspective on the virtual signers ani-
mated with the modified movements and discussing po-
tential use cases (e.g., with focus groups). Should these
three fundamental points be validated, the present work
could constitute a first step of interest toward automat-
ically controlling the identity of deaf SL users when
expressing themselves via virtual signers. Moreover,
as shown for videos (Bragg et al., 2020), preserving
anonymity in mocap recordings could increase willing-
ness of SL users to participate in mocap research (e.g.,
in data collection), which is crucial to develop effective
and acceptable technologies.
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