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Abstract

This paper presents our strategy to address the
SemEval-2022 Task 3 PreTENS: Presupposed
Taxonomies Evaluating Neural Network Se-
mantics. The goal of the task is to identify if a
sentence is deemed acceptable or not, depend-
ing on the taxonomic relationship that holds
between a noun pair contained in the sentence.
For sub-task 1—binary classification—we pro-
pose an effective way to enhance the robust-
ness and the generalizability of language mod-
els for better classification on this downstream
task. We design a two-stage fine-tuning pro-
cedure on the ELECTRA language model us-
ing data augmentation techniques. Rigorous
experiments are carried out using multi-task
learning and data-enriched fine-tuning. Exper-
imental results demonstrate that our proposed
model, UU-Tax, is indeed able to generalize
well for our downstream task. For sub-task 2—
regression—we propose a simple classifier that
trains on features obtained from Universal Sen-
tence Encoder (USE). In addition to describing
the submitted systems, we discuss other experi-
ments that employ pre-trained language models
and data augmentation techniques. For both
sub-tasks, we perform error analysis to further
understand the behaviour of the proposed mod-
els. We achieved a global F1Binary score of
91.25% in sub-task 1 and a rho score of 0.221
in sub-task 2.1

1 Introduction

Predicting the semantic relationship between words
in a sentence is essential for Natural Language
Processing (NLP) tasks. Deep neural language
models accomplish outstanding results in multiple
tasks involving semantics evaluation. The question
posed by the shared task Presupposed Taxonomies:
Evaluating Neural Network Semantics (PreTENS)
is whether neural models can detect the taxonomic
relationship between nouns, especially in scenarios

1Our implementation of UU-Tax is publicly available at
https://github.com/IS5882/UU-TAX.

where the pattern and/or the set of nouns in the
sentence is previously unseen (Zamparelli et al.,
2022). Sub-task 1 is a simpler classification task,
while sub-task 2 is a more complex regression task.
Both sub-tasks involve datasets in English, French
and Italian. For each sub-task, teams are permitted
three submissions. For each submission, the score
is averaged over the three languages. The highest
score from the three submissions is reported.

We propose a series of models based on pre-
trained language models. We enhance the provided
datasets using state-of-the-art data augmentation
tools, and further increase the dataset size by em-
ploying translations. The aim of both steps is to
create slightly modified versions of the sentences,
such that the model can learn alternative forms of
nouns and patterns.

For the classification task (sub-task 1), we ob-
tained the 3rd place, with an F1Binary score of
91.25% averaged over the three languages. For
the regression task (sub-task 2), we obtained the
5th place, with a Spearman’s correlation coeffi-
cient ρ of 0.221 averaged over the three languages.
Sub-task 2 is markedly more difficult than sub-
task 1 due to sentences that can be ambiguous,
such as I like dogs, but not chihuahuas; some hu-
mans will judge this sentence as acceptable, while
some will not. We attempt to solve both tasks by
employing data augmentation techniques in order
to help the models understand variations in text.
Our main contributions are: (i) we devise a special
development-validation split to emulate the real sit-
uation in which the model must face new words
and patterns, and (ii) we combine various data aug-
mentation tools to allow the models to learn from
various versions of the training dataset.

In Section 2 we present the task details and some
of the related work that was done previously. In
Section 3 we motivate our choice of models. The
experiments we performed are in Section 4. Results
and conclusions are presented in Sections 5 and 6.
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2 Background

For the present task, we are provided with a list of
sentences following a set of patterns, all of which
have two slots for noun phrases. One such sentence
might be: I don’t like beer, a special kind of drink.
The pattern corresponding to this sentence would
be: I don’t like [blank], a special kind of [blank].
Sentences are labeled according to whether the
taxonomic relation between the two nouns makes
sense. In sub-task 1, labels are binary; a sen-
tence such as that shown above has a label of
1, while this sentence would have a label of 0:
I like huskies, and dogs too. In sub-task 2, labels
are continuous, ranging from 1 to 7; these scores
are based on a seven-point Likert scale, judged by
humans via crowdsourcing. The same dataset is
presented in English, Italian and French. For sub-
task 1, the training and test sets consist of 5 838
and 14 556 sentences, respectively; for sub-task 2,
the training and test sets consist of 524 and 1 009
sentences, respectively.

There are two challenges to this dataset: (i) The
test dataset is much bigger than the training dataset,
and (ii) There are unseen patterns and noun pairs in
the test set. The combination of these hampers the
ability of machine learning (ML) models trained
on the training set to generalize well to the test set.
Indeed, that is the aim of this task: to evaluate the
ability of language models to generalize to new
data when it comes to inferring taxonomies.

One way to conceptualize the PreTENS task is
to reformulate it as a taxonomy extraction task with
pattern classification and distributed word represen-
tations. For a given sentence, extract the noun pair
and the pattern from the sentence, and then deter-
mine if the taxonomic relation between the nouns
matches the relations allowed by the pattern. This
formulation is motivated by previous work in taxon-
omy construction that relied on various approaches
ranging from pattern-based methods and syntactic
features to word embeddings (Huang et al., 2019;
Luu et al., 2016; Roller et al., 2018). As promising
as this approach sounds for PreTENS, it involves
manual labeling of the noun-pair taxonomic rela-
tions in the training set, as we are not allowed to
use resources such as WordNet (Fellbaum, 1998)
or BabelNet (Navigli and Ponzetto, 2012).

A different approach is to tackle PreTENS as
a cross-over task between extraction of lexico-
semantic relations and commonsense validation.
There have been SemEval tasks to extract and iden-

tify taxonomic relationships between given terms
(SemEval-2016 task 13) (Bordea et al., 2016), and
to validate sentences for commonsense (SemEval-
2020 task 4, sub-task A) (Wang et al., 2020). The
aim of the common-sense validation task is to iden-
tify which of two natural language statements with
similar wordings makes sense.

In the SemEval-2016 task 13, approaches re-
lated to extracting hypernym-hyponym relations
to construct a taxonomy involved both pattern-
based methods and distributional methods. TAXI
relied on extracting Hearst-style lexico-syntactic
patterns by first crawling domain-specific corpora
based on the terminology of the target domain and
later using substring matching to extract candidate
hypernym-hyponym relations (Panchenko et al.,
2016). Another team designed a semi-supervised
model based on the hypothesis that hypernyms may
be induced by adding a vector offset to the corre-
sponding hyponym word embedding (Pocostales,
2016).

Participants in the SemEval 2020 commonsense
validation task had an advantage over PreTENS
participants: they were allowed to integrate taxo-
nomic information from external resources such
as ConceptNet (Wang et al., 2020), which eased
the process of fine-tuning the language models on
the down-stream task. As an example, the CN-
HIT-IT.NLP team (Zhang et al., 2020) and ECNU-
SenseMaker (Zhao et al., 2020) both used a variant
of K-BERT (Liu et al., 2020a) with additional data;
the former injects relevant triples from ConceptNet
to the language model, while the later also uses
ConceptNet’s unstructured text to pre-train the lan-
guage model. Other systems relied on ensemble
models consisting of different language models
such as RoBERTa and XLNet (Liu, 2020; Altiti
et al., 2020).

In Section 3 we outline the architectures cho-
sen to tackle the two sub-tasks of PreTENS. We
draw on previous work, as outlined above, and pro-
vide novel combinations of datasets and algorithms
to improve the performance of out-of-the box lan-
guage models.

3 System Description

The systems we propose for both PreTENS sub-
tasks are based on language models. In sub-task 1
we use the ELECTRA (Efficiently Learning an
Encoder that Classifies Token Replacements Ac-
curately) transformer (Clark et al., 2020), while in

272



sub-task 2 we employ USE (Universal Sentence
Encoder) (Yang et al., 2020).

3.1 Sub-task 1: Classification

In the first sub-task—binary classification—we
were required to assign an acceptability label
for each sentence in the three languages English,
French and Italian. Of the 20 394 sentences that
were provided for sub-task 1, only 5 838 sentences
(28.61%) were available for training. This split
causes the model to be likely to encounter un-
known data formats at testing time. This is a piv-
otal challenge in PreTENS, as the robustness and
generalization of language models is an open chal-
lenge and cannot be guaranteed (Tu et al., 2020;
Ramesh Kashyap et al., 2021). In our experi-
ments we found that every language model we used
(BERT, RoBERTa, XLNet, and ELECTRA) failed
to generalize well to unseen datasets, even though
all of them are pre-trained on large amounts of
data. To address this challenge, we built our mod-
els based on data augmentation.

While designing our model, we split the pro-
vided training data into a development set (30%)
and a validation set (70%), to emulate the train-test
split sizes. We deliberately leave several patterns
out of the development set, including, for exam-
ple: I like [blank], and more specifically [blank].
We choose these so-called complex patterns be-
cause, during exploratory experiments, we found
that pre-trained models had trouble with them. For
example, out of the 820 instances of the aforemen-
tioned pattern in the training dataset, 750 instances
were misclassified by one of the early instances of
our model; this includes sentences where the noun
pair was included in other sentences in the training
data. We thus remove complex patterns from the
training data, to simulate a situation in which new
unseen and difficult patterns are found in the test
set.

Transformer language models like BERT (De-
vlin et al., 2019) are pre-trained on two tasks:
Masked Language Modelling (MLM) and Next
Sentence Prediction (NSP). However, in subse-
quent models such as RoBERTa, training on NSP
was proven to be unnecessary; these models are
thus pre-trained solely on MLM. ELECTRA fur-
ther enhanced MLM performance while utiliz-
ing notably less computing resources for the pre-
training stage. The pre-training task in ELECTRA
is built on discovering replaced tokens in the input

sequence; to achieve this, ELECTRA deploys two
transformer models: a generator and a discrimina-
tor, where the generator is trained to substitute in-
put tokens with credible alternatives and a discrim-
inator to predict the presence or absence of substi-
tution. This setting is similar to Generative Adver-
sarial Networks (GANs) (Goodfellow et al., 2014),
with a key difference that the generator does not
attempt to trick the discriminator, making ELEC-
TRA non-adversarial. In ELECTRA, the gener-
ator parameters are only adjusted during the pre-
training phase. Fine tuning on downstream tasks
only modifies the discriminator parameters (Clark
et al., 2020).

Electra Discriminator

English Dataset

NLP Aug

Augmented Data

Insertion Substitution

Electra Generator

Stage 1

Italian Dataset English Translation

English TranslationFrench Dataset

English Dataset

Stage 2

Unannotated Test
Dataset 

Inference

Output Labels

Training

Figure 1: Sub-task 1: The English version of the pro-
posed two-stage fine-tuning model (UU-Tax). In the
French version, the Italian and English data are trans-
lated to French, and the NLPAug tool is employed on
the provided French training set. Likewise in the Italian
version.

Multi-stage fine-tuning has proven its effective-
ness on the robustness and generalization of mod-
els (Kocijan et al., 2019; Li and Rudzicz, 2021).
We perform a 2-stage fine-tuning; Figure 1 por-
trays our model work-flow. In the first stage, we
use the NLPAug tool (Ma, 2019) to generate new
sentences by making modifications to existing sen-
tences based on contextualized word embeddings.
There are several actions for the NLPAug tool; we
utilize the ‘Insertion’ and ‘Substitution’ operations.
The ‘Insertion’ operation picks a random position
in the sentence, and then inserts at that position the
word that best fits the local context. Meanwhile,
the ‘Substitution’ operation replaces a word in a
given sentence by the most appropriate alternative
for that word. In both operations, the word choice
is given by contextualized word embeddings, as
will be explained in Section 4.1. To avoid drifting
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away from the original sentence, in both operations
we limit the number of insertions and substitutions
to two. Because ‘Substitution’ in NLPAug might
turn an incorrect sentence into a correct one, we
only carry out ‘Substitution’ on sentences labeled 1.
An example of the output of the NLPAug tool is
shown in Figure 4 in Appendix A.

The second stage of fine-tuning also involves
data augmentation, using translation. For each
language l, we translate the datasets of the other
two languages into l. For example, as seen in Fig-
ure 1, when working on the English model, we
translate the Italian and French datasets to English,
and perform the second fine-tuning stage on the
translated data along with the original data. We use
the Google Translate API for all translations 2.

3.2 Sub-task 2: Regression

In sub-task 2—regression—we are required to de-
termine the level of acceptability of sentences on
a seven-point Likert scale. Our initial attempt in
sub-task 2 resembles the efforts made in the first
sub-task by relying on pre-trained language models.
However, our first submission, which relies on fine-
tuning multi-lingual BERT (Devlin et al., 2019)
with translation as data augmentation, did not per-
form well; more elaboration on this in Section 5.2.
As a result, we opt for a simpler yet more effective
model using Universal Sentence Encoder (USE)
(Yang et al., 2020) followed by a regressor. USE
is based on two encoder models and deep aver-
aging networks; both are equipped to generate a
512-dimension sentence embedding from a given
textual input, where embeddings for words and bi-
grams are averaged together and then passed as
input to a deep neural network that processes and
outputs the sentence embeddings.

4 Experimental Set-up

4.1 Sub-task 1: Classification

We implement our submitted models using Simple-
Transformers3. All models are trained for 4 epochs
with a batch size of 8; these values were determined
by validation, as we explain below. The model is
optimized using AdamW (Loshchilov and Hutter,
2019) and a linear decay learning rate schedule.
The learning rate is a key aspect of the performance
of a trained model. A large learning rate results

2Only 15% of the translated sentences using Google Trans-
late API were duplicates of the original sentence.

3https://github.com/ThilinaRajapakse/simpletransformers

in quick model convergence; however, if the learn-
ing rate is too large, it will lead to drastic updates
that will trigger divergent behaviour, while train-
ing a model with a too-small learning rate might
lead to an under-fitted model that gets stuck in
local minima (Bengio, 2012). In our two-stage
model, the first stage has a lower learning rate of
3×10−5 as opposed to the 4×10−5 assigned in the
second stage, which contains the PreTENS train-
ing data; this is because we want the model to
learn more from the real training data than from
the NLPAug-edited data. A summary of the model
hyper-parameters is given in Table 1. All the hyper-
parameters are tuned based on the F1 score on the
validation set. The same hyper-parameters are uti-
lized for all three languages—English, French and
Italian.

For data augmentation with NLPAug, BERTbase

is employed to obtain the contextual word embed-
dings for both ‘Insertion’ and ‘Substitution’ opera-
tions.

Hyper-parameter Value
Epochs 4
Batch Size 8
Stage 1 Learning Rate 3×10−5

Stage 2 Learning Rate 4×10−5

Optimizer AdamW

Table 1: Sub-task 1: Hyper-parameters values for train-
ing the ELECTRA model. The number of epochs and
the batch size were determined by validation.

4.2 Sub-task 2: Regression
For the three languages English, French and Italian
we deploy multi-lingual USELarge as it yields better
performance than mono-lingual USE for the three
languages. USE is employed through its Tensor-
Flow hub module4. We experiment with four dif-
ferent regressors: Linear Regression (LR) (Mont-
gomery et al., 2021), K-Nearest Neighbors Regres-
sor (KNR) (Kramer, 2013), Decision Tree (DT)
(Myles et al., 2004), and Support Vector Regres-
sor (SVR) (Awad and Khanna, 2015). We use the
Scikit-Learn (Pedregosa et al., 2011) library for the
implementation of the regressors. All regressors
are utilized with their default parameters except
for SVR epsilon ε . To define a higher margin of
tolerance where no penalty is given to errors we set
ε to 0.2 rather than the default value of 0.1.

4https://tfhub.dev/google/universal-sentence-encoder-
multilingual-large/3
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4.3 Evaluation measures

Sub-task 1 is evaluated using the Binary-averaged
F1 score (F1Binary) for each language, while the
global rank score is calculated as the average of the
F1Binary for all three languages. Sub-task 2 is eval-
uated using Spearman’s rank correlation coefficient
(ρ) for each language, with the global rank given
by the average of the coefficients for all languages.

5 Results and Evaluation

In this section, we analyze the performance of our
submitted models in both sub-tasks. We further
discuss other notable experiments that were carried
out.

5.1 Sub-task 1: Classification

Language Results
Recall Precision F1Binary

English 95.26 % 90.54 % 92.84 %
French 93.14 % 85.83 % 89.34 %
Italian 90.47 % 92.69 % 91.57 %
Average 91.25%

Table 2: Sub-task 1: UU-Tax submission results using a
two-stage fine-tuned ELECTRA model.

Results of the submitted models for English,
French, and Italian are shown in Table 2. Out of
21 teams, we were officially ranked 3rd in sub-
task 1, achieving a global score of 91.25%, only
1.06, and 2.92 percentage points short of the 2nd

and 1st places, respectively. In the next few sec-
tions, we explain how our experimentation led us to
the model we chose: the two-stage fine-tuning us-
ing ELECTRA with data augmentation (UU-Tax).

5.1.1 Experiments
Baseline. The PreTENS organizers proposed a
baseline algorithm that trains an SVM classifier
with features generated by TF-IDF with n-grams
(n = 3). Results of the baseline model are reported
in Table 3.

Multi-task fine-tuning. We experimented with
several models on the English dataset. We
tried a multi-task approach that involves further
fine-tuning on related data-rich supervised tasks.
In our case, it was the ‘common sense validation’
task, as it is highly correlated to PreTENS as
previously mentioned in Section 2. We used
the dataset from SemEval-2020 Common Sense

Validation sub-task A (Wang et al., 2020) and
modified the sentence label to 1 if it is a valid
sentence and 0 otherwise. We then fine-tuned our
ELECTRA model in the first stage using this data;
the second stage of fine-tuning was carried out
using the augmented data from NLPAug and the
provided training data. Multi-task fine-tuning has
proven its effectiveness across a variety of tasks
(Mahabadi et al., 2021). This model achieved an
F1Binary of 89.09%, which demonstrates the effect
of information sharing between the different tasks,
particularly in cases when the downstream task
is of a limited size. Nevertheless, multi-task fine-
tuning suffers from several shortcomings including
catastrophic forgetting, over-fitting in low-resource
tasks and under-fitting in high-resource tasks
(Mahabadi et al., 2021). For this reason, we did
not move forward with this approach.

Data-enriched fine-tuning. As an alternative,
we developed a data-enriched fine-tuning model
that employed a pre-trained BERT model with
an additional Bidirectional Long Short Term
Memory (Bi-LSTM) layer on top. In addition
to the input sentence, we concatenated the two
nominal arguments to the given input. To extract
the two nouns from the sentences, we leveraged
the fact that nouns in this dataset tend to have very
low document frequencies (DF), and classified
any word with DF less than 5% as a noun.
The final prompt of the input was as follows:
[CLS]Sentence[SEP]Noun 1[SEP]Noun 2[SEP]
Similar to the aforementioned models, we also
input to the model the augmented data generated
from NLPAug. This model was implemented with
PyTorch using the Hugging Face5 Transformers
library (Wolf et al., 2019). Figure 2 depicts the
data-enriched fine-tuning model. The model’s
performance resembles that of the multi-task
fine-tuning model by achieving an F1Binary of
89.04%.

As shown in Table 3, our submitted two-stage
fine-tuning ELECTRA model (UU-Tax) achieved
the highest results amongst all models, by a margin
of 3.63% and 4.62% between both multi-task learn-
ing model and data-enriched fine-tuning model,
respectively. We have almost 20% improvement
compared to the baseline.
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Model Results
Recall Precision F1Binary

Baseline (TF-IDF + SVR) 85.64 % 64.19 % 73.38 %
Multi-task fine-tuning 95.82 % 83.45 % 89.21 %
Data-enriched fine-tuning (BERT + Bi-LSTM ) 86.70 % 89.79 % 88.22 %
UU-Tax (two-stage ELECTRA) 95.26 % 90.54 % 92.84 %

Table 3: Sub-task 1: Comparison of the different experiments carried out on the English Language.

Pre-trained BERT large

[CLS] I like animals, and more specifically cats. [SEP] animals [SEP] cats [SEP] [PAD] [PAD] ..  Prompt

Input Sentence Additional Input

Bi-LSTM

Pad to MAX_LEN

Linear Layer

768

Label 1Label 0 Output Prediction Score

512

NLP Aug
Augmented Data

Italian Dataset English Translation

English TranslationFrench Dataset

English Dataset

Training Data

English Dataset

Figure 2: Sub-task 1: data-enriched fine-tuning model that employs an Bi-LSTM network on the top of pre-trained
BERT. This model was used during the experimentation phase.

5.1.2 Ablation Study and Error Analysis

We conducted ablation experiments to evaluate
the effect of data augmentation and our proposed
two-stage fine-tuned ELECTRA model. The
results of the analysis are presented in Table 4. We
limit the ablation study and error analysis to the
English dataset, as similar trends were observed in
the French and Italian datasets 6.

Data augmentation effect. The need for data
augmentation to generalize the model highly
affects the performance of the pre-trained model.
We perform two ablation analyses. In the first
setting (Ablation #1), we removed the translated
dataset from the second stage, and our model was
fine-tuned on data obtained from the NLPAug tool
in the first stage and on the original training dataset
in the second stage. The precision massively
dropped by 11.42%. Similar behavior is observed
in the second setting (Ablation #2), when the
NLPAug data is eliminated from our two-stage
training, and the first stage is trained on the

5https://huggingface.co/
6Results presented in Tables 3 and 4 may slightly vary

due to fine-tuning instability of pre-trained language models
(Mosbach et al., 2021).

translated data instead, while in the second stage
we fine-tuned using the original training data. This
highlights the importance of our proposed dual
augmentation using both NLPAug and translation
to capture a wider range of perturbations to the
original dataset.

Single-stage models’ performance. To verify our
two-stage fine-tuning approach, we evaluated it
against a single-stage fine-tuning. This experiment
was performed in two different settings; in the
first (Single-stage #1) we trained on the originally
provided data only, while in the second (Single-
stage #2) setting we trained on the same data
that was used in UU-Tax, which is obtained from
NLPAug, translation, and the original training
set. In both settings, we notice a drop in the F1
when comparing against UU-Tax. Nonetheless, we
can observe that amongst the three experiments
(UU-Tax, Single-stage #1 and Single-stage #2)
the highest recall of 96.26% is achieved in the
(Single stage #2) along with the lowest precision
of 71.15%. Our interpretation of this finding is
that in the (Single stage #2) experiment, the model
over-predicted positives, causing the model to
achieve a high recall and a relatively low precision.
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Stage 1 Stage 2 Results
Model Name LM NLPAug Trans OT NLPAug Trans OT R P F1

Ablation #1 ELECTRA 95.30 % 78.73 % 86.22 %
Ablation #2 ELECTRA 95.59 % 95.59 % 86.58 %
Single Stage #1 ELECTRA - - - 90.20 % 79.41 % 84.47 %
Single Stage #2 ELECTRA - - - 96.26 % 71.16 % 81.83 %
Two-Stage #1 BERT 92.36 % 68.97 % 78.97 %
Two-Stage #2 RoBERTa 93.93 % 78.24 % 85.37 %
UU-Tax ELECTRA 95.26 % 90.54 % 92.84 %

Table 4: Sub-task 1: Results of various classification models trained during experimentation and ablation on the
sub-task 1 dataset, using different combinations of input data obtained from NLPAug, translation (Trans) and the
original training set provided (OT). Additional variations are single-stage versus two-stage models, and alternative
pre-trained language models (LM). Recall (R), precision (P), and F1Binary (F1) are used as evaluation metrics.

indicates which data is utilized in each fine-tuning stage, while - indicates that stage 2 is not applicable.

We attribute this behavior to two causes. First,
the unbalanced ratio that NLPAug ‘Substitution’
operation caused as previously explained in
Section 3.17. Second, in UU-Tax a higher learning
rate is deployed in the second fine-tuning stage,
making the model focus more on the original
dataset than on the NLPAug data.

Experimenting with different language models.
Additionally, we experimented with different
pre-trained language models, namely BERT
(Two-stage #1) and RoBERTa (Two-stage #2). As
seen in Table 4, ELECTRA outperforms both
RoBERTa and BERT by 7.47% and 13.92%,
respectively, of the F1 score, which illustrates the
strong generalizability of ELECTRA. Our findings
agree with (Anaby-Tavor et al., 2020; Kumar et al.,
2020), who demonstrate that generative models are
suitable for data augmentation.

Error Analysis. By manually inspecting the wrong
predictions generated by our proposed top three per-
forming models (UU-Tax, multi-task fine-tuning,
and data-enriched fine-tuning) we can observe that
UU-Tax achieves the smallest percentage of incor-
rect predictions on both seen and unseen patterns,
as observed in Figure 3. This shows that the pro-
posed two-stage fine-tuning (UU-Tax) can learn
better and generalize better than multi-task fine-
tuning and data-enriched fine-tuning. In addition,
we also noticed that proper names were the cause of
many misclassifications. One possible mitigation to
overcome this error is to create an improved model

7The NLPAug ‘Substitution’ dataset is composed of 5568
instances all labeled ‘1’, making 67.98% of the NLPAug data
to have a ‘1’ label.

0.00%

2.50%

5.00%

7.50%

10.00%
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Seen patterns Unseen patterns Proper names

UU-Tax Mult-task fine-tuning Data enriched fine-tuning

Figure 3: Sub-task 1: Percentage of incorrect predic-
tions for all patterns in the test dataset, for the top three
preforming models: UU-Tax, Multi-task fine-tuning and
data-enriched fine-tuning.

to envision proper names appearing in a sentence
as hyponyms of the preceding or the subsequent
noun appearing in the same sentence.

5.2 Sub-task 2: Regression

Language Model Rho (ρ)

English USE + SVR 0.478
French USE + DT -0.059
Italian USE + LR 0.246
Average 0.221%

Table 5: Sub-task 2: UU-Tax submission results that
achieved the highest score averaged over the three lan-
guages, out of the three submissions. ρ is Spearman’s
rank correlation coefficient.

As explained in Section 3.2, USE was employed
for all three languages to obtain pre-trained word
embeddings; we used SVR, DT, and LR regressors
for English, French and Italian, respectively. We
came in 5th in sub-task 2 out of 17 teams by achiev-
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Language Model

Baseline BERT BERT + Trans USE + LR USE + KNR USE + DT USE + SVR

English 0.247 -0.068 -0.027 -0.175 0.235 0.118 0.478*
French 0.230 -0.075 -0.027 0.207 0.103 -0.059* 0.030
Italian 0.370 0.047 0.150 0.246* 0.081 0.171 0.137

Table 6: Sub-task 2: Rho (ρ) scores of different regression models that we experimented. Models that were part of
the global score are marked with an * . Baseline is TF-IDF + SVR; BERT is multilingual.

ing a global average of 0.221. It is worth noting that
we had a better performing French-language model
in the first submission than in our top submission.
The experiments we performed for sub-task 2 are
discussed in Section 5.2.1. The ρ coefficients for
the three languages in our best submission are re-
ported in Table 5.

5.2.1 Experiments
Table 6 shows the results of our submitted mod-
els along with other experiments that we carried
out using different regressors as explained in Sec-
tion 4.2. In addition, we also experimented using
multi-lingual BERT in two different settings; once
with only fine-tuning on the provided dataset of the
three languages and in the other setting, we aug-
mented the provided training data with translation
as in the translation process in sub-task 1.

In English our submitted USE + SVR model
achieved the highest ρ score of 0.478 amongst all
other models, surpassing the baseline by 94%. Al-
though in the French version our final submitted
model was, unfortunately, the model with the low-
est score, we were able to achieve the highest score
of 0.207 using LR, less than the baseline approach
by ∆ρ = 0.023. While in Italian, our submitted
model was our highest rho score achieved of 0.246
which is ∆ρ = 0.123 lower than the baseline. We
infer from the fact that our model performed badly
on French and Italian that USE is better optimized
for English language.

5.2.2 Ablation Study and Error Analysis
Pre-trained language models did not perform well.
We attribute this to the very limited training
size of sub-task 2: only four different patterns
made up the training data. The deployment of
data augmentation—translation—to multi-lingual
BERT was able to improve the performance on all
three languages by more than 50%, which confirms
our hypothesis that the limited pattern in the pro-
vided training set highly affected the performance

of the pre-trained language model. This is sup-
ported by a similar trend when experimenting with
different language models. Since this is a regres-
sion task, we were not able to use the NLPAug tool
as the assigned score might be inaccurate after the
substitution and insertion operations.

There is no consistently best performing classi-
cal ML algorithm: unlike for Italian and French,
LR did not perform well on the English dataset,
and SVR outperformed all other regressors on the
English version. Interestingly, we see a consis-
tent pattern across the French and Italian versions,
showing that the LR regressor works best; we at-
tribute this to the lexical and grammatical similarity
between the French and Italian languages.

6 Conclusion

The limited size of the training dataset as com-
pared to the test set made it impossible to train
neural networks directly on the task. As a result,
we took advantage of pre-trained language mod-
els. Nonetheless, the robustness of language mod-
els is highly affected by the size and variance of
the downstream task data available for fine-tuning,
which causes the language model to fail to gener-
alize. Hereby, we relied upon data augmentation
techniques using a two-stage fine-tuning process
on ELECTRA. The first fine-tuning stage was car-
ried out using an augmented version of the dataset,
while in the second stage we used the translated
versions of the provided PreTENS training data in
addition to the original data. We ranked 3rd out of
21 teams in sub-task 1. For the second sub-task
we proposed a simple model by training an SVR
classifier with sentence embeddings obtained from
USE; we ranked 5th out of 17 teams.

As an extension for future work, both sub-tasks
could greatly benefit from adversarial training,
which has proven its success across various NLP
tasks in improving the model robustness and gener-
alization (Liu et al., 2020b; Yoo and Qi, 2021).
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I don't like music, I dislike it. 

I like handbags more than bracelets (1)
I liked handbags better than bracelets. 

Main Sentence (Label)Substitution Insertion

I definitely like handbags more than bracelets. 

He likes sadness more than logic. (1)

I do not like music , I prefer techno. (0)
I don't  like electronic music, I prefer techno.
I don't really like electronic music, I prefer techno.

I like seafood, and more specifically veal. (0)
I certainly like the seafood, and more specifically veal.
I like kinds of seafood, and more specifically veal.

He likes sadness more than anything.

I don't like music, I hate it.

I like seafood, and more specifically fish.
I like seafood, or more specifically fish.

He felt sadness more than anything.

But I do like handbags more than bracelets.

*

They love bags, more than bracelets.

He likes sadness more than just logic.
He probably likes sadness more than just logic.

*

*
*

Figure 4: Sub-task 1: Example of the output generated by both, substitution and insertion operations of the NLPAug
library. As explained in Section 3.1, for sentence with label 0, the substitution operation is not performed, this is
indicated using an * in the figure.
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