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Abstract

In recent years, there has been increased in-
terest in building predictive models that har-
ness natural language processing and machine
learning techniques to detect emotions from
various text sources, including social media
posts, micro-blogs or news articles. Yet, de-
ployment of such models in real-world sen-
timent and emotion applications faces chal-
lenges, in particular poor out-of-domain gen-
eralizability. This is likely due to domain-
specific differences (e.g., topics, communica-
tive goals, and annotation schemes) that make
transfer between different models of emotion
recognition difficult. In this work we propose
approaches for text-based emotion detection
that leverage transformer models (BERT and
RoBERTa) in combination with Bidirectional
Long Short-Term Memory (BiLSTM) networks
trained on a comprehensive set of psycholin-
guistic features. First, we evaluate the perfor-
mance of our models within-domain on two
benchmark datasets: GoEmotion (Demszky
et al., 2020) and ISEAR (Scherer and Wallbott,
1994). Second, we conduct transfer learning
experiments on six datasets from the Unified
Emotion Dataset (Bostan and Klinger, 2018)
to evaluate their out-of-domain robustness. We
find that the proposed hybrid models improve
the ability to generalize to out-of-distribution
data compared to a standard transformer-based
approach. Moreover, we observe that these
models perform competitively on in-domain
data.

1 Introduction

Emotions are a key factor affecting all human be-
havior, which includes rational tasks such as reason-
ing, decision making, and social interaction (Par-
rott, 2001; Loewenstein and Lerner, 2003; Lerner
et al., 2015; Bericat, 2016). Although emotions
seem to be subjective by nature, they appear in

objectively derivable ways in texts. Text-based
emotion detection (henceforth TBED) is a branch
of sentiment analysis that aims to extract textual
features to identify associations with various emo-
tions such as anger, fear, joy, sadness, surprise,
etc. TBED is a rapidly developing interdisciplinary
field that brings together insights from cognitive
psychology, social sciences, computational linguis-
tics, natural language processing (NLP) and ma-
chine learning (Canales and Martínez-Barco, 2014;
Acheampong et al., 2020a; Alswaidan and Menai,
2020; Deng and Ren, 2021). TBED has a wide
range of real-world applications, from healthcare
(Cambria et al., 2010a), recommendation systems
(Majumder et al., 2019), empathic chatbot devel-
opment (Casas et al., 2021), offensive language
detection (Plaza-del Arco et al., 2021), social data
analysis for business intelligence (Cambria et al.,
2013; Soussan and Trovati, 2020), and stock mar-
ket prediction (Xing et al., 2018).

The differentiation of emotions and their clas-
sification into specific groups and categories is
a subfield of affective research and has yielded
several theories and models (Borod et al., 2000;
Scherer et al., 2000; Cambria et al., 2012; Sander
and Nummenmaa, 2021; Susanto et al., 2020).
The grouping of models for the classification of
emotions generally differs according to whether
emotions are conceived as discrete/categorical or
as dimensional. Categorical models of emotions,
like Ekman’s six basic emotions (anger, disgust,
fear, joy, sadness, and surprise) (Ekman, 1992,
1999), assume physiologically distinct basic hu-
man emotions. Plutchik’s Wheel of Emotion
(Plutchik, 1984) is another categorical model that
assumes a set of eight discrete emotions expressed
in four opposing pairs (joy–sadness, anger–fear,
trust–disgust, and anticipation–surprise). Dimen-
sional emotion models, like the Circumplex Model
of Russell (1980), groups affective states into a
vector space of valence (corresponding to senti-
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ment/polarity), arousal (corresponding to a degree
of calmness or excitement), and dominance (per-
ceived degree of control over a given situation).

Current approaches to TBED take the advan-
tage of recent advances in NLP and machine
learning, with deep learning techniques achieving
state-of-the-art performance on benchmark emo-
tion datasets (see Acheampong et al. 2020a for
recent reviews). However there still remains the
issue of out-of-domain generalizability of the exist-
ing emotion detection models. The way emotions
are conveyed in texts may differ from domain to
domain, reflecting differences in topics, commu-
nicative goals, target audience, etc. This makes the
deployment of such models in real-world sentiment
and emotion applications difficult. The importance
of this issue has been increasingly recognized in the
TBED literature. For example, Bostan and Klinger
(2018) emphasize that “[j]ournalists ideally tend
to be objective when writing articles, authors of
microblog posts need to focus on brevity”, and that
“emotion expressions in tales are more subtle and
implicit than, for instance, in blogs”. To support fu-
ture transfer learning and domain adaptation work
for TBED, the authors constructed a unified, aggre-
gated emotion detection dataset that encompasses
different domains and annotation schemes.

In this work, we contribute to the improvement
of the generalizability of emotion detection mod-
els as follows: We build hybrid models that com-
bine pre-trained transformer language models with
Bidirectional Long Short-Term Memory (BiLSTM)
networks trained, to our knowledge, on the most
comprehensive set of psycholinguistic features. We
evaluate the performance of the proposed mod-
els in two ways: First, we conduct within-corpus
emotion classification experiments (training on one
corpus and testing on the same) on two emotion
benchmark datasets, GoEmotion (Demszky et al.,
2020) and ISEAR (Scherer and Wallbott, 1994),
to show that such hybrid models outperform pre-
trained transformer models. Second, we conduct
transfer learning experiments on six popular emo-
tion classification datasets of the Unified Emotion
Dataset (Bostan and Klinger, 2018) to show that
our approach improves the generalizability of emo-
tion classification across domains and emotion tax-
onomies. The remainder of the paper is organized
as follows: In Section 2, we briefly review recent
related work on TBED. Then, in Section 3, we
present popular benchmark datasets for emotion

detection. Section 4 details the extraction of psy-
cholinguistic features using automated text analysis
based on a sliding window approach. In Section
5, we describe our emotion detection models, and
in Section 6, we present our experiments and dis-
cuss the results. Finally, we conclude with possible
directions for future work in Section 7.

2 Related Work

In this section, we focus on previous TBED
research conducted on two popular benchmark
datasets (GoEmotions, ISEAR) to compare the
performance of our models with state-of-the-art
emotion recognition models, as well as previous
attempts to improve generalizability using transfer
learning techniques.

Current work on TBED typically utilizes a vari-
ety of linguistic features, such as word or character
n-grams, affect lexicons, and word embeddings in
combination with a supervised classification model
(for recent overviews see, Sailunaz et al., 2018;
Acheampong et al., 2020b; Alswaidan and Menai,
2020). While earlier approaches relied on shallow
classifiers, such as a naive Bayes, SVM or MaxEnt
classifier, later approaches increasingly relied on
deep learning models in combination with different
word embedding methods. For example, Polig-
nano et al. (2019) proposed an emotion detection
model based on the use of long short-term memory
(LSTM) and convolutional neural network (CNN)
mediated through the use of a level of attention
in combination with different word embeddings
(GloVe, Pennington et al. 2014, and Fast-Text, Bo-
janowski et al. 2017).

In experiments performed on the ISEAR dataset,
Dong and Zeng (2022) proposed a text emotion
distribution learning model based on a lexicon-
enhanced multi-task convolutional neural network
(LMT-CNN) to jointly solve the tasks of text emo-
tion distribution prediction and emotion label clas-
sification. The LMT-CNN model is an end-to-end
multi-module deep neural network that utilizes se-
mantic information and linguistic knowledge to
predict emotion distributions and labels. Based on
comparative experiments on nine commonly used
emotion datasets, Dong and Zeng (2022) showed
that the LMT-CNN model can outperform two
previously introduced deep-neural-network-based
models: TextCNN, a convolutional neural network
for text emotion classification (Kim, 2014) and
MT-CNN (Zhang et al., 2018), a multi-task convo-
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lutional neural network model that simultaneously
predicts the distribution of text emotion and the
dominant emotion of the text (see Table 1 for nu-
merical details on the performance of these models
on the datasets used in the present work). In re-
cent years, TBED research has increasingly relied
on transformer-based pre-trained language models
(Acheampong et al., 2020a; Demszky et al., 2020;
?): For example, Acheampong et al. (2020a) per-
form comparative analyses of BERT (Devlin et al.,
2019), RoBERTA (Liu et al., 2019), DistilBERT
(Sanh et al., 2019), and XLNet (Yang et al., 2019)
for text-based emotion recognition on the ISEAR
dataset. While all models were found to be effi-
cient in detecting emotions from text, RoBERTa
achieved the highest performance with a detection
accuracy of 74.31%. The currently best-performing
model on the ISEAR dataset, reaching a micro-
average F1 score of 75.2%, is Park et al. (2021). In
this work a RoBERTa-Large model was finetuned
to learn conditional VAD distributions – obtained
from the NRC-VAD lexicon (Mohammad, 2018)
– through supervision of categorical labels. The
learned VAD distributions were then used to pre-
dict the emotion labels for a given sentence.

For the recently introduced GoEmotions dataset,
Demszky et al. (2020) already provided a strong
baseline for modeling emotion classification by
fine-tuning a BERT-base model. Their model
achieved an average F1-score of 64% over an
Ekman-style grouping into six coarse categories.
? conducted comparative experiments with addi-
tional transformer-based models – BERT, Distil-
BERT, RoBERTa, XLNet, and ELECTRA (Clark
et al., 2020) – on the GoEmotions dataset. As in the
case of ISEAR, the best performance was achieved
by RoBERTa, with an F1-score of 49% on the full
GoEmotions taxonomy (28 emotion categories).

Previous TBED work has also proposed com-
binations of different approaches. For example,
Seol et al. (2008) proposed a hybrid model that
combines emotion keywords in a sentence using an
emotional keyword dictionary with a knowledge-
based artificial neural network that uses domain
knowledge. To our knowledge, however, almost
no TBED research has investigated hybrid models
that combine transformer-based models with (psy-
cho)linguistic features (see, however, De Bruyne
et al. 2021, for an exception in Dutch). This is sur-
prising, as such an approach has been successfully
applied in related areas, for example personality

prediction (Mehta et al., 2020; Kerz et al., 2022).
The available research aimed at improving the

generalizability of transformer-based models using
transfer learning techniques has so far focused on
demonstrating that training on a large dataset of
one domain, say Reddit comments, can contribute
to increasing model accuracy for different target
domains, such as tweets and personal narratives.
Specifically, using three different finetuning setups
– (1) finetuning BERT only on the target dataset,
(2) first finetuning BERT on GoEmotions, then per-
form transfer learning by replacing the final dense
layer, and (3) freezing all layers besides the last
layer and finetuning on the target dataset –, Dem-
szky et al. (2020) showed that the GoEmotions
dataset generalizes well to other domains and dif-
ferent emotion taxonomies in nine datasets from
the Unified Emotion Dataset (Bostan and Klinger,
2018).

3 Datasets

We conduct experiments on a total of eight datasets.
The within-domain experiments are performed on
two benchmark corpora: The GoEmotions dataset
(Demszky et al., 2020) and the International Survey
on Emotion Antecedents and Reactions (ISEAR)
dataset (Scherer and Wallbott, 1994). GoEmotions
is the largest available manually annotated dataset
for emotion prediction. It consists of 58 thou-
sand Reddit comments, labeled by 80 human raters
for 27 emotion categories plus a neutral category.
While 83% of the items of the dataset have received
a single label, GoEmotions is strictly speaking a
multilabel dataset, as raters were free to select mul-
tiple emotions. The dataset has been manually re-
viewed to remove profanity and offensive language
towards a particular ethnicity, gender, sexual orien-
tation, or disability. The ISEAR dataset is a widely
used benchmark dataset consisting of personal re-
ports on emotional events written by 3000 people
from different cultural backgrounds. It was con-
structed by collecting questionnaires answered by
people that reported on their own emotional events.
It contains a total of 7,665 sentences labeled with
one of seven emotions: joy, fear, anger, sadness,
shame, guilt and disgust. The transfer-learning ex-
periments are conducted on six benchmark datasets
from Unified Emotion Dataset (Bostan and Klinger,
2018) that were chosen based on their diversity in
size and domain: (1) The AffectiveText dataset
(Strapparava and Mihalcea, 2007) consists of 1,250
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news headlines. The annotation schema follows Ek-
man’s basic emotions, complemented by valence.
It is multi-label annotated via expert annotation
and emotion categories are assigned a score from
0 to 100. (2) The CrowdFlower dataset consists
of 39,740 tweets annotated via crowdsourcing with
one label per tweet. The dataset was previously
found to be noisy in comparison with other emo-
tion datasets (Bostan and Klinger, 2018). (3) The
dataset Electoral-Tweets (Mohammad et al., 2015)
targets the domain of elections. It consists of over
100,000 responses to two detailed online question-
naires (the questions targeted emotions, purpose,
and style in electoral tweets). The tweets are anno-
tated via crowdsourcing. (4) The Stance Sentiment
Emotion Corpus SSEC (Schuff et al., 2017) is an
annotation of 4,868 tweets from the SemEval 2016
Twitter stance and sentiment dataset. It is anno-
tated via expert annotation with multiple emotion
labels per tweet following Plutchik’s fundamental
emotions. (5) The Twitter Emotion Corpus TEC
(Mohammad, 2012) consists of 21,011 tweets. The
annotation schema corresponds to Ekman’s model
of basic emotions. They collected tweets with
hashtags corresponding to the six Ekman emotions:
#anger, #disgust, #fear, #happy, #sadness, and #sur-
prise, therefore it is distantly single-label anno-
tated. (6) The Emotion-Stimulus dataset (Ghazi
et al., 2015) has 1,549 sentences with their emotion
analysed. The set of annotation labels comprises
of Ekman’s basic emotions with the addition of
shame. (7) The ISEARUED dataset that is part of
the Unified Emotion Dataset has 5,477 sentences
with single emotion annotations. This dataset is a
filtered version of the original ISEAR dataset de-
scribed above. Bostan and Klinger (2018) filter and
keep the texts with the labels anger, disgust, joy,
sadness and fear for the Unified Emotion Dataset.

4 Sentence-level measurement of
psycholinguistic features

The datasets were automatically analyzed using an
automated text analysis (ATA) system that employs
a sliding window technique to compute sentence-
level measurements (for recent applications of this
tool across various domains, see Qiao et al. (2020)
for fake news detection, Kerz et al. (2021) for pre-
dicting human affective ratings) and Wiechmann
et al. (2022) for predicting eye-moving patterns
during reading). We extracted a set of 435 psy-
cholinguistic features that can be binned into four

groups: (1) features of morpho-syntactic complex-
ity (N=19), (2) features of lexical richness, diver-
sity and sophistication (N=77), (3) readability fea-
tures (N=14), and (4) lexicon features designed to
detect sentiment, emotion and/or affect (N=325).
Tokenization, sentence splitting, part-of-speech tag-
ging, lemmatization and syntactic PCFG parsing
were performed using Stanford CoreNLP (Man-
ning et al., 2014).

The group of morpho-syntactic complexity fea-
tures includes (i) surface features related to the
length of production units, such as the average
length of clauses and sentences, (ii) features of
the type and frequency of embeddings, such as
number of dependent clauses per T-Unit or verb
phrases per sentence and (iii) the frequency of par-
ticular structure types, such as the number of com-
plex nominals per clause. This group also includes
(iv) information-theoretic features of morphologi-
cal and syntactic complexity based on the Deflate
algorithm (Deutsch, 1996). The group of lexical
richness, diversity and sophistication features
includes six different subtypes: (i) lexical density
features, such as the ratio of the number of lexi-
cal (as opposed to grammatical) words to the total
number of words in a text, (ii) lexical variation, i.e.
the range of vocabulary as manifested in language
use, captured by text-size corrected type-token ra-
tio, (iii) lexical sophistication, i.e. the proportion
of relatively unusual or advanced words in a text,
such as the number of words from the New General
Service List (Browne et al., 2013), (iv) psycholin-
guistic norms of words, such as the average age
of acquisition of the word (Kuperman et al., 2012)
and two recently introduced types of features: (v)
word prevalence features that capture the number
of people who know the word (Brysbaert et al.,
2019; Johns et al., 2020) and (vi) register-based
n-gram frequency features that take into account
both frequency rank and the number of word n-
grams (n ∈ [1, 5]). The latter were derived from the
five register subcomponents of the Contemporary
Corpus of American English (COCA, 560 million
words, Davies, 2008): spoken, magazine, fiction,
news and academic language (see Kerz et al., 2020,
for details see e.g.). The group of readability fea-
tures combines a word familiarity variable defined
by a prespecified vocabulary resource to estimate
semantic difficulty along with a syntactic variable,
such as average sentence length. Examples of these
measures include the Fry index (Fry, 1968) or the
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SMOG (McLaughlin, 1969). The group of lexicon-
based sentiment/emotion/affect features was de-
rived from a total of ten lexicons that have been
successfully used in personality detection, emotion
recognition and sentiment analysis research: (1)
The Affective Norms for English Words (ANEW)
(Bradley and Lang, 1999), (2) the ANEW-Emo lexi-
cons (Stevenson et al., 2007), (3) DepecheMood++
(Araque et al., 2019), (4) the Geneva Affect La-
bel Coder (GALC) (Scherer, 2005), (5) General
Inquirer (Stone et al., 1966), (6) the LIWC dic-
tionary (Pennebaker et al., 2001), (7) the NRC
Word-Emotion Association Lexicon (Mohammad
and Turney, 2013), (8) the NRC Valence, Arousal,
and Dominance lexicon (Mohammad, 2018), (9)
SenticNet (Cambria et al., 2010b), and (10) the
Sentiment140 lexicon (Mohammad et al., 2013).

5 Modeling Approach

We construct a total of five models: (1) a fine-tuned
Bidirectional Encoder Representations from Trans-
formers (BERT) model, (2) a fine-tuned RoBERTA
model (Robustly Optimized BERT pre-training Ap-
proach), (3) a bidirectional neural network clas-
sifiers trained on sentence-level measurements of
psycholinguistic features described in Section 3.1,
and (4) and (5) two hybrid models integrating
BERT and RoBERTa predictions with the psy-
cholinguistic features. We train all models in a
multi-label classification setup. For the within-
domain evaluation of the models on the GoEmo-
tions dataset, we follow the procedure specified
in Demszky et al. (2020): That is, we filtered out
emotion labels selected by only a single annota-
tor. The 93% of the original were randomly split
into train (80%), dev (10%) and test (10%) sets.
These splits are identical to those used by Dem-
szky et al.. In the transfer learning setting geared
to show that our modeling approach improves gen-
eralization across domains and taxonomies, we per-
form experiments on each of the six emotion bench-
mark datasets presented in section 3 using four ap-
proaches: with/without finetuning on target dataset
and with/without the inclusion of the label ‘neu-
tral’. The performance of these models is evaluated
using 5 times repeated 5-fold crossvalidation using
a 80/20 split to counter variability due to weight
initialization. We report performance metrics av-
eraged over all runs. All models are implemented
using PyTorch (Paszke et al., 2019). Unless specif-
ically stated otherwise, we use ‘BCELoss’ as our

BiLSTM layer

FC Layer

FC Layer

Pre-trained Language Model

Ti1 Ti2 TiM-1Ti3 TiM

Figure 1: Structure diagram of transformer-based emo-
tion detection models

loss function, ‘AdamW’ as optimizer, with learning
rate 2× 10−5 and weight decay of 1× 10−5

5.1 Transformer-based models (BERT,
RoBERTa)

We used the pretrained ‘bert-base-uncased’ and
‘roberta-base’ models from the Huggingface Trans-
formers library (Wolf et al., 2020). The models con-
sist of 12 Transformer layers with hidden size 768
and 12 attention heads. We run experiments with
(1) a linear fully-connected layer for classification
as well as with (2) an intermediate bidirectional
LSTM layer with 256 hidden units (Al-Omari et al.,
2020) (BERT-BiLSTM). The following hyperpa-
rameters are used for fine-tuning: a fixed learning
rate of 2 × 10−5 is applied and L2 regularization
of 1× 10−6. All models were trained for 8 epochs,
with batch size of 4 and maximum sequence length
of 512 and dropout of 0.2. We report the results
from the best performing models, i.e. RoBERTa-
BiLSTM and BERT-BiLSTM.

5.2 Bidirectional LSTM trained on
psycholinguistic features (PsyLing)

As a model based solely on psycholinguistic fea-
tures, we constructed a 2-layer bidirectional long
short-term model (BiLSTM) with a hidden state
dimension of 32, which is depicted in Figure 2.
The input to the model is a sequence CMN

1 =
(CM1, CM2 . . . , CMN ), where CMi, the output
of the ATA-system, for the ith sentence of a docu-
ment, is a 435 dimensional vector and N is the
sequence length. To predict the labels of a se-
quence, we concatenate the last hidden states of
the last layer in forward (

−→
hn) and backward direc-

tions (
←−
hn). The resulting vector hn = [

−→
hn|←−hn] is
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Figure 2: Structure diagram of BiLSTM emotion detec-
tion model trained on psycholinguistic features

then transformed through a 2-layer feedforward
neural network, whose activation function is Recti-
fier Linear Unit (ReLU). The output of this is then
passed to a Dense Fully Connected Layer with a
dropout of 0.2, and finally fed to a final fully con-
nected layer. The output of this is a K dimensional
vector, where K is the number of emotion labels.

5.3 Hybrid models (BERT+PsyLing,
RoBERTa+PsyLing)

We assemble the hybrid models by (1) obtain-
ing a set of 256 dimensional vector from the
PsyLing model and then (2) concatenating these
features along with the output from the pre-trained
transformer-based model part. To obtain the out-
put of the pre-trained transformer-based model, the
given text is fed to a pre-trained language model, its
outputs are passed through a 2-layer BiLSTM with
hidden size of 512. This is further passed through
a fully connected layer to obtain a 256 dimensional
vector. This concatenated vector is then fed into a
2-layer feedforward classifier. To obtain the soft
labels (probabilities that a text belongs to the cor-
responding emotion label), sigmoid was applied to
each dimension of the output vector.

6 Results

The models were evaluated using accuracy, pre-
cision, recall and F1 scores as the performance
metrics. The results of the within-domain classifi-
cation experiments on the GoEmotion and ISEAR
datasets are shown in Table 1 (detailed results on all
metrics are provided in see Table 4 in the appendix).
We focus here on the discussion of F1 scores. For
both datasets and for both transformer-based mod-
els, we find that the proposed hybrid models out-
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Figure 3: Structure diagram of hybrid emotion detection
models

perform the standard transformer-based baseline
models: Specifically, in the case of the GoEmo-
tions dataset, the hybrid models (BERT+PsyLing,
RoBERTa+PsyLing) exhibit an increase in F1
score of +2% relative to their respective base-
line models. In the case of the ISEAR dataset,
the RoBERTa+PsyLing model show an increase
in F1 score of +2% relative to RoBERTa, while
the BERT+PsyLing model show an increase in
F1 score of +1% relative to BERT. Our hybrid
models show improvements in all emotion cate-
gories, except for anger, where they are on par with
their respective baseline models. These results in-
dicate that integrating transformer-based models
with BiLSTM trained on psycholinguistic features
can improve emotion classification within two dis-
tinct domains: an online domain (Reddit) as well
as the domain of reports of personal events. On
the GoEmotion dataset, our best-performing hybrid
model, RoBERTa+PsyLing, outperforms the previ-
ous SOTA model Roberta-EMD (Park et al., 2021)
by +9.9% macro-F1. On the ISEAR dataset, both
hybrid models outperform two of the three CNNs
presented in Dong and Zeng (2022), TextCNN and
MT-CNN, and are competitive with the lexicon-
enhanced multi-task CNN (LMT-CNN). In fact,
both hybrid models outperform the LMT-CNN on
two of the five emotion categories, with an increase
on the joy category of +10.31% F1 (LMT-CNN
vs. BERT-PsyLing) and an increase on the fear
category of +4.05% F1 (LMT-CNN vs. BERT-
PsyLing). The results of the comparisons with
previous deep-learning TBED models on the two
benchmark datasets thus indicate that the proposed
approach constitutes a valuable framework for fu-
ture TBED efforts.

An overview of the results of the out-of-domain
experiments is presented in Table 2. Table 3 shows
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GoEmotion Dataset
Model Anger Disgust Sadness Surprise Fear Joy Average
RoBERTa-EMD (Park et al., 2021) – – – – – – 61.1
BERT 70 48 64 72 72 90 68
RoBERTa 70 49 63 69 71 90 69
PsyLing 50 24 40 40 34 80 45
BERT+PsyLing (ours) 71 49 65 72 72 91 70
RoBERTa+PsyLing (ours) 70 50 65 74 73 92 71

ISEAR Dataset
TextCNN (Dong and Zeng, 2022) 62.14 65.22 76.39 – 72.09 73.97 69.96
MT-CNN (Dong and Zeng, 2022) 65.68 67.63 77 – 74.25 72.09 71.33
LMT-CNN (Dong and Zeng, 2022) 66.54 70.64 80.68 – 74.95 74.69 73.5
RoBERTa-EMD (Park et al., 2021) – – – – – – 75.2
BERT 56 65 71 - 77 84 71
RoBERTa 60 69 71 - 72 84 71
PsyLing 38 36 48 - 48 57 45
BERT+PsyLing (ours) 58 70 70 - 78 85 72
RoBERTa+PsyLing (ours) 64 69 73 - 79 79 73

Table 1: Results on the two benchmark datasets (GoEmotion (top), ISEAR (bottom)). All scores represent macro-
averages of F1 scores(in %).

Model TEC Crowdfl. ISEARUED elect-tweet affect-text SSEC emo-stimulus
Train GoEmo BERT 29 23 44 26 36 19 53
w/o finetuning RoBERTa 31 23 44 29 39 21 56
w/o neutral PsyLing 22 18 25 16 23 11 38

BERT+PsyLing 31 23 44 27 36 21 56
RoBERTa+PsyLing 29 23 47 27 40 22 61

w/o finetuning BERT 20 26 35 23 13 16 41
with neutral RoBERTa 22 27 34 25 14 18 47

PsyLing 16 20 17 13 10 08 23
BERT+PsyLing 21 27 35 24 15 17 45
RoBERTa+PsyLing 23 28 36 25 16 17 49

with finetuning BERT 55 31 63 36 54 32 92
w/o neutral RoBERTa 56 30 65 34 53 32 94

PsyLing 34 23 41 32 36 24 46
BERT+PsyLing 55 32 65 39 57 32 94
RoBERTa+PsyLing 56 31 65 41 57 32 94

with finetuning BERT 46 33 55 33 44 29 96
with neutral RoBERTa 44 34 56 30 46 30 95

PsyLing 24 24 35 28 29 30 53
BERT+PsyLing 47 34 55 34 48 31 97
RoBERTa+PsyLing 46 34 56 34 47 33 96

Table 2: Results on transfer learning experiments. Values are macro-averaged F1 scores (in %).
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Dataset BERT RoBERTa PsyLing
BERT +
PsyLing

RoBERTa +
PsyLing

Bostan and Klinger,
2018

TEC 63 64 45 67 64 48
CrowdFlower 46 47 41 47 47 24
ISEARUED 76 78 49 78 78 52
elect-tweet 62 62 58 62 62 31
affect-text 63 63 48 67 67 64
SSEC 58 60 45 58 60 67
emo-stimulus 94 96 55 97 97 97

Table 3: Comparison of performance with Bostan and Klinger (2018). Values are micro-averaged F1 scores (in %).

comparisons of the results of our best perform-
ing model, RoBERTa+PsyLing, in the finetuning
setting without the neutral label with the results
of maximum entropy classifiers trained on with
bag-of-words (BOW) features from Bostan and
Klinger (2018). The results in Table 2 reveal that
the RoBERTa+PsyLing hybrid model was the best
performing model across all four experimental set-
tings. Performance was generally observed to be
highest in the finetuning setting without the neutral
label. Importantly, the results in Table 2 reveal
that the integration of psycholinguistic features
matched or improved the performance of the mod-
els across all settings, with increases in F1 scores of
up to 7% relative to a standard transformer-based
approach. The results in Table 3 indicate that our
hybrid models pretrained on GoEmotions outper-
form the results of the baseline models provided
by Bostan and Klinger (2018) on five of the seven
emotion datasets (TEC, CrowdFLower, ISEARUED,
elect-tweet, and affect text), with increases in per-
formance of up to 31%. The hybrid models tied the
near-perfect performance of the baseline model on
the emo-stimulus dataset and fell short only on the
SSEC dataset. A possible reason for the relatively
low performance of our models on the latter may
be due to the fact that the SSEC was rated based
on Plutchik’s fundamental emotions.

7 Conclusion

This paper proposed approaches for text-based
emotion detection that leverage transformer mod-
els in combination with Bidirectional Long Short-
Term Memory networks trained on a comprehen-
sive set of psycholinguistic features. The results of
transfer learning experiments performed on six out-
of-domain emotion datasets demonstrated that the
proposed hybrid models can substantially improve
model generalizability to out-of-distribution data

compared to a standard transformer-based model.
Moreover, we found that these models perform
competitively on in-domain data. In future work,
we intend to extend this line of work to dimensional
emotion models as well as to models that jointly
solve the tasks of emotion label classification and
text emotion distribution prediction.

Ethical Considerations

The datasets used in this study may contain biases,
are not representative of global diversity and may
contain potentially problematic content. Potential
biases in the data include: Inherent biases in user
base biases, the offensive/vulgar word lists used
for data filtering, inherent or unconscious bias in
assessment of offensive identity labels. All these
likely affect labeling, precision, and recall for a
trained model.
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A Appendix

Table 4: Detailed Results on the two benchmark datasets (GoEmotion (top), ISEAR (bottom))

GoEmotion Dataset
Model Metric Anger Disgust Sadness Surprise Fear Joy Average
RoBERTa-EMD (Park et al 2021) F1 – – – – – – 61.1

Pre 69 38 53 68 68 88 64
BERT Rec 71 65 80 77 76 91 77

F1 70 48 64 72 72 90 68
Pre 70 62 79 78 71 88 75

RoBERTa Rec 71 41 53 62 70 93 65
F1 70 49 63 69 71 90 69
Pre 48 28 47 43 42 80 48

PsyLing Rec 53 22 34 38 29 80 43
F1 50 24 40 40 34 80 45
Pre 69 65 68 73 81 90 74

BERT+PsyLing (ours) Rec 71 40 63 69 56 90 65
F1 71 49 65 72 72 91 70
Pre 69 65 68 73 81 90 74

RoBERTa+PsyLing (ours) Rec 71 40 63 69 56 90 65
F1 70 50 65 74 73 92 71

ISEAR Dataset
Pre 61.36 63.5 76.64 – 70.67 79.3 70.29

TextCNN (Dong & Zeng 2022) Rec 70.84 64.24 74.21 – 71.66 64.59 69.11
F1 62.14 65.22 76.39 – 72.09 73.97 69.96
Pre 61.31 64.68 80.27 – 72.16 81.13 71.91

MT-CNN (Dong & Zeng 2022) Rec 71.62 64.46 77.37 – 73.66 69.36 71.29
F1 65.68 67.63 77 – 74.25 72.09 71.33
Pre 62.28 66 82.07 – 72.5 82.15 73

LMT-CNN (Dong & Zeng 2022) Rec 72.38 65.1 79.34 – 74.4 71.64 72.57
F1 66.54 70.64 80.68 – 74.95 74.69 73.5

RoBERTa-EMD (Park et al 2021) F1 – – – – – – 75.2
Pre 51 74 74 - 83 84 73

BERT Rec 63 60 69 - 74 86 70
F1 56 65 71 - 77 84 71
Pre 58 68 77 - 93 86 77

RoBERTa Rec 61 66 64 - 62 77 66
F1 60 69 71 - 72 84 71
Pre 26 35 37 - 46 62 41

PsyLing Rec 62 34 63 - 48 53 41
F1 38 36 48 - 48 57 45
Pre 55 73 72 - 80 84 73

BERT+PsyLing (ours) Rec 62 68 68 - 77 86 72
F1 58 70 70 - 78 85 72
Pre 66 72 79 - 80 80 75

RoBERTa+PsyLing (ours) Rec 66 66 68 - 77 77 71
F1 64 69 73 - 79 79 73
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