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Abstract

How language models process complex input
that requires multiple steps of inference is not
well understood. Previous research has shown
that information about intermediate values of
these inputs can be extracted from the activa-
tions of the models, but it is unclear where
that information is encoded and whether that
information is indeed used during inference.
We introduce a method for analyzing how a
Transformer model processes these inputs by
focusing on simple arithmetic problems and
their intermediate values. To trace where infor-
mation about intermediate values is encoded,
we measure the correlation between intermedi-
ate values and the activations of the model us-
ing principal component analysis (PCA). Then,
we perform a causal intervention by manipu-
lating model weights. This intervention shows
that the weights identified via tracing are not
merely correlated with intermediate values, but
causally related to model predictions. Our find-
ings show that the model has a locality to cer-
tain intermediate values, and this is useful for
enhancing the interpretability of the models.

1 Introduction

Recent language models (LMs) can solve complex
input such as math word problems (Saxton et al.,
2019; Geva et al., 2020). To obtain the correct out-
put from such complex (latent structured) inputs,
it is necessary for multiple steps of inference via
intermediate values. However, how LMs process
their inputs and capture latent structure is still not
well understood. In previous studies, Linzen et al.
(2016) and Tran et al. (2018) showed that the neu-
ral models can capture some implicit hierarchical
structure, but it is unclear where that information
is encoded. Shibata et al. (2020) observed that in
LMs trained with Dyck language and showed some
activations are highly correlated with the depth of
their syntactic tree. However, even if such features
can be extracted, there is no guarantee that it is used

by the model (Elazar et al., 2021; Lovering et al.,
2021). Given these considerations, to better under-
stand LM predictions for latent structured inputs,
it is necessary to: (a) To find where information
about intermediate values of the latent structured
inputs is encoded. (b) To evaluate the impact of the
features when the model makes predictions.

In this work, we introduce a method for analyz-
ing the relationship between internal representa-
tions in Transformer (Vaswani et al., 2017)-based
models and intermediate values of latent structured
inputs by using simple math problems. We choose
them as a formal language because their intermedi-
ate values of the latent (tree) structure are clear and
continuous, and it is easy to investigate their rela-
tionship to the internal representation of the model.
The intermediate value of (154− 38)− (290− 67)
can be clearly defined as 154, 290, 154− 38 =116,
and so on. we take up a Transformer model trained
to solve math equations. An overview of our exper-
iments is shown in Fig. 1. First, we search which
directions of internal representations are highly cor-
related with intermediate values in equations by
PCA (tracing) to find where the information about
intermediate values is encoded. We find some di-
rections correlate very well with the intermediate
values. Second, we observe how the model pre-
diction changed when we manipulate the weights
along its direction (manipulation) to conduct a
causal intervention. The result of this experiment
suggests that some directions of them are indeed
used by the model.

These two results show that a Transformer model
has a locality to certain intermediate values, and it
could help enhance the interpretability of the mod-
els. Our contributions are as follows: (a)We show
that intermediate values of equations are encoded
in particular directions in internal representation.
(b)We show that some features representing inter-
mediate values are used during inference.
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Figure 1: An overview of our methods. We find which directions obtained by PCA are correlated with intermediate
values of the equations and how the model prediction changes when the weights of their directions are manipulated.
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Figure 2: The relationship between p3i,2 and Rj
i = bi in

the equation a− (b− c). The correlation is very high.

2 Related Work

Intermediate values. Previous work has exam-
ined the representation of intermediate values in
neural models. Linzen et al. (2016), Bowman et al.
(2015) and Tran et al. (2018) found that LMs cap-
ture implicit hierarchical structures to some extent,
e.g., when performing logical inference over for-
mal languages. Closest to this work are Shibata
et al. (2020), who trained LMs on the Dyck lan-
guage and observed hidden units that are highly
correlated with nesting depth. In contrast to their

work, we analyze representations of more complex
inputs, i.e., equations, and also manipulate these
representations to understand the impact of corre-
lated activations on model predictions.

Numeracy Geva et al. (2020) have shown that
they can reach the state-of-the-art performance of
numerical reasoning by using large pre-trained LM.
Several studies have shown that a Transformer
model can solve more complex problems such as
linear algebra and elementary mathematics to some
extent (Charton, 2021; Saxton et al., 2019). Based
on their findings, we use simple mathematical equa-
tions as problems that can be solved by a Trans-
former model in this study.

3 Experiments

We conduct two types of experiments. First we
trace the representation of intermediate values in
the model. As a result we find directions in activa-
tion space that are highly correlation with interme-
diate values. Then we manipulate activations along
these directions and observe if model predictions
change as expected.

As neural math problem solving model, we train
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Figure 3: Correlations between each principal component and intermediate values, for all layers. Each cell represents
the absolute value of the correlation coefficient between the weights of k-th principal component (column) and the
intermediate values (row). The orange line shows the contribution ratio of each principal component.

a 6-layer Transformer using the settings by Sajjad
et al. (2021) on synthetic data. We generate 200k
equations involving up to five steps of addition or
subtraction of integers between 1 and 1000, e.g.,
(154 − 38) − (290 − 67). Following Geva et al.
(2020) inputs are split into digits, e.g., “123” is to-
kenized into 1,##2,##3. Model predictions are
obtained via linear regression on the final layer’s
[CLS] token representation. After training on 190k
equations we evaluate the model on 10k equations
and obtain a regression score of R2 = 0.9988, i.e.,
the model solves the equations almost perfectly.

3.1 Tracing intermediate values

Method. We describe our method for tracing the
representation of intermediate values in model acti-
vations. First, we reduce the dimensionality of
the activations at each model layer. Let hlj be
the layer activations of the j-th word in a hidden
layer l. Given an input of length n, we concate-
nate all token representations in layer l, obtaining
the layer representation H l = hl1 ⊕ hl2 ⊕ · · · ⊕ hln
and fit a PCA to obtain the top 10 principal com-
ponents plk, k ∈ [1, ..., 10]. Applying this PCA to
instance i yields the 10-dimensional representation
pli,k. Our hypothesis is that the intermediate val-
ues are encoded by one or more of the principal
components. Intuitively, we assume that a princi-
ple component encodes an intermediate value if
the magnitude of model activation in this direc-
tion correlates with the magnitude of the interme-

diate values. To test this hypothesis, we measure
the correlation corr(Rj

i , p
l
i,k) between the value

of the intermediate values Rj
i and the magnitude

of principal component k in the representation
pli,k. Finally, we obtain most-correlated direction
p̂lk(R

j) := argmaxk(corr(R
j
i , p

l
i,k)). If this cor-

relation is high, we conclude that the intermediate
value is encoded in that direction.

Results. We trace intermediate values for the
equation pattern a− (b− c). For example, Fig. 2
shows a strong correlation of 0.973 between the
intermediate value b and its most-correlated direc-
tion p32. After measuring the correlation of each
intermediate value and each of the top 10 princi-
pal components, we plot all correlations in Fig. 3.
Overall, most-correlated directions show high cor-
relations with intermediate values with moderate
contribution ratio up to the 3rd layer, which we take
as evidence that the model encodes intermediate
values along these directions.

3.2 Manipulating intermediate values

Method. So far, we found correlations between
intermediate values and directions in activation
space. However, such correlations do not necessar-
ily mean that these directions determine model pre-
dictions. To test if the directions we found actually
influence model predictions, we perform causal
interventions by manipulating activations. Con-
cretely, we manipulate activations along principal
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(a) Changes of model predictions as a function of weight of p32.
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(b) The intermediate value b as a function of weight of p32.

200 400 600 800 1000
Intermediate value: b

20

10

0

10

20

30

W
ei

gh
t 

of
 p

3 2

Predicted component
Actual component
Original data

(c) Predicted and actual weights of most-correlated direction
p̂32(b) as a function of the intermediate value b.
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(d) Predicted and actual weights of most-correlated direction
p̂42(b) as a function of the intermediate value b.

Figure 4: The results of manipulation. The weights of the shaded areas do not appear in the dataset.

components and observe changes in model predic-
tions, as shown in Fig. 1. Formally, we transform
layer representation H l (see §3.1) into H l′, by in-
creasing or decreasing its projection onto the prin-
cipal component plk by a factor of r:

H l′ ← H l + (r − 1)
(
plk

⊤
H l

)
plk (1)

Intuitively, increasing r moves H l along plk.
If a most-correlated direction p̂lk(R

j) indeed en-
codes the intermediate value Rj , it should be pos-
sible to manipulate activations in a way that corre-
sponds to changing Rj . For example, if the model
prediction given the input 43− (50− 20) changes
from the 13 to 19, this difference is consistent with
changing the first input term from 43 to 49. By ma-
nipulation factors r of a particular most-correlated
direction, observing model predictions, and calcu-
lating corresponding intermediate values, we ob-
tain data for fitting a function from intermediate
values to manipulation factors r. That is, we learn
to manipulate activations in a way that corresponds
to changing a particular intermediate value. To as-
sess the fidelity of this manipulation, we change
input terms and compare actual activation changes
along the most-correlated direction p̂lk(R

j) to the
factor r predicted by our fitted function.

Results. Using the input 617− (555− 602) and
the intermediate value b = 555 as example, we find
its most-correlated direction p̂32(b), as described
in §3.1. By manipulating activations along p32,
model predictions change from the original 664 to
results ranging from ca. 200 to 1000, as shown
in Fig. 4(a). Calculating intermediate values b
that are consistent with these model predictions,
we obtain Fig. 4(b). By axis inversion we ob-
tain a function from b to predicted manipulation
factors r for component p3i,2. We compare these
predicted component weights to the actual com-
ponent weights observed under changed inputs
{(617− (i− 602))|(100 ≤ i < 1000)} (Fig. 4(c)).
Predicted and the actual weights of the most-
correlated direction agree well (corr. 0.986, R2

score 0.687), which we take as evidence that p̂32(b)
encodes the intermediate value b and determines
model predictions accordingly. Conversely, manip-
ulation identifies most-correlated directions that are
correlated but less used in prediction. The most-
correlated direction p̂42(b) has a high correlation
of 0.81 with b, but predicted component weights
show much less agreement with actual weights
(corr. 0.802, R2 score −1.06× 104, Fig. 4(d)).

In conclusion, this case study showed how ma-
nipulations in activation space can find a causal
connection to intermediate values.
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