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Abstract
This paper presents the slurk software, a lightweight interaction server for setting up dialog data collections and running
experiments. slurk enables a multitude of settings including text-based, speech and video interaction between two or more
humans or humans and bots, and a multimodal display area for presenting shared or private interactive context. The software
is implemented in Python with an HTML and JAVASCRIPT frontend that can easily be adapted to individual needs. It also
provides a setup for pairing participants on common crowdworking platforms such as Amazon Mechanical Turk and some
example bot scripts for common interaction scenarios.
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1. Introduction
Much of NLP’s breakthroughs in recent years is based
on data-driven learning methods. Data-hungry ma-
chine learning algorithms to model Visual Question
Answering (Das et al., 2017) or Vision and Language
Navigation Tasks (Krantz et al., 2020) are fed with
crowdsourced data, which is fast and affordable to ob-
tain, as crowdworkers do not have to be brought to
the lab for common tasks like labeling, captioning im-
ages or producing navigation instructions. Data for
the subfield of dialog modelling requires at least two
crowdworkers to be involved, something that is a non-
standard use case for the most popular crowdsourcing
platforms as it requires coordinating two or more work-
ers to find a common timeslot to work on a task.
The slurk tool adds to a body of frameworks and
tools (Healey et al., 2003; Manuvinakurike and De-
Vault, 2015; Miller et al., 2017; Schlangen et al., 2018)
that facilitate data collection for training and testing di-
alog models where it is often necessary for researchers
to set up their own data collection that satisfies their
specific needs, e.g., to cover some specific domain or
dialog phenomenon. slurk allows to create exper-
iments for human-human or human-machine interac-
tion, with no limitation on the number of participants
for a given setup. Possible interaction channels include
text as well as audio and video. Dialog games – con-
sisting of an interaction setting such as a text or audio
channel, a certain context to refer to, and a task to solve
– can be created to include multimodal context such
as images or interactive tools in which participants can
manipulate the context together.
In this paper, we describe the slurk software, a mod-
ular tool for collecting multimodal dialog data that is
integratable with crowdworking platforms to pair up
participants on demand. We explain how slurk can
be set up to constrain the interaction channel in a num-

ber of ways as well as to manipulate the visual context
for each participant. Section 2 details the purpose of
the software, Section 3 describes related frameworks,
and Section 4 introduces the slurk architecture and
system features in detail. In Section 5 we demonstrate
how these features can be used to set up data collections
and experiments, in the lab or via crowdsourcing.

2. Goals
The main purpose of slurk is to provide a framework
that is flexible and modular to set up a variety of dia-
log tasks in order to both collect data from human con-
versations as well as test existing dialog models with
human evaluators. Dialog context, such as images or
interactive buttons, as well as the interaction channel
can be manipulated in a number of ways as we outline
in this paper. Figure 1 shows an example interface for a
dialog task, with the chat area on the left, showing the
dialog history, and what we call the display area on the
right, providing the visual context.
Developing new dialog models for different settings of-
ten requires researchers to first collect data of humans
performing both sides of the task in order to fully un-
derstand the parameters of what they are modelling,
e.g., what does the conversation look like when par-
ticipants have different roles, when they do not share
the visual context or when the task formulation changes
slightly? Then, once a model has been developed, it is
imperative to test it with human users. While many
metrics exist that evaluate dialog along a number of
dimensions, interactions with and judgments from hu-
mans are vital to understand a model’s scope and detect
its limitations.
slurk aims to be useful for both understanding
human-human conversations as well as evaluating di-
alog models and is designed to be extended for new
settings. For example, we can use the display area to
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Figure 1: One participant’s browser view in the DiTo task. The browser view is separated into the chat area on the
left and the display area on the right. The other participant in this task sees a different image. The top right corner
shows who is present in the room. Images are taken from the CLEVR dataset (Johnson et al., 2017).

connect users to external tools and send information via
the slurk server, thus synchronizing all information
and logs in one place.

3. Related work
The three platforms that are most similar to slurk are
the parlAI tool (Miller et al., 2017), the DiET toolkit
(Healey et al., 2003) and the Pair Me Up Web Frame-
work (Manuvinakurike and DeVault, 2015).
The parlAI platform (Miller et al., 2017) was built with
the goal of supporting the creation of general open-
domain chatbots in mind. It is a text-based dialog plat-
form that lets developers of language models test their
trained models on many different tasks to which the
platform provides seamless access. The framework can
also be used for training models and sharing datasets.
parlAI has been used mainly for open-ended dialog,
e.g., to study what factors make for a good conversa-
tion (See et al., 2019).
The Dialogue Experimentation Toolkit (DiET) (Healey
et al., 2003) focusses on studying human-human text-
based dialog. The toolkit aims at studying manip-
ulations to the interaction settings, e.g., by deleting,
changing, or adding turns. It also provides a GUI in-
terface for defining such interventions. Some DiET
features can be run via the open-source chat messen-
ger Telegram, making it easily accessible for non-lab
participants. The toolkit has been used for example to
study the role of laughter in chats by inserting artificial
laughter tokens into turns (Maraev et al., 2020).
The Pair Me Up Web Framework (PMU)
(Manuvinakurike and DeVault, 2015) has origi-

nally been developed for collecting human-human
spoken conversations over the web and was later
extended to allow for autonomous bots to be paired
with human conversation partners as well. Although it
has so far been used only in one particular interactive
setting (RDG-Image (Paetzel et al., 2014)) and is not
actively maintained anymore, the general technology
developed for pairing participants as well as recording
their audio and synchronizing it with events in the
game interface could be applied to other domains.
While the first two platforms focus on two very differ-
ent goals – building an open-ended chatbot vs. studying
human-human interactions – they share some features.
parlAI and DieT are text-based and comprise a display
area to present visual context to the human dialog part-
ners in the form of images. Image displays are config-
urable in both, but in contrast to slurk, no interactive
elements such as buttons can be part of the interaction
context. The third platform, PMU, like slurk, allows
for an interactive visual context, the pairing of both
human and artificial conversation partners as well as
the potential for spoken conversations; it has however
not been developed into a general purpose tool (and is
not in active development), and lacks the flexibility that
slurk offers.
parlAI dialogs follow a strict turn-taking regime in
which participant and chatbot turns strictly alternate.
Turns are displayed in full as the focus is on the gen-
erated language. DiET is more flexible with respect
to turn-taking. It allows free turn-taking between par-
ticipants and implements, in addition to sending mes-
sages turn by turn, a WYSIWYG mode that simulates
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parlAI DiET PMU slurk
Interaction
via text X X X
via audio X X
via video X
flex. turn-taking X X X
human-human X X X

Dialog context
images X X X X
config. layout X (X) X
interact. elements X X

Data collection
AMT integration X X X
Telegram integr. X
Models included X

Table 1: Features of the dialog platforms parlAI (Miller
et al., 2017), DiET (Healey et al., 2003), Pair Me Up
(Manuvinakurike and DeVault, 2015) and slurk.

incrementality by sending typed characters to the other
participant immediately, and lets them fade after some
time. slurk implements a similar mode called live-
typing that can send messages character by character
but does not let them fade from the display area. PMU
allows for communication via spoken language only
and does not enable experimental restrictions on turn-
taking. slurk also implements a number of additional
options to control the interaction setting, such as incor-
porating mouse clicks or annotation elements and an
audio and video channel that can be restricted, e.g., by
enforcing a push-to-talk turn-taking setting.
For setting up data collections or experiments, parlAI
provides an AMT interface, and DiET an interface to the
Telegram chat messenger. slurk and PMU provide a
pairing setting that can be used with either a crowd-
sourcing platform like AMT or via a desktop browser
directly. Table 1 summarizes some of the four tools’
features, providing an overview of the main differences
between them.
Other tools exist that focus on manipulating only a spe-
cific part of the interaction channel, e.g., changing the
speech signal to adjust for emotional cues (Rachman
et al., 2018) or changing gestures recorded via vir-
tual reality tools to produce fake gestures (Gurion et
al., 2018). Furthermore, specific environments have
been created to present rich interaction contexts to par-
ticipants while keeping the interaction channel fixed,
usually in a turn-by-turn setting. An example is the
Minecraft virtual environment in which communica-
tion happens between a player and a bot to build objects
together (Gray et al., 2019).
A previous version of the slurk software (Schlangen
et al., 2018) has already been used for research, re-
cruiting participants via AMT. For example, Ilinykh et
al. (2019) set up a task in which participants use com-
mands to navigate a network of rooms, represented by
changing images; Attari et al. (2019) presented images

for participants to discuss; Galetzka et al. (2020) ma-
nipulated the status of messages, controlling whether
information is shared or private; and Chiyah Garcia et
al. (2020) used a dialog task in which the window lay-
out differs depending on the participant’s role in the in-
teraction, including buttons for certain actions. Haber
and Poesio (2020) described their setup for presenting
participants with static images without recruitment via
a crowdsourcing platform. In this paper, we describe
the existing and new features in more detail. In the
new software version, we have improved the API and
extended it to handle audio and video data and imple-
mented a number of new plug-ins and example bots that
exemplify the described behaviors.

4. Architecture and features
slurk runs as a server that provides the interface to
communicate with clients, which can be either human
dialog participants or software “bots”, cf. Figure 2. In-
teractions happen in “rooms” to which the clients log
on. A permission system controls what a client can see
and do. Room layouts are divided into a display area
that can be used for providing task-based content such
as images, and a chat and input area that shows the
chat history, input field, and the video if desired, see
Figure 1.

4.1. Core slurk concepts
The core concepts in slurk are the following:

• Room: A room is the space in which users inter-
act with each other, with a bot, or with material
presented to them, e.g., an image.

• User: A user is a participant in the interaction who
has certain permissions that may restrict her ac-
cess. Permissions may also change during an in-
teraction, e.g., at the end of a task we may want to
prevent users from making further contributions.
Both human participants and bots are users. A hu-
man user can only be in one room at a given time.
Bots can participate in several rooms at once.

• Task: A task defines what a room looks and be-
haves like. We can define the number of users to
be assigned to a task. Rooms can then be opened
based on task information, so that several rooms
can have interactions about the same task in par-
allel.

• Token: User permissions are encoded via tokens.
Tokens also carry information about which task a
user is assigned to.

• Layout: The layout defines what the users can
see, e.g., what type of chat history, and what the
context looks like, e.g., whether an image or but-
tons are visible. The visible context can change
during an interaction.



4072

Participant

Slurk Frontend

Socket.io
client

JavaScript
Code(s)

Participant

Slurk Frontend

Socket.io
client

JavaScript
Code(s)

Host Server

Slurk Server

Logs, Layouts,
Rooms, Tasks,

Users, and Tokens

Socket.io 
server

API

Bot

OpenVidu 
server API

Human Participant

Slurk Frontend

Socket.io
client

JavaScript
Code(s)

Figure 2: The slurk main architecture. The slurk server is deployed on a host machine. Clients – bots or
participant frontends – connect via the slurk API and socket.io. All communication between clients happens via
the server. Participants log into rooms using a generated token to see the frontend of their assigned room.

• Events: Both server and clients emit events that
bots may react to for defining the logic of an in-
teraction. For example, bots may react to a user
entering a room or on a text message that was sent
in a certain room.

A typical data collection setup involves defining a lay-
out and task and using a script that creates rooms on
demand (the Concierge Bot, cf. Section 5.2.1), when-
ever the necessary number of participants has entered
a waiting room. Other bots can then join this room.
Human users log in to slurk using a url link that en-
codes their token and with it the permissions they have
for carrying out actions like sending messages or im-
ages. We describe some example bots and settings in
Section 5.

4.2. Technology
Figure 2 shows the overall server-client architecture
of slurk. The system is built in Python, on top of
flask1 and flask-socketio.2 The slurk server commu-
nicates with a separate video server via https for audio
and video communication (cf. Section 4.3). The video
server can be deployed on a different machine and is
configured via the slurk REST API, thus making ev-
erything configurable in one place.
Bots use the slurk API via socket.io3 to act in a par-
ticular setup: They can create rooms on the fly, send
users into a room or disconnect them, or they can asso-
ciate a video session to a room. Bots use the API also to
act as overt or hidden dialog participants. They can re-
act on server events, e.g., when human users send text
messages, commands or images, or when they click on
an element in the display area. Bots emit events them-
selves when they message a user or when they modify
the display area of one or more users.

1http://flask.pocoo.org
2https://flask-socketio.readthedocs.io
3For example using Python or any other socket.io client.

Human users are served an HTML-page that connects to
the slurk server via flask-socketio. A token specifies
the permissions they have, e.g., to send private mes-
sages or commands or to participate in a video session.
Permissions are specified by the experimenter depend-
ing on the task. The frontend that users see is written
in JAVASCRIPT and configures some functionality via
plug-ins, e.g., the command syntax and the syntax for
private messaging.

4.3. Audio & video interaction
Adding video to remote dialog allows us to bridge the
gap between a face-to-face setting and a pure audio set-
ting with shared visual context. Video analysis of fa-
cial gestures in face-to-face conversation has for some
time played a role in studying dialog (van Son et al.,
2008; Oertel et al., 2013). Adding the video modality
to remote conversation can give us new insights into
the role of the facial gesture modality. Note that it is
also possible to use slurk in settings where there is
only one user to record, e.g., to collect acted gesture
performances (video) or spoken descriptions of images
or other stimuli (audio only).
For allowing users to interact via audio and video, we
have added the possibility to connect to an OpenVidu4

server session directly via slurk. OpenVidu is an
open-source software for streaming live video and au-
dio based on the highly compatible WebRTC frame-
work for streaming multimedia data. It is licensed un-
der Apache License v2 and the free version of the soft-
ware includes streaming and recording videos, as well
as self-hosting, making it possible to keep full control
of the data.
Connections to OpenVidu sessions can be set up di-
rectly via the slurk API. For a room to include a
video or audio session, it has to be associated with the
respective OpenVidu session. Users in the room must

4https://openvidu.io

http://flask.pocoo.org
https://flask-socketio.readthedocs.io
https://openvidu.io
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(a) Abstract depiction of possible information flow: Human partici-
pants access the server via their browser clients, bot scripts can access
the server via the API. In practice, bot scripts and bot participants are
implemented as one object.
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:
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:
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and use textual commands that trigger bot actions,
e.g. when they think they are done. The bot sends
private and public messages to the participants.

(b) Setups for the Echo Bot with one participant (top)
and the DiTo Bot with two participants (bottom).

Figure 3: Schema and two instantiations of interaction setups.

be granted permissions (via their tokens) to publish or
subscribe to the OpenVidu session. In the future, we
plan to further explore the quality of this data that we
can obtain using crowdsourcing and the privacy impli-
cations of this type of data collection.

4.4. Bots
Bots are client programs that can combine different
roles in order to control the interaction. Bots can take
the role of a full dialog agent, i.e., we can use them to
test any dialog model by letting human users interact
with the model. Bots can also control the interaction as
hidden agents, e.g., they can interpret commands, mod-
ify contributions, or suppress contributions. This gives
us the possibility to control an ongoing interaction. For
eyample, a bot might react to certain words and send a
private message to a user in response, or impersonate
another user by modifying their turn.
Bots may also implement background logic, i.e., they
interpret button presses and other events happening
in the display area, react on incoming users, or track
time since the last contribution. For example, in the
MeetUp! corpus (Ilinykh et al., 2019), users navigate a
room network by typing commands such as /n for “go
north”. The bot interprets the command and changes
the image in the display area accordingly. Bots can
also administrate the main settings, e.g., they can move
users between rooms or change their permissions. Bots
can be triggered to end an interaction, e.g. via a timeout
or a user command, making it possible to define custom
logic for data collections.

4.5. Configuring the visual context
A growing body of research today is concerned with
building models that can integrate language and vi-
sual information, for example to reason about spatial
relations of objects in an image (Bisk et al., 2016).
slurk’s display area is configurable to show dialog
participants custom images or other visual material.
The configuration of various visual aspects is done via a
JSON file from which HTML is built. The bot script can
then determine (and throughout the interaction change)
what each user can see. For example, in the DiTo Bot
setting, two participants are trying to find the differ-
ence between the images that they see (cf. Figure 3b).
A screenshot of what one participant’s browser window
looks like can be seen in Figure 1.

4.6. Logging
All parts of an interaction are logged on the slurk
server in a JSON format. Figure 4 shows example
log entries for common events. JSON data5 is human-
readable and can easily be parsed automatically and
converted to other data formats for annotation or anal-
ysis. Every log entry contains a timestamp, allow-
ing synchronization with all data sources, including the
video and audio recordings. Logging happens continu-
ously, so that logs retrieved at a certain time reflect the
interaction up to that point.

5https://www.json.org

https://www.json.org
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{ 
  "data": { 
    "coordinates": { 
      "bottom": 0.6728571428571428,  
      "left": 0.6385,  
      "right": 0.9605,  
      "top": 0.45571428571428574 
    },  
    "type": "add" 
  },  
  "date_created": "2022-01-04T17:02:23", 
  "date_modified": null,  
  "event": "bounding_box",  
  "id": 26,  
  "receiver_id": null,  
  "room_id": 2,  
  "user_id": 3 
}

B
{ 
  "data": { 
    "attribute": "src",  
    "id": "audio-file",  
    "value": "https://[...]/square.wav" 
  },  
  "date_created": "2022-01-04T17:02:11", 
  "date_modified": null,  
  "event": "set_attribute",  
  "id": 24,  
  "receiver_id": 2,  
  "room_id": 2,  
  "user_id": null 
}

C

{ 
  "data": { 
    "broadcast": false, 
    "html": false, 
    "message": "hello!" 
  }, 
  "date_created": "2021-11-22T16:42:30", 
  "date_modified": null, 
  "event": "text_message", 
  "id": 5, 
  "receiver_id": null, 
  "room_id": 1, 
  "user_id": 2 
}

A

Figure 4: Example log entries for different events: (A)
A user has sent a text message. (B) A user has drawn a
bounding box in the display area.

4.7. License, download and development
slurk is available at https://github.com/
clp-research/slurk under a BSD-3-Clause
License. The repository contains instructions about
how to download, install and deploy the server, as well
as a tutorial for setting up an example room. A second
repository contains example bots at https://
github.com/clp-research/slurk-bots.
Both repositories are public for others to contribute to
or file issues for support and improvement.

5. Studying dialog with slurk
The slurk tool is intended to allow fine-grained ma-
nipulation of interaction behaviors in order to study di-
alog phenomena such as creating common ground in
shared or private settings. A specific dialog experiment
will have to define the interaction channel, e.g., how
many participants are interacting and whether the inter-
action is written or spoken, the context that is available
to the participants, i.e., what they can see and how they
can interact with entities in the context, and the rules of
the interaction, e.g., when the interaction is successful.
We describe in the following how the settings for these
building blocks can be manipulated in slurk.

5.1. Controlling interaction settings
Figures 3a and 5 schematically show how the settings
of the chat and display area can be adjusted. The de-
fault mode of interaction is text, shown in the inter-
action area in the left part of the window. The chat
area contains the dialog history as is common for sim-
ilar chat tools. By default, users can see their own and
others’ messages, ordered by recency. In addition, an
audio and video connection can be established. Any vi-
sual dialog context is shown in the display area in the
right part of the browser window (cf. Figure 1).

Incrementality: Two plug-ins are available to
show to users how the dialog is evolving: The
typing-users plug-in shows who is currently
typing, the live-typing plug-in sends messages
directly as they are being typed, without the typer
having to hit the “send” button. Plug-ins are specified
as part of the room layout as shown in Figure 6a.

Turn-taking: Turn-taking can be manipulated along
a scale to either follow a strict turn-handover regime in
which the addressee cannot talk until they are explic-
itly given the turn, or be fully incremental. By default,
anyone can type or speak at any time. Bots can tem-
porarily prevent users from typing by changing their
permissions based on custom logic. For example, a bot
can keep track of turns and enforce a round-robin for-
mat in which each participant needs to wait until it is
their turn to contribute.
Similarly, in spoken interaction, we can control
whether the audio channel is always open for every-
one to speak or enforce stricter turn-taking by using a
“push-to-talk” setting in which speakers signal when
they are done speaking in order to open the channel for
someone else.6

Intercepting the channel: Communication between
the clients happens via the server and it is therefore
possible to modify any messages before sending them
on to their addressee (cf. Figures 2 and 5). Bots can
change, insert or delete text messages and pretend to
be another user. In the same way, it is possible to in-
tercept the audio and video channels, although we are
leaving such tests to future work.

Multimodal context: The display area serves as di-
alog context, controlled by JAVASCRIPT, and can con-
tain arbitrary HTML elements. For example, the display
area can present images, buttons, or pre-recorded audio
and video elements, or embed interactive tools. The
position of the live video can be freely adjusted. We
also make available sample plug-ins that track mouse
movement and let participants draw bounding boxes.
Any element in the display area can be modified pro-
grammatically by bots during the interaction so that the
context can change, e.g., images may become visible or
invisible to one or more users. An example is shown in
Figures 6b and 7.

6Note that it is possible to mix written and spoken dialog.

https://github.com/clp-research/slurk
https://github.com/clp-research/slurk
https://github.com/clp-research/slurk-bots
https://github.com/clp-research/slurk-bots
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Figure 5: The interaction channel between users (hu-
mans or bots) can be intercepted and modified in a
number of ways, including removing and inserting ele-
ments (ε). The bot can either be an overt participant or
be invisible to some or all others. Human user clients
communicate via the slurk server that emits events
to the bot who can then manipulate the channel. Turn-
taking regimes can set restrictions on how early a mes-
sage is sent and when the addressee can answer.

Shared vs. private information: Permissions con-
trol a range of possible user behavior, including what
each participant can see in the context, i.e., whether all
participants see the same context or different contexts.
Privately sent text is only visible to the respective ad-
dressee. In this way, bots can send administrative mes-
sages to single participants, e.g., to encourage them to
contribute or remind them of the task rules.

5.2. Data collection in practice
5.2.1. Pairing participants
When collecting human-human dialog data, partici-
pants need to be recruited and paired based on the
specific task. The biggest challenge in connection to
collecting dialog data from crowdworkers is often the
synchronous nature of the task. For most other tasks,
crowdworkers perform tasks in their own time, with
no dependencies on other workers. This section shows
how we address this challenge.
For data collections, we set up a task bot that is respon-
sible for the core of the dialog game users are asked to
play. This bot might first present some general instruc-
tions to users, repeat the dialog task, or remind a user to
engage with a particular part of the context. For exam-
ple, the DiTo Bot in Figure 1 (a variant of the bot used
by Attari et al. (2019)) presents the task and makes sure
both users are ready to start the dialog.
When participants log in to slurk, they are not imme-
diately sent to a room with their task bot, but instead
they see a waiting room and another bot that is in the
room with them. This bot, the Concierge Bot, monitors
incoming users and their tasks and keeps track of the
task requirements: Once enough users for a task have
entered, the Concierge Bot creates a new task room and
sends the users to the new room. The task bot then joins
this task room as well. Any bot can also track time,

{
"title": "Room",
"scripts": {
"incoming-text": "display-text",
"incoming-image": "display-image",
"submit-message": "send-message",
"print-history": "plain-history",
"typing-users": "typing-users"

}
}

(a) A minimal room layout defining what JAVASCRIPT plug-
ins to use for different tasks. In this example, text, images
and history are displayed, as well as who is currently typing.

{
"title": "Box Task Room",
"html": [
{
"layout-type": "div",
"style": "text-align: center;",
"layout-content": [{
"layout-type": "audio controls",
"id": "audio-file",
"src": "",
"autoplay": "true",
"style": "height:30px;"

}]
},
{
"layout-type": "div",
"style": "text-align: center;",
"layout-content": [{
"layout-type": "image",
"id": "drawing-area"

}]
}],
"scripts": {
"incoming-text": "markdown",
"incoming-image": "display-image",
"submit-message": "send-message",
"print-history": "markdown-history",
"plain": "bounding-boxes"

}
}

(b) A room layout specifying HTML elements for an au-
dio player and an image. The bot will later insert the re-
spective source files. The image element is labeled with
"id":"drawing-area" so that the bounding-box plug-
in can access the element. The plug-in is specified in the
scripts block.

Figure 6: Example JSON room layouts.

so that participants can receive a small reimbursement
even for their waiting time and are sent back to the
crowdsourcing platform in case no other participants
should appear within a given timeframe, e.g., five min-
utes (cf. Section 5.2.2).
For the DiTo task, two participants are required, so the
Concierge Bot forwards incoming users to a newly cre-
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(a) Display area containing an audio player, a button next to
it, an image, and a bounding box that a user has drawn.

(b) Display area containing an interactive Pentomino game.

Figure 7: Example display areas.

ated task room once this number is reached. A third
and fourth participant would trigger the Concierge Bot
to create a second task room, so that the same task
can be carried out in parallel in different rooms. Fig-
ure 1 shows the task room as seen by participants. Fig-
ure 3b schematically shows the task room setup that
configures the interaction channel and display area in
which users have separate visual contexts and a bot is
present to administrate the interaction by tracking time
and counting contributions.
For running Wizard-of-Oz data collections, either the
same pairing mechanism can be used, or a bot can send
participants directly into a room with a specified wiz-
ard. The display area of the slurk window can be
configured to include any tools that the wizard might
need, such as buttons for predefined speech or text, im-
ages, or task text.

5.2.2. Connecting with crowdsourcing platforms
Another requirement for integrating a slurk data col-
lection on a crowdworking platform such as Amazon
Mechanical Turk is that workers need to leave the plat-
form for performing the task and after completing it
need to return to it so that their profile can be associ-
ated to the correct slurk logs in order to evaluate and
reimburse them correctly.
When directing participants from the crowdworking or
experiment platform to their slurk room, it is pos-

sible to include all necessary information into the url
they need to follow. In particular, the url contains their
individual access token and we can automatically as-
sign them a name that keeps them anonymous. This
has the advantage of reducing the steps they would oth-
erwise need to follow (choosing an access name and
copy/pasting the token).
In order to connect their dialog data (present in the
slurk server) to their crowdworking profile (present
in the provider’s system), a mechanism can be included
in a bot that provides an individual code to each partic-
ipant once they have completed their task. Participants
need to enter the code on the crowdworking platform
once they have returned, so that their profile can be
linked with the correct dialog logs.

5.2.3. Collecting video data via crowdsourcing
Collecting dialog data remotely involves pairing peo-
ple that usually do not know each other. While ran-
dom pairing has been done for both text and audio, e.g.,
for the Switchboard corpus (Godfrey et al., 1992), the
video channel adds another dimension of privacy con-
cerns that needs to be accounted for.
Video data has been collected via AMT before, e.g.,
by Sigurdsson et al. (2016), but it is a different mat-
ter whether a participant shares video with researchers
that can vouch for data security or whether to share live
video with another participant. Special care also needs
to be exacted in deploying the video server to safeguard
it from unauthorized access.
The OpenVidu platform allows us to record video on
our own servers and adhere to local data protection
laws. We explicitly want to stress that when using the
audio and video features, participants need to be in-
formed that their data is recorded in these modalities
and that their explicit consent is needed.

6. Conclusion
We have described slurk, a lightweight interaction
server to experiment with dialog. The infrastructure
can be used to collect dialog data or test dialog mod-
els by letting human participants interact with them.
slurk allows a range of manipulations to the inter-
action channel as well as user-defined dialog context,
such as images or interactive elements. Among the
planned work for the future are a bot that allows col-
laborative manipulation of a Pentomino game board
(Zarrieß et al., 2016), cf. Figure 7b; an integration for
a text messenger such as Telegram; and experimenting
further with the audio and video channel. We invite
the community to use the tool for their purposes and
are open for suggestions for further features. We hope
that the tool can contribute to making it easier to collect
better dialog data that in turn lead to better models.
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